交大大物第三章习题答案
【单元练】交大附中高中物理选修1第三章【机械波】经典测试卷(培优)

一、选择题1.小明和小华利用照相机记录绳子上由a 向b 传播的机械波并研究机械波的传播规律。
某时刻拍照记录的波形如图甲所示(图中数据为已知),其中a 、b 两点平衡位置的横坐标的距离为6m ,b 点的振动图像如图乙,则a 点的振动图像为( )A .B .C .D . D解析:D根据图甲波长8m λ= ,a 、b 两点平衡位置的横坐标的距离为6m ,相差34λ,则在t=0时刻b 点的振动方向向下,根据波的传播方向也质点的振动方向的关系,可知a 在波峰位置,则波形如图所示故选D 。
2.一列沿x 轴正方向传播的简谐横波在0t =时的波形如图所示,已知图中质点P 振动的周期为2s ,下列说法正确的是( )A .这列波的波速为6m /sB .0t =时,质点P 的速度沿x 轴正方向C .01s ~时间内,质点P 经过的路程为10cmD .1s t =时,质点P 的加速度沿y 轴负方向C 解析:CA .由图可知,波长为8m ,由公式v Tλ=可得8m/s=4m/s 2v =故A 错误;B .由同侧法可知,0t =时,质点P 的速度沿y 轴正方向,故B 错误;C .经过1s 即为半个周期,则质点P 经过的路程为210cm s A ==故C 正确;D .经过1s 即为半个周期,质点P 运动到时间轴下方,则此时P 点的加速度方向沿y 轴正方向,故D 错误。
故选C 。
3.图甲为一列简谐横波在某一时刻的波形图,图乙为质点P 以此时刻为计时起点的振动图象。
从该时刻起( )A .经过0.35 s 时,质点Q 距平衡位置的距离等于质点P 距平衡位置的距离B .经过0.25 s 时,质点Q 的加速度大于质点P 的加速度C .经过0.15 s ,波沿x 轴的正方向传播了3 mD .经过0.1 s 时,质点Q 的运动方向沿y 轴正方向C 解析:CA .由波形图和质点P 的振动图像可知,波沿x 轴正向传播,因为T =0.2s ,则0.35s=314T ,则由图,经过0.35s 时,质点P 到达正向最大位置,质点Q 在平衡位置以下还没有到达最低点,可知质点Q 距平衡位置的距离小于质点P 距平衡位置的距离,故A 错误; B .此时P 向下运动,Q 点向上运动.经过10.25s 14t T ==时,P 点到达波谷,Q 点到达平衡位置上方,但未到波峰,质点Q 的加速度小于质点P 的加速度.故B 错误; C .因波沿x 轴的正方向传播, 4m λ=,则波速20m/s v Tλ==则经过0.15s ,波传播距离x =vt =3m故C 正确; D .因为10.1s 2t T ==,质点Q 的运动方向沿y 轴负方向,故D 错误。
《第三章 交变电流》试卷及答案_高中物理选择性必修 第二册_人教版_2024-2025学年

《第三章交变电流》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、在交流电路中,当电感L中的电流随时间变化而增加时,下列哪个描述正确表示了电感两端电压的方向?A. 与电流方向相同B. 与电流方向相反C. 与电流方向无关,始终为正D. 与电流方向无关,始终为负2、对于一个理想变压器,如果初级线圈匝数N1=1000匝,次级线圈匝数N2=200匝,当初级施加100V的交流电压时,次级输出电压是多少?A. 20VB. 50VC. 100VD. 200V3、一个正弦式交流电流的电压表达式为(u=10√2sin(100πt))V,其中电压的最大值是(10√2)V。
这个交流电的周期(T)是多少?A.(0.02)sB.(0.05)sC.(0.1)s4、一个电阻的阻值为(R=10Ω),当通过它的交流电流的峰值(I max=1)A 时,该电阻消耗的电功率的最大值(P max)是多少?A.(1)WB.(10)WC.(100)WD.(1000)W5、在理想变压器工作时,下列说法正确的是()。
A、原线圈的电压比副线圈的电压大B、原线圈的电流比副线圈的电流大C、原线圈和副线圈的电压与电流的比值相等D、原线圈的电压和电流比副线圈的电压和电流小6、一段长直导线在均匀磁场中做垂直于磁场方向的运动,产生的感应电动势方向可以通过下列哪一项来判断()。
A、右手定则B、左手定则C、楞次定律D、安培环路定理7、一正弦式交流电流的有效值为5A,其峰值电流为多少A?A、7.07AB、5.00AC、3.54A二、多项选择题(本大题有3小题,每小题6分,共18分)1、以下关于交变电流的说法中,正确的是()A、交流电的电流方向随时间周期性变化,而直流电的电流方向不变化。
B、交流电的电压和电流的频率是固定的,而直流电的电压和电流的大小是恒定的。
C、交流电可以通过变压器进行电压的升高或降低,而直流电不能。
D、交流电在电路中的功率因数可以是小于1的,而直流电的功率因数总是等于1。
大学物理(交大3版)答案(1-5章)

第一章1-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1) 由)ωt sin ωt (cos j i +=R r 知t cos R x ω= t sin R y ω=消去t 可得轨道方程222R y x =+2)j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:1)由j i r)t 23(t 42++=可知2t 4x = t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i rt t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)j i rv2t 2dt d +==i va 2dtd == 2)212212)1t (2]4)t 2[(v +=+=1t t 2dtdv a 2t +==22221n t a a a t =-=+1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-4 20221gt t v h y -+= (2)21y y = (3)解之 2d t g a=+1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td d r ,td d v ,tv d d . 