成都七中2015届高三一诊模拟考试数学答案(理,word版)
2015年四川省成都七中高考一模数学试卷(理科)【解析版】

2015年四川省成都七中高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,474.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.25.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.46.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln28.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x2﹣)6展开式中的常数项为.(用数字作答)12.(5分)在如图所示的程序框图中,若输出S=,则判断框内实数p的取值范围是.13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是.14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x )=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.2015年四川省成都七中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]【解答】解:由B中不等式变形得:log2x≥1=log22,得到x≥2,即B=[2,+∞),∵A=[﹣3,4],∴A∩B=[2,4],故选:D.2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)【解答】解:由复数=.∴复数在复平面上对应的点的坐标为().故选:B.3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,47【解答】解:由题意可知茎叶图共有30个数值,所以中位数为:=46.出现次数最多的数是45,故众数是45.故选:B.4.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.2【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,三棱柱的底面为等腰三角形,且三角形的底边长为2,底边上的高为1,∴几何体的体积V=××2×1×2=.故选:B.5.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.4【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选:B.6.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【解答】解:由已知中函数f(x)=A sin(ωx+φ)(其中)的图象,过(,0)点,()点,易得:A=1,T=4()=π,即ω=2即f(x)=sin(2x+φ),将()点代入得:+φ=+2kπ,k∈Z又由∴φ=∴f(x)=sin(2x+),设将函数f(x)的图象向左平移a个单位得到函数g(x)=sin2x的图象,则2(x+a)+=2x解得a=﹣故将函数f(x)的图象向右平移个长度单位得到函数g(x)=sin2x的图象,故选:A.7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln2【解答】解:作出不等式组所对应的可行域(如图),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点A(,﹣ln2)时,截距最大,z取最小值,故目标函数z=2x﹣y的最小值为1+ln2故选:D8.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)【解答】解:对于a与b各有6中情形,故总数为36种设两条直线l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4,或a=3,b =6,故概率为P==设两条直线l1:ax+by=2,l2:x+2y=2相交的情形除平行与重合即可,∵当直线l1、l2相交时b≠2a,图中满足b=2a的有(1,2)、(2,4)、(3,6)共三种,∴满足b≠2a的有36﹣3=33种,∴直线l1、l2相交的概率P==,∵点(P1,P2)在圆(x﹣m)2+y2=的内部,∴(﹣m)2+()2<,解得﹣<m<故选:D.9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)【解答】解:构造函数g(x)=,则g′(x)=.因为∀x∈R,均有f(x)>f′(x),并且e x>0,所以g′(x)<0,故函数g(x)=在R上单调递减,所以g(﹣2014)>g(0),g(2014)<g(0),即>f(0),<f(0),即e2014f(﹣2014)>f(0),f(2014)<e2014f(0).故选:D.10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3【解答】解:∵整数a,b,c,t满足:2a+2b=2c,t=,∴t=≤=当且仅当a=b时,取最大值,∴当a=b>0时,t max==,c=a+1,∵a,b,c,t是整数,∴a=1,t=1,∴log 2t 的最大值为log 21=0. 当a =b =﹣2时,c =﹣1,t ==4,∴log 2t 的最大值为log 24=2. 