指数函数及其性质(一)
指数函数及其性质(一)

课时导学案——指数函数及其性质(一)麒麟区第一中学 段翠一、学习目标:1.理解指数函数的定义。
2.掌握指数函数的图象、性质及简单应用。
3.通过指数函数图象及性质的学习,提高观察、分析、归纳等思维能力。
二、学习重点:指数函数的图象、性质及简单应用。
三、学习难点:指数函数图象和性质的发现过程。
四、学习方法:通过独立思考,自主探究,总结出指数函数图象的特征,进而 发现指数函数的性质。
培养学生观察、比较、归纳等逻辑思维能力。
五、学习过程:1.定义:一般地,函数y = )10(≠>a a 且叫做指数函数,其中x 是自变量, 函数的定义域是 .2.用描点法画出下列指数函数的图象.).(2)1(填写下表并作图x y =).(3)2(填写下表并作图x y =).()1()3(填写下表并作图x y =).()1()4(填写下表并作图x y =3.按照从特殊到一般的认识方法,请同学们总结: 的图象和性质如下且指数函数)10(≠>=a a a y x4.探究:(1)关于且与)10()1(≠>==a a ay a y x x 对称。
(2)指数函数的变化对函数中,底数且a a a a y x )10(≠>= 图象有什么影响?5.典例分析:例1 .已知),的图象经过点(且指数函数π,3)10()(≠>=a a a x f x 求 )3(),1(),0(-f f f 的值.例2.比较下列各题中两个值的大小:35.27.1,7.1)1( 2.0-1.0-8.0,8.0)2(1.33.09.0,7.1)3(总结:比较几个指数值大小的常用方法:6.课堂练习:(1)指数函数=-=)3(4,2)(f x f y ),则的图象经过点( .(2)比较下列各组数的大小:7.08.03,3)1( 1.01.075.0,75.0)2(-1.0-3.0-9.4,8.0)3(7.03.05.1,2.0)4(7.课堂小结:8.课后作业:课本:P58 .2P59 .7,8。
指数函数及其性质

(0<a<1)
y
y=ax
(a>1)
图 象
y=1
(0,1) 0 x
(0,1)
y=1
0 x
a>1
0<a<1
a>1
0<a<1
1.图象全在x轴上方,与x轴无限接近。
1.定义域为R,值域为(0,+). 性 2.当x=0时,y=1 3.在R上是增 函数 3.在R上是减 函数
图 象 特 征
2.图象过定点(0,1) 3.自左向右图 3.自左向右图 象逐渐上升 象逐渐下降 4.图象分布在左 下和右上两个 区域内 4.图象分布在左 上和右下两个区 域内
(1), (6), (7)是指数函数。
已知f(x)是指数函数,且其图象
过点(2, 9),求f(0),f(1),f(-3)的值.
2、指数函数的图象和性质: (1) 作出函数y 2 的图象.
x
(2)
1 作出函数y 的图象. 2
x
x
y2
x
…
-3
-2
-1.5
-1
-0.5
0
0.5
x
y
(2)
(1)
( 3)
( 4)
(0,1)
O
x
x
(4)y d 的图象,
x
x
比较a, b, c, d与1的大小关系 .
c d 1 a b.
y
对于多个指 数函数来说, 底数越大的图 象在 y 轴右侧 的部分越高.
(0,1)
O
x
简称:右侧 底大图高.
指数函数的图象和性质
a>1
y
§2.1.2指数函数及其性质(1)

本节课学习了那些知识?
• 指数函数的定义
一 地 函 y = a (a > 0, a ≠1 叫 指 般 , 数 ) 做 数
x
函 , 中是 变 , 数 定 域 数 其 x 自 量 函 的 义 是 R。
指数函数的图象及性质!
归纳
指数函数在底数 0 < a < 1 及 情况下的图象和性质: 情况下的图象和性质:
1 f (− 3) = π = π
−1
应用
2、比较下列各题中两个值的大小: 、比较下列各题中两个值的大小:
(1 )1 . 7
, 2 . 3 1 .6
2 .5
,1 .7 3 ; (2
0 . 8 − 0 .1 , 0 . 8 − 0 .2 ; )
, 0 .9 ;
( 4 )1 . 8 0 . 3 ,, 2 ..3 3 . 1 ;( 4 )1 . 7 3 7 0 9
f(x) = 0.9x
1.4
1.4
1.2
1.2
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
-2
-1.5
-1
-0.5 -0.2
0.5
1
1.5
2
2.5
-0.5 -0.2
0.5
1
1.5
2
2.5
3
3.5
4
-0.4
-0.4
方法总结: 方法总结: 对同底数幂大小的比较用的是指数函数的 单调性, 单调性,必须要明确所给的两个值是哪个指数 函数的两个函数值; 函数的两个函数值;对不同底数幂的大小的比 较可以与中间值进行比较. 较可以与中间值进行比较.
2.1.2指数函数及其性质(1)

