反比例函数复习--课件.ppt
合集下载
反比例函数-ppt课件

解
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
课件-反比例函数复习.ppt

4.函数 y 的 6图象位于第 二象、限四,
x
在每一象限内,y的值随x的增大而 增大, 当x>0时,y <0,这部分图象位于第 象四限.
5.在某一电路中,保持电压U不变,电流I(安培)与
电阻R(欧姆)之间的关系是:U=IR,当电阻R=5欧
姆时,电流I=2安培.则电流I(安培)是电阻R(欧姆)
的
函数反,且比I与例R之间的函数
1
y
P (m,n)
oD
x
2.如图, P是反比例函数y k 图像上的一点,由P分别 x
向x轴, y轴引垂线,阴影部分面积为3,则这个反比例
函数的解析式是____.
解:
S矩形APCO | k |,| k | 3.
y
又图像在二、四象限 ,
PC
k 3 解析式为y 3 .
x
A ox
3.如图, A,B是函数y 1 的图 像上关于原点O对称 x
x (元) 3
4
5
6 ……
y(个) 20 15 12 10 ……
(1)猜想并确定在赢利的条件下y与x之间的函数关系式。
(2)设经营此贺卡的销售利润为w元,试求出w与x之间的函 数关系式,若物价局规定此贺卡的销售价最高不能超过10元, 请你求出当销售单价x定为多少时,才能使获利最大?
练一练
1.下列函数中哪些是y是x的正比例函数?哪些
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
作业: P60---62复习题17
5、6、7、8、9、10、11。
y
y
B
P(m,n)
o
Ax
B
P(m,n)
oA
x
反比例函数复习课件(21张ppt)

解:(1)设函数关系式为y=k/(x-0.4),又当x=0.65元时,y=0.8,则 有 0.8=k/(0.65-0.4),解得k=0.2. 1 ∴y与x之间的函数关系式为y=0.2/(x-0.4),即 y 。
5x 2
(2)把x=0.6代入y=0.2/(x-0.4),得y=1.即本年度新增用电量1亿度 则本年度总用电量为(1+1=2)亿度 ∴本年度电力部门的纯收入为:2×(0.6-0.3)=0.6亿元。
A) 1 C)S>2
B) 2 D)1<S<2
y
O
A C
x
B
八年级 数学
期末总复习 先由数(式)到形再由形 到数(式)的数学思想
如图双曲线 变2:换一个角度: 上任一点分别作x轴、y轴的垂线段, 与x轴y轴围成矩形面积为12,求函数 解析式。
∵︳K︱ =12 ∴k=±12 12 y (X>0) x
1 1 9 ). 2.双曲线 y 经过点 (-3 ,______ 3x m2 3.函数 y 的图象在二、四象限内,m的取值 x 6 4.若双曲线经过点(-3 ,2),则其解析式是______. x m<2 . 范围是______
减小 . y随x的增大而______
y=
八年级 数学
期末总复习
x y 1 6 2
8
3 9
4 7
x y
1 8
2 5 (B)
3 4
4 3
(A) x y 1 5 2 8 3 7 4 6 x y 1 1
2 1/2 (D)
3 1/3
4 1/4
(C)
八年级 数学
期末总复习
反比例函数的 图象与性质
八年级 数学
5x 2
(2)把x=0.6代入y=0.2/(x-0.4),得y=1.即本年度新增用电量1亿度 则本年度总用电量为(1+1=2)亿度 ∴本年度电力部门的纯收入为:2×(0.6-0.3)=0.6亿元。
A) 1 C)S>2
B) 2 D)1<S<2
y
O
A C
x
B
八年级 数学
期末总复习 先由数(式)到形再由形 到数(式)的数学思想
如图双曲线 变2:换一个角度: 上任一点分别作x轴、y轴的垂线段, 与x轴y轴围成矩形面积为12,求函数 解析式。
∵︳K︱ =12 ∴k=±12 12 y (X>0) x
1 1 9 ). 2.双曲线 y 经过点 (-3 ,______ 3x m2 3.函数 y 的图象在二、四象限内,m的取值 x 6 4.若双曲线经过点(-3 ,2),则其解析式是______. x m<2 . 范围是______
减小 . y随x的增大而______
y=
八年级 数学
期末总复习
x y 1 6 2
8
3 9
4 7
x y
1 8
2 5 (B)
3 4
4 3
(A) x y 1 5 2 8 3 7 4 6 x y 1 1
2 1/2 (D)
3 1/3
4 1/4
(C)
八年级 数学
期末总复习
反比例函数的 图象与性质
八年级 数学
反比例函数复习课件

反比例函数单元复习
知识点回顾1 1.什么是反比例函数?