解:(1) t v x0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+= (2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t =所以j i r 2g h -v t d d 0= j v g td d -=2202y 2x )gt (v v v v -+=+=21122222002[()](2)g gh g t dvdt v gt v gh ==++1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大学物理第三章题目答案【精选文档】

第三章3.10 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球作匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如题3。
10图.试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少?题3。
10图解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即201ωmr g M =①挂上2M 后,则有221)(ω''=+r m g M M②重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00ωω''=⇒2020r r ③联立①、②、③得1002112301112130212()()M gmr M g M M mr M M M M r g r m M M ωωω=+'=+'==⋅'+3.13 计算题3。
13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg ,M =15 kg , r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b )所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题3.13(a )图 题3。
13(b )图3.15 如题3.15图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ 30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?题3.15图解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤所以22200()I I v v ml mωω-=- 求得021(1)(1)2236(23)312l I l M v ml m gl m Mmωω=+=+-+=(2)相碰时小球受到的冲量为d ()F t mv mv mv=∆=-⎰由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰ 6(23)6gl M -=-负号说明所受冲量的方向与初速度方向相反.3.16 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 (可看作匀质圆盘),在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3.16图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. (1)问它能升高多少?(2)求余下部分的角速度、角动量和转动动能.题3.16图解: (1)碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==(2)圆盘的转动惯量221MR I =,碎片抛出后圆盘的转动惯量2221mR MR I -=',碎片脱离前,盘的角动量为ωI ,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即R mv I I 0+''=ωω式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωω ωω'-=-)21()21(2222mR MR mR MR 得ωω=' (角速度不变)圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为222)21(21ωmR MR E k -=。
大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
高中物理第三章相互作用-力经典大题例题(带答案)

高中物理第三章相互作用-力经典大题例题单选题1、一种运送货物的小平板推车如图所示。
某工人使用此小推车运送货物的过程中,下列说法正确的是()A.当工人拉着小推车在水平地面上做匀速直线运动时,地面对小推车无摩擦力B.当工人拉着小推车在水平地面上做匀速直线运动时,小推车对货物的摩擦力方向与前进方向一致C.若工人拉着小推车水平前进过程中突然减速,此时小推车对货物的摩擦力方向与前进方向相反D.小推车的速度增大的过程中,加速度也一定在增大答案:CAB.当小推车在水平地面上做匀速直线运动时,货物在水平方向上不受力,小推车对货物没有摩擦力,但地面对小推车有摩擦力,故AB错误;C.若工人拉着小推车水平前进过程中突然减速,则小推车对货物产生向后的摩擦力,摩擦力方向与前进方向相反,故C正确;D.小推车的加速度与小推车所受的合力有关,小推车的速度增大的过程中,只能确定加速度方向与速度方向相同,不能确定加速度大小如何变化,故D错误。
故选C。