1.图像向左、向右是无限延伸的。 (0,1)
2.图像都在x轴的上方。 3.都过定点(0,1)。
0
x
y a x (a 0且a 1) 的图象和特征:
a>1
图
6
5
象 4
3
2
11
-4
-2
0
2
4
6
-1
1.图象在x轴上方
特 2.从左到右上升 征 3.过定点 (0,1)
4、a越大,向上越靠近y轴
0<a<1
2.1.2指数函数及其性质
第一课时
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
问题 引入
质
4.单调性:
在R上是增函数
单调性: 在R上是减函数
对称性: y=ax和y=a-x关于y轴对称
例3、 如图为指数函数:
(1) y ax (2) y bx (3) y cx (4) y d x的图象,
y
(2) (3)
(1)
(4)
比较 a, b, c, d 与1的大小关系.
O
x
c d 1 a b
例5、已知指数函数 f (x) ax (a 0且a 1) 的图像经过 点(3,π)求 f(0), f(1), f(-3)的值。
解:因为 f (x) a x 的图像过点(3, ),所以
指数函数及其性质1

引例:若从今年底开始我国的人口年平均增
长率为1%,那么经过20年后我国的人口数是现
在的几倍?
经第 过一
年
表第二 达式
第 三
年Y=1.01年X
经过 X年
人
口
增
增
增
长
长
长
倍 数
1%
1%
1%
人口
倍数 Y 1
1.011 (1.01)2 (1.01)3 …...1.01X
导入新课
y=ax (0<a<1)
指
图
数
象
函
数 定义域
R
性 值域
(0, ) 没有最值
质定 一性 览质
点
(0,1 ) 非奇非偶函数 在R上是增函数 在R上是减函数
表 单调性 若x>0, 则y>1 若x>0, 则0<y<1
若x<0, 则0<y<1 若x<0, 则y>1
2.指数函数y=ax(a>0且a≠1) 的图象和性质:
x
9
3
1
1 3
1 9
描点、连线
y
1
x
2
y
y 1 x 3
y 3x
y 2x
关于y轴对称
都过定点(0,1)
第一象限内,
a越大,图像越高
1
0
1
x
y
y
y 1 x 2
y 1 x 3
y
y 3x y 2x
y=ax (a>1)
1
0
x
1
0
1
y=ax (0<a<1)
指数函数及其性质课件(1)

y=2-x
…
…
-2
4
-1
2
0
1
1
1/2
2
1/4
…
…
y=3-x
…
9
3
1
1/3
1/9
…
y
1 y 2
x
1 y 3
x
1
Y=1
1
0
x
观察右边图象,完成下表
1 y ( )x 1x 3 y( ) 2
y=3X
Y
y = 2x
Y=
函数 定义域 值域 定点 单调性 y=2x/y=3x
a
1 2
1 2
当0 a 1时,y a x是R上的减函数, a a
1.70.3 0.93.1
比较指数幂大小的方法: ①、异指同底:构造函数法(一个), 利用函数的单调性,若 底数是参变量要注意分类讨论。 ②、异底同指:构造函数法(多个),利用函数图象在y轴左右
两侧的特点。
练习巩固
P t 0 2. 根据此规律, 一半,这个时间称为‘‘半衰期”
t 5730
人们获得了生物体内碳14含量P与死亡年数t之 间的关系,这个关系式应该怎样表示呢?
y 2 x N
x
*
1 P 2
t 5730
t 0
思考: 这两个关系式是否构成函数?它们有什么特 征? 共同点:①变量y与x构成函数解析式,是指数 幂的形式,底数是常数,变量在指数位置. x ②两个解析式都具有 y a 的形式. 不同点:底数a的取值不同.
人教A版高中数学必修1
复习引入
材料1:某种细胞分裂时,由1个分裂成2个,2个分
指数函数及其性质