一般地,函数 y k(k是常数, x
k≠0)叫做反比例函数.
2.解析式还有两种常见的表达形式。 y=kx-1(k≠0) xy = k (k≠0)
你一定能找对!
1.下列函数中哪些是反比例函数?
y = 3①x-1
y = 2x2
②y=
1 x
y = 23x③ ④
|k|的一半.
2.设x为一切实数,在下列函数中
,当x增大时,y的值总是减小的函
C
数是( )
(A) y = -5x -1 ( B) y=x2
(C) y=-2x+2; (D) y=4x.
3. 已知k<0,则函数 y1=kx,y2=
k x
在同一坐标系中的图像大致是
D
()
y
y
(A)
0
(B)
x
0
x
y
y
(C)
0
(D)
x
0
x
4. 已知k>0,则函数 y1=kx+k与kxy2=
在同一坐标系中的图像大致是 ( C)
y
y
(A)
(B)
0
x
0
x
y
y
(C)
(D)
0
x
0
x
5.设P(2,3)是反比例函数图像 上的一点,求△POA的面积。
y
P(2,3)
oA
x
y P(m,n)
oA
x
6.在平面直角坐标系内,从反比例函数
y=k/x(k>0)的图象上的一点分别作坐标轴 的垂线段,与坐标轴围成的矩形的面积是12,
8.已知:y=y1+y2,其中y1与x成正 比例,y2与x成反比例,当x=1时 ,y=4,当x=2时,y=5,求函数y 的解析式。
知识点回顾1 1.什么是反比例函数?
一般地,函数 y k(k是常数, x
k≠0)叫做反比例函数.
2.解析式还有两种常见的表达形式。 y=kx-1(k≠0) xy = k (k≠0)
你一定能找对!
1.下列函数中哪些是反比例函数?
y = 3①x-1
y = 2x2
②y=
1 x
y = 23x③ ④
|k|的一半.
2.设x为一切实数,在下列函数中
,当x增大时,y的值总是减小的函
C
数是( )
(A) y = -5x -1 ( B) y=x2
(C) y=-2x+2; (D) y=4x.
3. 已知k<0,则函数 y1=kx,y2=
k x
在同一坐标系中的图像大致是
D
()
y
y
(A)
0
(B)
x
0
x
y
y
(C)
0
(D)
x
0
x
4. 已知k>0,则函数 y1=kx+k与kxy2=
在同一坐标系中的图像大致是 ( C)
y
y
(A)
(B)
0
x
0
x
y
y
(C)
(D)
0
x
0
x
5.设P(2,3)是反比例函数图像 上的一点,求△POA的面积。
y
P(2,3)
oA
x
y P(m,n)
oA
x
6.在平面直角坐标系内,从反比例函数
y=k/x(k>0)的图象上的一点分别作坐标轴 的垂线段,与坐标轴围成的矩形的面积是12,
8.已知:y=y1+y2,其中y1与x成正 比例,y2与x成反比例,当x=1时 ,y=4,当x=2时,y=5,求函数y 的解析式。
反比例函数的定义ppt课件

将下列各题中y与x的函数关系写出来. (1)y与x成反比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与X成正比例;
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
【待定系数法求反比例函数的表达式】
1
x -3 -2 -1 2
-4 1
…
2…
y2 3
1
1
2 -4 2 -2 -1
(1)写出这个反比例函数的表达式; y 2
(2)根据函数表达式完成上表.
x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
学习目标:
1、理解并掌握反比例函数的定义; 2、会用待定系数法求反比例函数的解析式。 学习重点:目标 1 学习难点:目标 2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
自主学习(1) 1分钟
欧姆定律 我们知道,电流I,电阻R,电压U之间满足 关系式U=IR.当U=220V时.
归纳:
反比例函数的定义
一般地,形如 y=(Xkk是常数,k≠0)的函数称为反比例函数, 其中x是自变量,y是函数.
注意:有时反比例函数也写成y=kx-1
或xy=k的形式.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
【待定系数法求反比例函数的表达式】
1
x -3 -2 -1 2
-4 1
…
2…
y2 3
1
1
2 -4 2 -2 -1
(1)写出这个反比例函数的表达式; y 2
(2)根据函数表达式完成上表.
x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
学习目标:
1、理解并掌握反比例函数的定义; 2、会用待定系数法求反比例函数的解析式。 学习重点:目标 1 学习难点:目标 2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
自主学习(1) 1分钟
欧姆定律 我们知道,电流I,电阻R,电压U之间满足 关系式U=IR.当U=220V时.