2、长直木板上表面上静置一物体,木板由水平位置缓慢转至物体恰好在木板上滑动时,物体所受摩擦力F f与木板倾角θ间关系图像正确的是()A.B.C.D.答案:D木板由水平位置缓慢抬起时,物体保持相对静止直至恰好在木板上滑动时,根据平衡条件可得摩擦力大小为F f=m gsinθ结合数学知识可知D图像符合题意,故选D。
3、图中是某运动员三级跳远腾空的照片。
关于该选手在空中的受力情况分析,说法正确的是()A.不受力的作用B.重力、空气阻力C.重力和跳跃力、空气阻力D.仅受到重力作用答案:B运动员三级跳远腾空时受到自身的重力,由于空气阻力不能忽略,故还受空气阻力。
故选B。
4、如图所示,一个“Y”形弹弓顶部跨度为L,两根相同的橡皮条自由长度均为L,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片。
若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k,发射弹丸时每根橡皮条的最大长度为1.5L(弹性限度内),则发射过程中裹片对弹丸的最大作用力为()A.12kL B.2√23kL C.kL D.2kL答案:B根据胡克定律知,每根橡皮条的最大弹力F=k(1.5L−L)=0.5kL 设此时两根橡皮条与合力的夹角为θ,根据几何关系知sinθ=1 3根据平行四边形定则知,弹丸被发射过程中所受的最大作用力F 合=2Fcosθ=2√23kL故选B。
上交大《物流设施与设备》教学资料包 课后习题答案 第三章

第三章装卸搬运设备课后思考题参考答案1.什么是装卸搬运设备?装卸搬运设备是指用来搬移、升降、装卸和短距离输送物料或货物的机械设备。
它是物流机械设备中重要的机械设备。
它不仅用于完成交通运输工作上货物的装卸,而且又用于完成库场货物的堆码、拆垛、运输等多种物流作业,因此合理配置和应用装卸搬运机械设备,充分发挥装卸搬运机械的效能是实现装卸搬运机械化、提高物流现代化的一项重要内容。
2.装卸起重设备包括哪些类型?(1)按作业性质进行分类:①装卸机械;②搬运机械;③装卸搬运机械。
(2)按装卸搬运货物的种类进行分类:①长大笨重货物的装卸搬运机械。
②散装货物的装卸搬运机械。
③成件包装货物的装卸搬运机械。
④集装箱货物装卸搬运机械。
3.简述装卸起重设备选型规律。
(1)起重机的机型选择。
选择桥式起重机的机型主要考虑机械的机动性、稳定性、地面所能承受压力以及专业化作业的要求。
(2)起重机型号选择。
根据起重量和起升高度,考虑到现场的其它条件,即可从移动式起重机的样本或技术性能表中找到合适的规格。
由于起重机的最大起重量越大,在吊装项目中充分发挥它的各种性能就越困难,利用率越低,因此,只要能满足吊装技术要求,不必选择过大的型号。
(3)起重机经济性能的选择。
选择起重机的综合经济性能标准的原则是使物料或构件在运输、吊装及装卸中单价最低。
此外,还应综合考虑耗能少、功用多的产品,以减轻人工劳动强度。
总之,从技术上可行的起重机中,选择在当前和今后能提供最有效的使用和获得最大效益的型号规格。
4.简述不同种类装卸起重设备的特点。
(1)轻小型起重设备。
轻小型起重设备的特点主要是轻便,构造紧凑,动作简单,作业范围投影以点、线为主。
适用于在无电源或空间狭小的场合进行流动性和临时性的作业。
(2)桥式起重机。
桥式起重机的特点主要是结构简单,作业效率高。
桥式起重机稳定性好,单机生产率高,与其他类型起重机相比,桥式起重机无支腿,稳定性较好,工作速度稍高些,单机生产率高,专用性强。
【单元练】(人教版)上海高中物理选修2第三章【交变电流】经典习题(答案解析)

一、选择题1.图甲所示是一台小型发电机,该发电机线圈的内阻为10 Ω,外接灯泡的电阻为90 Ω,图乙所示为该发电机产生的交变电流的电动势随时间变化的正弦规律图像。
下列说法正确的是( )A .在t =0.01s 时,电压表的示数为零B .在t =0.005s 时,通过线圈的磁通量最大C .在1 s 内,灯泡产生的焦耳热为108.9JD .电路中电流的有效值约为1.6 A C解析:CA .电压表测量的是路端电压的有效值,故电压表的示数不为零,故A 错误;B .t =0.005 s 时刻,线圈处于与中性面垂直的位置,通过线圈的磁通量最小,故B 错误;C .电路中电动势的有效值约为m110V 2E == 根据()E I R r =+可知电路中电流的有效值为1.1 A ,在1s 内灯泡产生的焦耳热为2108.9J Q I Rt ==故C 正确;D .电动势的有效值为110 V ,电路中电流的有效值1.1A EI R r==+ 故D 错误。
故选C 。
2.每年冬季,我国北方总会迎来冰冻雨雪天气,图为电力公司工作人员监测高压电线覆冰厚度,为清除高压输电线上的凌冰,有人设计了这样的融冰思路,利用电流的热效应除冰,若在正常供电时,高压线上输电电压为U ,电流为I ,热损耗功率为ΔP ;除冰时,输电功率,输电线电阻不变,输电线上的热损耗功率为4ΔP ,则除冰时( )A .输电电压为2U B .输电电流为4I C .输电电压为4UD .输电电流为4I A解析:ABD .高压线上的热耗功率2P I R ∆=线若热耗功率变为4ΔP ,则24P I R ∆='线解得2I I '=BD 错误; AC .输送功率不变''P UI U I ==解得'12U U =C 错误,A 正确。
故选A 。
3.图甲是某燃气灶点火装置的原理图。
转换器将直流电压转换为图乙所示的正弦交流电压,并加在一理想变压器的原线圈上,电压表为交流电表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档 ---------------------------------------------------- 习题 3-1. 如图,一质点在几个力作用下沿半径为R=20m的圆周运动,其中有一恒力F=0.6iN,求质点从A开始沿逆时针方向经3/4圆周到达B的过程中,力F所做的功。
解:ji2020ABrrr 由做功的定义可知:JW12)2020(6.0••jiirF
3-2. 质量为m=0.5kg的质点,在xOy坐标平面内运动,其运动方程为x=5t2,y=0.5(SI),从t=2s到t=4s这段时间内,外力对质点的功为多少?