x 2 1.5 1 0.5 0 0.5 1 1.5 2
4 y
1
x
2
2.83 2 1.41 1 0.71 0.5 0.35 0.25
y
y 1 x 2
y 2x
1
01
x
102x21.5
探究活动
2.
请填写下表并在同一坐标系上作出函数 y 3x 及 y (1)x 的
• 函数在定义域R上是单调的,与直线x=1的交点纵 坐标即为底数a的大小;
• 在第一象限,底数越大,图象越高。
y
a
•
1•
o
1
x
y
1•
a
•
o
1
x
知识清单
1.本节课的重点知识:
指数函数的概念
y (1)x
y 2x
2y
指数函数的性质
2.记住两个基本图形:
数图象画法(尤其要了解底数如何影响 图象变化);
指数函数及其性质 (第1课时)
概念:指数函数
一般地,函数y a x (a 0,且a 1)叫做 指数函数,其中x是自变量.
问题1:为什么要规定a 0,且a 1呢?
问题2:下列函数中,哪些是指数函数?
(1) y 2x √
(2) y x2 ×
(3) y 2x × (4) y 2x ×
3
图像.
x 2 1.5 1 0.5 0 0.5 1 1.5 2
y 3x 0.11 0.19 0.33 0.58 1 1.73 3 5.20 9
x 2 1.5 1 0.5
y
1
x
3
9
5.20
高一数学:指数函数及其性质

目录
• 引言 • 指数函数的基本性质 • 指数函数的运算性质 • 指数函数的应用举例 • 指数函数的深入探究 • 复习与总结
01
引言
Chapter
指数函数的概念
指数函数是一种特殊的函数形式,形如$y=a^x$( $a>0$,$a≠1$)的函数叫做指数函数。
指数函数中的自变量$x$位于指数位置,而底数$a$是一 个大于0且不等于1的常数。
指数函数与对数函数的关系
01
互为反函数
指数函数和对数函数是一对互为反函数的函数,它们的图像关于直线
y=x对称。这意味着对于任意的x和y,如果y是指数函数的结果,那么x
就是对数函数的结果;反之亦然。
02
转换关系
通过指数函数和对数函数之间的转换关系,可以将一些复杂的问题简化
。例如,在解决与复利、放射性衰变等相关的问题时,可以利用对数性
02
掌握运算法则
熟练掌握指数运算法 则,并能够灵活运用 。
03
多做练习题
通过多做练习题来加 深对知识点的理解和 记忆,提高解题能力 。
04
及时复习总结
学习完一个知识点后 要及时复习总结,形 成自己的知识体系。
THANKS
感谢观看
,即(am)n=am×n。
幂的开方
对于指数函数的开方运算,一般需 先计算出指数函数的值再进行开方 运算,但也可通过换元法或其他技 巧进行简化计算。
复合幂运算
对于复杂的幂运算,如幂的乘方再 开方等,需根据运算优先级和结合 律进行计算,也可通过换元法或其 他技巧进行简化计算。
04
指数函数的应用举例
Chapter
指数函数的除法运算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,函数 y a x ( a 0且a 1) 叫做
指数函数,其中 x 是自变量,函数定义域是R.
思考 判断下列函数哪些是指数函数:
(1)y (0.2)x (3) y 1x
(2) y (2)x (4) y 2 3x
(5) y 2x1
(6) y 3x
(7) y 2x 1
y 1 (0,1)
O
x
O
x
定义域
R
值域
(0,+∞)
性质
过定点(0,1),即x = 0时,y =1 (2)在R上是减函数 (2)在R上是增函数
例 已知 f (x) a x ( a 0且a 1)
的图象经过点(3, ),求 f (0) ,f (1)
f (3) 的值.
小结
①知识点:指数函数的定义、图象和性质 ②研究函数的一般步骤:定义→图象→性质→应用
③思想方法:数形结合、分类讨论
思考 设a,b,c,d 0 ,且不等于
1, y ax , y bx , y cx , y d x 在同一坐
标系内的图象如图.比较a,b,c,d 的大小.
y
y bx
y cx
y ax 1
y dx
O
x
0ba 1d c
指数函数的特点
系数:为ห้องสมุดไป่ตู้1
y 1ax
指数: 化简后 为x
底数:为正常数 且不为 1
画出下列函数的图象:
y 2x
y (1)x 2
列表:
x … -2 -1 0 1 2 …
y 2x … 1 1 1 2 4 …
42
y (1)x … 4 2 1 1 1 …
2
24
y 3x … 1
9
1 3
1
3
9…
y (1)x … 3
9
3
11
3
1 9
…
y
y (1)x 2
y (1)x 3
1
y 3x y 2x
底数互为 倒数的两 个指数函 数图象:
关于 y 轴对称
O
1
x
y a( x a 0且a 1)的图象和性质
★
0 a 1
a 1
y
y ax
图 (0 a 1)
象
y 1
(0,1)
y
y ax
(a 1)