归纳:
反比例函数的定义
一般地,形如 y=(Xkk是常数,k≠0)的函数称为反比例函数, 其中x是自变量,y是函数.
注意:有时反比例函数也写成y=kx-1
或xy=k的形式.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
反比例ppt课件

实例应用分析
日常生活中的反比例现象
在日常生活中,反比例现象非常普遍。 例如,当一个物体从高空下落时,下落 速度与下落时间成反比关系;当汽车以 恒定速度行驶时,行驶距离与行驶时间 成反比关系等。
VS
实际应用中的反比例关系
在许多实际应用领域中,如物理学、工程 学、经济学等,都存在反比例关系。掌握 反比例函数的变化趋势和影响因素对于解 决实际问题具有重要意义。例如,在物理 学中,当两个带电体之间的距离增大时, 它们之间的库仑力会减小;在经济学中, 当商品的价格上涨时,其需求量会减少等 。
课件
目 录
• 反比例的定义 • 反比例的应用 • 反比例的图像表示 • 反比例的变化趋势及影响因素 • 反比例的实践与探索
CHAPTER 01
反比例的定一个常数, 那么它们成反比例。
表达式
假设有两个量x和y,它们的乘积 为k,即x×y=k,那么我们称x和y 成反比例,k为它们的比例常数。
在生理学中,反比例关系可以用 来描述心率与血压之间的关系, 以及血糖水平与胰岛素浓度之间
的关系等。
THANKS FOR WATCHING
感谢您的观看
率与传动比的关系等。
在电力工程中,反比例关系可以用来描 述电压与电流之间的关系,以及功率与
电阻之间的关系等。
反比例在医学中的应用
在医学领域,反比例关系也有着 广泛的应用。例如,在药物治疗 中,药物的疗效与剂量之间存在
着反比例关系。
在疾病诊断中,某些病症的表现 症状与病情的严重程度之间也存
在着反比例关系。
CHAPTER 04
反比例的变化趋势及影响因 素
变化趋势分析
反比例函数的变化趋势
反比例函数是一种具有特殊性质的函数,其图像表现为双曲 线。在反比例函数中,当一个变量增加时,另一个变量会减 少,反之亦然。这种变化趋势在数学中具有重要的应用价值 。
《反比例函数》复习课件

2
A.逐渐增大 B.逐渐减小 C.保持不变 D.无法确定
典型例题
例1 函数y=k/x与y=kx+k在同一 坐标系内的图象大致是( B )
A(x1,y1),B(x2,y2)且x) 例2.已知点A(-2,y1),B(-1,y21<0<x2
都在反比例函数 为
y2>y1
-4 k y y x (k<0) x
解得, k<9,且k≠0
思考题
P,过P点作PA0⊥x轴于A0,x轴上的点A0, A1,A2,…,An的横坐标是连续的整数, 过点A0,A1,A2,…,An 分别作x轴的垂线, 与双曲线及直线y=k分别交于B1,B2,…,Bn; y C1,C2,…,Cn。 P C1 C2 … Cn y=k
k 如图,直线y=k和双曲线 y x 交于点
(D )
巩固提高
此函数的图像在平面直角坐标系中的
A.第一、三象限 C.第一、二象限
B.第二、四象限 D.第二、四象限
k 2.函数y= (k≠0)的图象如图所示, x C 那么函数y=kx-k• 图象大致是____ 的
3.两位同学在描述同一反比例函数的图象时,甲同学
说:这个反比例函数图象上任意一点到两坐标轴的距
C.第三象限
D.第四象限
3. 如图,点P是反比例函数图象上的 一点, 过点P分别向x轴、y轴作垂线, 若阴影部分面积为3,则这个反比例 y 函数是 .
3 y k
p
N
M
o
x
4.如图,P是x轴上一动点,过点P作x轴的 矩形的面积 S K 垂线PQ交双曲线于点Q,连结OQ,当点P 沿x轴正半轴方向运动时,Rt△QOP的面 1 积( C ) 三角形的面积 S K
1、求点AO的坐标
A.逐渐增大 B.逐渐减小 C.保持不变 D.无法确定
典型例题
例1 函数y=k/x与y=kx+k在同一 坐标系内的图象大致是( B )
A(x1,y1),B(x2,y2)且x) 例2.已知点A(-2,y1),B(-1,y21<0<x2
都在反比例函数 为
y2>y1
-4 k y y x (k<0) x
解得, k<9,且k≠0
思考题
P,过P点作PA0⊥x轴于A0,x轴上的点A0, A1,A2,…,An的横坐标是连续的整数, 过点A0,A1,A2,…,An 分别作x轴的垂线, 与双曲线及直线y=k分别交于B1,B2,…,Bn; y C1,C2,…,Cn。 P C1 C2 … Cn y=k
k 如图,直线y=k和双曲线 y x 交于点
(D )
巩固提高
此函数的图像在平面直角坐标系中的
A.第一、三象限 C.第一、二象限
B.第二、四象限 D.第二、四象限
k 2.函数y= (k≠0)的图象如图所示, x C 那么函数y=kx-k• 图象大致是____ 的
3.两位同学在描述同一反比例函数的图象时,甲同学
说:这个反比例函数图象上任意一点到两坐标轴的距
C.第三象限
D.第四象限
3. 如图,点P是反比例函数图象上的 一点, 过点P分别向x轴、y轴作垂线, 若阴影部分面积为3,则这个反比例 y 函数是 .