ijiji60)5.020()5.080(24rrr 22//10ddtddtia vr 105mmiiFa 由做功的定义可知:560300WJ••iiFr
3-3.劲度系数为k的轻巧弹簧竖直放置,下端悬一小球,球的质量为m,开始时弹簧为原长而小球恰好与地接触。今将弹簧上端缓慢提起,直到小球能脱离地面为止,求此过程中外力的功。 根据小球是被缓慢提起的,刚脱离地面时所受的力为F=mg,mgxk
可得此时弹簧的伸长量为:kmgx
由做功的定义可知:kgmkxkxdxWkmgx22122020 3-4.如图,一质量为m的质点,在半径为R的半球形容器中,由静止开始自边缘上的A点滑下,到达最低点B时,它对容器的正压力数值为N,求质点自A滑到B的过程中,摩擦力对其做的功。
分析:Wf直接求解显然有困难,所以使用动能定理,那就要知道它的末速度的情况。 精品文档 ---------------------------------------------------- 解:求在B点的速度: N-G=Rvm2 可得:RGNmv)(21212
由动能定理:RmgNmgRRGNWmvWmgRff)3(21)(210212 3-5.一弹簧并不遵守胡克定律,其弹力与形变的关系为iF)4.388.52(2xx,其中F和x单位分别为N和m.
(1)计算当将弹簧由m522.01x拉伸至m34.12x过程中,外力所做之功; (2)此弹力是否为保守力? 解: (1)由做功的定义可知:
JxxxxdxxxdWxx2.69)(6.12)(4.26)4.388.52(31322122234.1522.021•xF
(2)由计算结果可知,做功与起点和终点的位置有关,与其他因素无关,所以该弹力为保守力。
3-6. 一质量为m的物体,在力)(2jiFbtat的作用下,由静止开始运动,求在任一时刻t此力所做功的功率为多少。 解:要求功率就必须知道力和速度的情况,由题意:
)3121(1)(1322jijibtatmdtbtatmtmFv 所以功率为: )3121(1)3121(1)(5232322tbtambtatmbtatN••jijiVF 精品文档 ---------------------------------------------------- 3-7. 一质点在三维力场中运动.已知力场的势能函数为 czbxyaxE2p.
(1)求作用力F; (2)当质点由原点运动到3x、3y、3z位置的过程中,试任选一路径,
计算上述力所做的功。其中pE的单位为J,zyx、、的单位为m,F的单位为N.