综上所述,log 2t 的最大值是2. 故选:C .二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x 2﹣)6展开式中的常数项为 15 .(用数字作答) 【解答】解:展开式的通项公式为T r +1=(﹣1)r C 6r x 12﹣3r 令12﹣3r =0得r =4∴展开式中的常数项为C 64=15 故答案为1512.(5分)在如图所示的程序框图中,若输出S =,则判断框内实数p 的取值范围是 (5,6] .【解答】解:S =++…=(1﹣﹣)=(1﹣),令S =得n =5,所以实数p的取值范围是(5,6].故答案为:(5,6].13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是[0,]∪[,2π].【解答】解:∵{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,∴a n+1≥a n,对任意的n∈N*都成立,∴(n+1)2+2sinθ•(n+1)﹣n2﹣2sinθ•n,∴2n+1+2sinθ≥0,转化为2sinθ≥﹣2n﹣1,恒成立,因为n≥1,n∈N*,∴﹣2n﹣1≥﹣3,∴2sinθ≥﹣3,解得sinθ≥﹣,∵θ∈[0,2π]解得0≤θ≤,或≤θ≤2π,故答案为:[0,]∪[,2π];14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于3:2:1.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE;则+2=+=,∵+2+3=,∴﹣=3,又∵==2,∴=2,∴=,∴S△ABC =2S△AOB;同理:S△ABC =3S△AOC,S△ABC=6S△BOC;∴△AOB,△AOC,△BOC的面积比=3:2:1.故答案为:3:2:1.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是④.(写出所有真命题的序号)【解答】解:由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根.①函数y=(x﹣2)2+lnx,则(x>0),方程,即2x2﹣(4+a)x+1=0,当a=﹣4+时有两个相等正根,不符合题意;②定义在(﹣∞,0)∪(0,+∞)的奇函数,如y=x,x∈(﹣∞,0)∪(0,+∞)在各点处没有切线,∴②错误;③三次函数f(x)=x3﹣x2+ax+b,则f′(x)=3x2﹣2x+a,方程3x2﹣2x+a﹣m=0在(﹣2)2﹣12(a﹣m)≤0时不满足方程y′=a(a是导数值)至少有两个根.命题③错误;④函数y=e x﹣1(x<0),y′=e x∈(0,1),函数y=x+,=,由,得,∴x>1,则m=1.故要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1,④正确.∴正确的命题是④.故答案为:④.三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.【解答】解:(Ⅰ)设{a n}的公差为d,依题意,有a2=a1+d=﹣5,S5=5a1+10d=﹣20,联立得解得,所以a n=﹣6+(n﹣1)•1=n﹣7.(Ⅱ)因为a n=n﹣7,所以,令,即n2﹣15n+14>0,解得n<1或n>14,又n∈N*,所以n>14,所以n的最小值为15.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.【解答】解:(Ⅰ)∵a sin A=(a﹣b)sin B+c sin C,由正弦定理,得a2=(a﹣b)b+c2,即a2+b2﹣c2=ab.①由余弦定理得cos C=,结合0<C<π,得C=.…(6分)(Ⅱ)由C=π﹣(A+B),得sin C=sin(B+A)=sin B cos A+cos B sin A,∵sin C+sin(B﹣A)=3sin2A,∴sin B cos A+cos B sin A+sin B cos A﹣cos B sin A=6sin A cos A,整理得sin B cos A=3sin A cos A.…(8分)若cos A=0,即A=时,△ABC是直角三角形,且B=,=bc=.…(10分)于是b=c tan B=2tan=,∴S△ABC若cos A≠0,则sin B=3sin A,由正弦定理得b=3a.②联立①②,结合c=2,解得a=,b=,=ab sin C=×××=.∴S△ABC综上,△ABC的面积为或.…(12分)18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)【解答】(1)证明:连接AC交BE于点M,连接FM.由EM∥CD,∴===,∴FM∥AP,又∵FM⊂平面BEF,P A⊄平面BEF,∴P A∥平面BEF;(2)以E为坐标原点,EB,EA,EP所在直线为x,y,z轴,建立空间直角坐标系,则设P(0,0,t),由于PE⊥平面ABCD,则向量=(0,0,﹣t)即为平面BEC的法向量,由于AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,则四边形BCDE为矩形,B(3,0,0),C(3,﹣2,0),由于F为PC上一点,且CF=2FP,则有F(1,,t),则=(1,,t),=(3,0,0),设平面BEF的法向量为=(x,y,z),则即有=0,即x﹣y=0,又=0,即3x=0,则可取=(0,1,),由二面角F﹣BE﹣C为60°,则与的夹角为120°,即有cos120°===﹣,解得,t=.