3 y k
p
N
M
o
x
4.如图,P是x轴上一动点,过点P作x轴的 矩形的面积 S K 垂线PQ交双曲线于点Q,连结OQ,当点P 沿x轴正半轴方向运动时,Rt△QOP的面 1 积( C ) 三角形的面积 S K
1、求点AO的坐标
反比例函数复习课课件

2023
REPORTING
THANKS
感谢观看
2023
PART 05
反比例函数的易错点与难 点解析
REPORTING
易错点的解析
混淆反比例函数与正比例函数
01
正比例函数是y=kx,而反比例函数是xy=k。学生常常将两者混
淆,导致在解题时出现错误。
忽视反比例函数的定义域
02
反比例函数的定义域是x不为0的实数,学生常常忽视这一点,
导致在解题时出错。
2023
PART 04
反比例函数的综合题解析
REPORTING
反比例函数的综合题解析
01
分析与照顾 into acts' intoic andic. of course, and will,, on the在这
பைடு நூலகம்02
saidcoupled =oman ofic ofic of and ofic and of intoic of and, and other神话 top similar 觉ungais'hipster
描述反比例函数的定义
详细描述
反比例函数是一种数学函数,其定义为 y = k/x,其中 k 是常数且 k ≠ 0。当 x 取任意非零实数时,y 的值都存在。
反比例函数的图像
总结词
描述反比例函数的图像特点
详细描述
反比例函数的图像通常在 x 轴和 y 轴上都有渐近线,即当 x 或 y 趋于无穷大时 ,函数值趋于 0。图像通常位于第一象限和第三象限。
反比例函数的性质
总结词:列举反比例函数 的性质
1. 当 k > 0 时,函数图像 在第一象限和第三象限;
3. 反比例函数是奇函数, 即 f(-x) = -f(x);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,即S1
?
S2
?
S3 , 故选A.
考点五
反比例函数的应用
双曲线
解决反比例函数的相实交际问题时,先确 定函数解析式,再利用图象找出解决问题 的方案,特别注意自变量的_取__值__范__围__.
减小
(挑战实际问题)
? 4.已知圆柱的侧面积是10πcm2,若圆柱底 面半径为rcm,高为hcm,则h与r的函数图象
的图像不经过( D )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.反比例函数 y
?
k x
的图象如图所示
,点M是该函数图像上一点,MN垂直
于x轴,垂足是点N,如果S△MON=1
则k的值为_-_2_
,
考考点点四三 反比例函数解析式的确定
方法:待定系数法
由于解析式 y ? k (k≠0)因此只需已知一对对应值或一个点的坐标 x
y
A.S1 = S2 = S3
B. S1 < S2 < S3
A
C. S3 < S1 < S2 D. S1 > S2 >S3
解:由性质(1)得
S1
B C
S2 S3
o A1 B1 C1
x
11
11
S? AOA1
?
2
| k |?
2 , S? BOB1
?
2
| k |?
, 2
S? OOC1
?
1 2
| k |?
1 2
7.已知 y是关于 x的反比 例函数,当x = -3时,y =
0.6;求函数解析式和自 变量x的取值范围。
解:设
y?
k x
因为当 x = -3 时y = 0.6,
所以有
0.6 ?
k ?3
解得: k = -1.8
∴y与x的函数关系式为
y
?
?
1.8 x
8.已知y与x+1成反比例 ,当
x = 2时,y = -1,求函数
大致是( C ).
h/cm
h/cm
h/cm
h/cm
o
r/cm
A
o
r/cm
B
o
r/cm
C
o r/cm D
终极挑战
例ห้องสมุดไป่ตู้
(成都●中考)如图所示,已知反比例
函数
y?
k x
(k≠0)的图象经过点
? ?
1
,8
? ?
?2 ?