解:(1)由作用力和势能的关系:
kjiFcbxbyaxrczbxyaxrEP)2()(2
(2)取一个比较简单的积分路径:kjirdzdydx,则积分可得: )(])2[(kjikjidrFdzdydxcbxbyaxW•• =9a-9b-3c
3-8. 轻弹簧AB的上端A固定,下端B悬挂质量为m的重物。已知弹簧原长为0l,劲度系数为k,重物在O点达到平衡,此时弹
簧伸长了0x,如图所示。取x轴向下为正,且坐标原点位于:弹簧原长位置O;力的平衡位置O。若取原点为重力势能和弹性势能的势能零点,试分别计算重物在任一位置P时系统的总势能。 解:(1)取弹簧原长位置O为重力势能和弹性势能的势能零点,则重物在任
一位置P(坐标设为x)时系统的总势能:2P21Exkxmg (2)取力的平衡位置O为重力势能和弹性势能的势能零点,则重物在任一精品文档 ---------------------------------------------------- 位置P(坐标设为x)时系统的总势能:02020P2121Ekxmgkxxxkmgx而)( 所以22020P212121Ekxkxxxkmgx)( 3-9. 在密度为1的液面上方,悬挂一根长为l,密度为2的均匀棒AB,棒的B端刚和液面接触如图所示,今剪断细绳,设细棒只在浮力和重
力作用下运动,在1212的条件下,求细棒下落过程中
的最大速度maxv,以及细棒能进入液体的最大深度H。 解:分析可知,棒下落的最大速度是受合力为零的时候,所以:
hsglsg12 ,则lh12。
在下落过程中,利用功能原理:2221012hslvsglhgsydy
所以:2max1vgl 进入液体的最大深度H为细棒运动的速度为零时: 210
Hsglhgsydy 所以1122lH•
3-10. 若在近似圆形轨道上运行的卫星受到尘埃的微弱空气阻力f的作用,设阻力与速度的大小成正比,比例系数k为常数,即kvf,试求质量为m的精品文档 ---------------------------------------------------- 卫星,开始在离地心Rr40(R为地球半径)陨落到地面所需的时间。 解:根据题意,假设在离地心Rr40处质点的速度为v1,地面上的速度为
v2。提供卫星运动的力为万有引力:202rMmGrvm,所以2012Rrvv 在这个过程中阻力的作用时间可通过动量定理求出: mdvkvdtfdt
通过分离变量取积分,可
得:2121lnln2vvvmmmtdtdvkvkvk
3-11. 一链条放置在光滑桌面上,用手揿住一端,另一端有四分之一长度由桌边下垂,设链条长为L,质量为m,试问将链条全部拉上桌面要做多少功? 解:直接考虑垂下的链条的质心位置变化,来求做功,则: 1114832PWEmglmgl
3-12. 起重机用钢丝绳吊运质量为m的物体时以速率0v匀速下降,当起重机突然刹车时,因物体仍有惯性运动使钢丝绳有微小伸长。设钢丝绳劲度系数为k,求它伸长多少?所受拉力多大?(不计钢丝绳本身质量) 解:当起重机忽然刹车时,物体的动能将转换为钢
丝绳的弹性势能:由2202121kxmv,可得:
0vkmx 精品文档 ---------------------------------------------------- 分析物体的受力,可得到绳子的拉力为: 0vmkmgkxmgT
3-13. 在光滑水平面上,平放一轻弹簧,弹簧一端固定,另一端连一物体A、A边上再放一物体B,它们质量分别为Am和Bm,弹簧劲度系数为k,原长为
l.用力推B,使弹簧压缩0x,然后释放。求:
(1)当A与B开始分离时,它们的位置和速度; (2)分离之后.A还能往前移动多远? 解:(1)当A和B开始分离时,两者具有相同的速度,根据能量守恒,可得
到:20221)(21kxvmmBA,所以:0xmmkvBA;xl (2)分离之后,A的动能又将逐渐的转化为弹性势能,所以: 22212
1kxvmA ,则: 0AAABmxxmm
3-14. 已知地球对一个质量为m的质点的引力为rF3ermGm(ee,Rm为地球的质量和半径)。 (1)若选取无穷远处势能为零,计算地面处的势能; (2)若选取地面处势能为零,计算无穷远处的势能.比较两种情况下的势能差. 解:(1)取无穷远处势能为零,计算地面处的势能为:
ee211bearPeRr
EfdrGmmdrGmmrR•
(2)若选取地面处势能为零,计算无穷远处的势能为: 精品文档 ---------------------------------------------------- ee211ebaRrerEfdrGmmdrGmmrR
•
两种情况下势能差是完全一样的。 3-15. 试证明在离地球表面高度为eRhh处,质量为m的质点所具有的引力势能近似可表示为mgh. 解:由万有引力的势能函数值,在离地球表面高度为eRhh处,质量为m的质点所具有的引力势能为:
)()()()()(20200hRmghRRMmGhRhRMmGhRMmGeeeeee
如果以地面作为零电势处,则质点所具有的引力势能近似可表示为mgh. 思考题3 3-1. 求证:一对内力做功与参考系的选择无关。 证明:对于系统里的两个质点而言,一对内力做功可表示为:
A=2211rdfrdf•• 由于外力的存在,质点1.2的运动情况是不同的。
2121,ffrdrd
上式可写为:A=)(212211rdrdfrdfrdf••• 也就是内力的功与两个质点的相对位移有关,与参考系的选择无关。
3-2. 叙述质点和质点组动能变化定理,写出它们的表达式,指出定理的成立条件。
质点的动能变化定理:物体受外力F作用下,从A运动B,其运动状态变化,