即P(0,0,).PB==2,由于PE⊥平面ABCD,则∠PBE即为直线PB与平面ABCD所成角.在直角三角形PBE中,cos∠PBE===.故直线PB与平面ABCD所成角为arccos=.19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.【解答】解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P(X=2)=+,.∴随机变量X的分布列为∴E(X)==1.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.【解答】解:(Ⅰ)由已知得,又a2=b2+c2,解得a=2,b=1,c=,∴椭圆C的方程为.(Ⅱ)证明:设A(x1,y1),B(x2,y2),①当直线AB的斜率不存在时,则由椭圆的对称性知x1=x2,y1=﹣y2,∵以AB为直线的圆经过坐标原点,∴=0,∴x1x2+y1y2=0,∴,又点A在椭圆C上,∴=1,解得|x1|=|y1|=.此时点O到直线AB的距离.(2)当直线AB的斜率存在时,设AB的方程为y=kx+m,联立,得(1+4k2)x2+8kmx+4m2﹣4=0,∴,,∵以AB为直径的圆过坐标原点O,∴OA⊥OB,∴=x1x2+y1y2=0,∴(1+k2)x1x2+km(x1+x2)+m2=0,∴(1+k2)•,整理,得5m2=4(k2+1),∴点O到直线AB的距离=,综上所述,点O到直线AB的距离为定值.(3)设直线OA的斜率为k0,当k0≠0时,OA的方程为y=k0x,OB的方程为y=﹣,联立,得,同理,得,∴△AOB的面积S==2,令1+=t,t>1,则S=2=2,令g(t)=﹣++4=﹣9()2+,(t>1)∴4<g(t),∴,当k0=0时,解得S=1,∴,∴S的最小值为.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.【解答】解:(Ⅰ)∵(a为常数),∴f(x)lnx=x(1﹣alnx),∴f(x)=.(x>1).f′(x)=﹣a(x>1),∵函数f(x)在(1,+∞)上是减函数,∴f′(x)≤0在(1,+∞)上恒成立,∴a≥的最大值,x∈(1,+∞).令g(x)==+≤,当lnx=2,即x=e2时取得最大值.∴,∴实数a的最小值是.(Ⅱ)f(x)=.f′(x)=﹣a.存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立⇔x∈[e,e2],f(x)min≤f(x)max+a =,①当a ≥时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)min=f(e2)=≤,解得a ≥﹣.②当a <时,由f′(x)=+﹣a,在[e,e2]上的值域为[﹣a ,].(i)当﹣a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上为增函数,∴f(x)min=f(e)=e﹣ae≥e>,不和题意,舍去.(ii)当﹣a<0时,即0<a <时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)>0,f(x)为增函数.∴f(x)min=f(x0)=﹣ax0≤,x0∈(e,e2).∴a ≥﹣>﹣>,与0<a <矛盾.综上可得:a 的取值范围是:.第21页(共21页)。
四川省成都市第七中学2015届高三下学期“高考热身考试”数学(理)试题 含解析

成都七中高2015届“高考热身考试"数学理科试题第Ⅰ卷(非选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1。
若集合{}2lg ,1x M x y N x x x -⎧⎫===<⎨⎬⎩⎭,则=N C M R ( )A .)2,0(B 。
)4,0(C 。
[)2,1D .),0(+∞【答案】C考点:集合的运算. 2.已知复数z 满足i i z -=+1)1(3,则复数z 对应的点在( )上A 。
直线x y 21-= B 。
直线x y 21= C 。
直线21-=x D .直线21-=y 【答案】C 【解析】试题分析:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线21-=x 上.考点:1。
复数的运算;2.复数的几何意义. 3.已知命题R x p ∈∃:,使25sin =x ;命题R x q ∈∀:,都有012>++x x 。
给出下列结论:①题""q p ∧是真命题 ②命题""q p ⌝∧是假命题 ③命题""q p ∧⌝是真命题 ④命题""q p ⌝∨⌝是假命题其中正确的是( )A 。
②④B 。
②③C .③④D 。
①②③【答案】B 【解析】 试题分析:5sin 1,2x =>∴命题p 是假命题;22131()0,24x x x ++=++>∴命题q是真命题;所以②、③正确,故选B 。
考点:1.命题真假判断;2。
全称命题、特称命题.4.已知实数[]10,1∈x 执行如图所示的流程图,则输出的x 不小于63的概率为( )A .31B 。
94C 。
53 D 。
103【答案】A 【解析】试题分析:由程序框图知:第一次运行x =2x +1,n =2;第二次运行x =2(2x +1)+1,n =3;第三次运行x =2×+1,n =4;不满足条件n ≤3,程序运行终止,输出x =8x +4+2+1=7+8x ,解8x +7≥63得x ≥7,∴输入x ∈,输出的x 不小于63的概率为3193=.故选:A .考点:程序框图。