,直线 y=-x+b 经过该反比例函数图象
上的点Q(4,m).
(1)求上述反比例函数和一次函数的表达式。
C. 1
3
D.?
1 3
2.对于反比例函数 y ?
3 x
,下列说法正确的是( D)
A.图像经过点 (1,-3)
B. 图像在二、四象限
C.x>0时y随x的增大而增大 D.x<0 时y随x的增大而减小
基础闯关
3.若y=(a+2) x a2+2a-1是x的反比例函数,则 a = 0 .
4.下列的数表中分别给出了变量 y与x之间的对应关
解析式和自变量 x的取值
范围。
解:设
y?
k x?1
因为当 x =2 时y = -1,
所以有
?1?
k 2?1
解得:k = - 3
∴y与x的函数关系式为
y?
?
3 x?1
中考闯关
第二关
1
已知点A(-2,y1),B(3,y2)是反比例函数y
图象上的两点,则有( B )
?
?
2 x
A.y1<0<y2 C.y1<y2<0
人教版 九年级
视频 导入:
悲 伤 的 双 曲 线
知识结构图
现实世界中的 归纳 反比例函数
反比例关系
实际应用
反比例函数的 图象和性质
考点一 反比例函数的定义 及k取值范围kx-1
一般地 ,形如y--?---x (k≠0,)的函数称为反比例函数 ,它的
≠
另两种变型形式为 x_y_=_k_或y_=_k_x_-_1_自变量x的取值范围是
系,其中是反比例函数关系的是 ( D ).
A: x 1 2 3 4 y5 8 7 6 x12 34
C: y8 5 4 3
x1 2 3 4 B:
y6 8 9 7
x123 4
D:
y1
1 2
1 3
1 4
5.已知反比例函数 y
?
b x
(b为常数且b≠0),当
x>0时,y随x的增大而减少,则一次函数y=x+b
B.y2<0<y1 D.y2<y1<0
变式训练 : 已函知数y ?点kxA(-(2k,>y01)),图B(象-3上,y的2),三C(点4,,y3则)是y_1_反<_比y_2<例_y_3
(比较y1,y2,y3的大小)
2.考察函数 y ? 2 的图象,当x=-2时,y= -1___ , 当x<-2
x
时,y的取值范围是 -_1_<_y_<_0 ; 当y﹥-1时,x的取值范围
●增减性:k>0,在每个象限内,图像从左到右 呈下__降_趋势,y随x的增大而减__小_ ;k<0,在每个 象限内,图像从左到右呈上__升__趋势,y随x的增 大而增__大__.
_______
反比例函数解析式的确定
考点三 反比例函数图象中比例系数 k的几何意义
反比例函数
y?
k
x (k≠0)中k的几何意义:双曲线
(2)设该直线与 x轴、y轴分别相交于 A、B两点,与反比
例函数图象的另一个交点为 P,连接OP、OQ、,求△ OPQ
的面积。
分析:
1、S△OPQ=S△OAP-S△OAQ或S△OPQ=S△AOB-S△OAQ-S△OBP
2、联立方程组求点P的坐标
3、代值计算
小结
定义 图象与性质
反比例函数 解析式
反比例函数k的几何意义 应用
y?
k x
(k≠0)上任意一点P向两坐标轴作垂线,垂足分别
为M、N则两垂线与坐标轴围成的矩形PNOM面积为 k
连接PO,则△POM(或△PON)的面积为__1_k
2
y
N P(x,y)
oM
x
基础闯关
第一关
1.已知点P(1,-3)在反比例函数 y ?
k (k≠0)
的图像上,则k的值是( B )
x
A.3 B.-3
x_≠__0_
考点二 反比例函数的图象和性质
画出当 k>0 和k<0反比例函数图像并根据图像写出它的性 质
●反比例函数y ? kx(k≠0)的图像是双__曲__线_
因为x≠0,k≠0,相应的y值也不能为0,所 以反比例函数的图像无限接近x轴和y轴, 但永不与x轴、y轴相__交__ ● 中反心比对例称函的数,y它?的kx位(k≠置0受)k的的图符像号总影是响关.于原__点_
两种方法:1、代值法 2、数形结合 一种思想:转化的思想
课后作业
1、中考数学面对面《反比例函数》
是 _x_<_-_2_或__x_>_0 .
3、如图,在y ? 1 (x ? 0)的图像上有三点 A, B,C, x
经过三点分别向 x轴引垂线 ,交x轴于A1, B1,C1三点,
边结OA,OB, OC , 记? OAA1, ? OBB1, ? OCC1的
面积分别为 S1, S2 , S3 ,则有 A__ .