四川省成都市第七中学2015届高三理科数学上期半期考试试题答案

成都七中高2015届高三上学期期中数学考试题(理科)满分150分,考试时间120分钟 出题人:江海兵 审题人:廖学军一、选择题,本大题有10个小题,每小题5分,共50分,每小题有一个正确选项,请将正确选项涂在答题卷上.1.ABC ∆中,角,,A B C 的对边分别为,,a b c ,若13, 2.cos()3a b A B ==+=,则c =( ).4.15.3.17A B C D答案:D解析:22211cos ,2cos 94232()1733C c a b ab C =-=+-=+-⋅⋅-=2.《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布。
(不作近似计算)( )A. B. C. D.答案:C解析:由题可知,是等差数列,首项是5,公差为,前30项和为390.根据等差数列前项和公式,有,解得.3.若在上是减函数,则b 的取值范围是( ).[1,)A -+∞ .(1,)B -+∞ .(,1)C -∞- .(,1]D -∞-答案:D解析:由题意可知()02bf x x x '=-+≤+,在(1,)x ∈-+∞上恒成立, 即(2)b x x ≤+在(1,)x ∈-+∞上恒成立,2()(2)2f x x x x x =+=+且(1,)x ∈-+∞()1f x ∴>-∴要使(2)b x x ≤+,需1b ≤- 故答案为1b ≤-,选D4.已知平面,αβ和直线m ,给出条件:①//m α;②m α⊥;③m α⊂;④αβ⊥;⑤//αβ 能推导出//m β的是( ).A ①④ .B ①⑤ .C ②⑤ .D ③⑤ 答案:D解析:由两平面平行的性质可知两平面平行,在一个平面内直线必平行于另一个平面5.已知数列{}n a 满足*1130,,31n n n a a a n N a +-==∈+,则2015a 等于( ) 3.0.3.3.2A B C D -1281516291631d n d 22930530390⨯+⨯=2916=d )2ln(21)(2++-=x b x x f ),1(+∞-答案:B解析:根据题意,由于数列{a n }满足a 1=0,a n +1=,那么可知∴a 1=0,a 2=- ,a 3=,a 4=0,a 5=-,a 6=…,故可知数列的周期为3,那么可知201523a a ==-,选B. 6.在ABC ∆中,若a 、b 、c 分别为角A 、B 、C 的对边,且cos2cos cos()1B B A C ++-=,则有( )A .,,a c b 成等比数列B .,,a c b 成等差数列C .,,a b c 成等差数列D .,,a b c 成等比数列答案:D解析:由cos 2cos cos()1B B A C ++-=变形得:cos cos()1cos 2B A C B +-=-,[]2cos cos ()cos(),cos212sin B A C A C B B π=-+=-+=-,∴上式化简得:2cos()cos()2sin A C A C B --+=,22sin sin 2sin A C B ∴=,即2sin sin sin A C B =,由正弦定理:sin :sin :sin a A b B c C ==得:2ac b =,则,,a b c 成等比数列. 故选D7.设M 是ABC ∆所在平面上的一点,且330,22MB MA MC D ++=是AC 中点,则MD BM 的值为( )11...1.232A B C D答案:A解析:D 为AC 中点,33()2322MB MA MC MD MD ∴=-+=-⋅=- 13MD MB ∴=8.若存在过点(1,0)的直线与曲线和都相切,则 ( ) A.或 B.或 C.或 D.或答案:A解析:由求导得设曲线上的任意一点处的切线方程为,将点代入方程得或. (1)当时:切线为,所以仅有一解,得 331n n a a -+33333y x =21594y ax x =+-a =1-2564-1-21474-2564-74-73y x =2'3y x =3y x =300(,)x x 320003()y x x x x -=-()1,000x =032x =00x =0y =215904ax x +-=2564a =-(2)当时:切线为,由得仅有一解,得.综上知或. 9.已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数(0,0)z ax by a b =+>>在约束条件下取到最小值25时,22a b +的最小值为( ).1.2.3.4A B C D答案:D10.我们把具有以下性质的函数 称为“好函数”:对于在定义域内的任意三个数,若这三个数能作为三角形的三边长,则也能作为三角形的三边长.现有如下一些函数:① ②③, ④,.其中是“好函数”的序号有( )A.①②B.①②③C.②③④D.①③④ 答案:B解析:①任给三角形,设它的三边长分别为a ,b ,c ,则a+b >c ,不妨假设a≤c ,b≤c ,由于,所以①为好函数.②设所以②为好函数. ③设因为,所以,所以③为好函数.④不是好函数.如显然不是好函数.二、填空题,本大题共5个小题,每小题5分,共25分,请将正确答案填在答题卷上.11.已知指数函数()y f x =,对数函数()y g x =和幂函数()y h x =的图像都过1(,2)2P ,如果123()()()4f xg xh x ===,那么123x x x ++= 答案:32032x =272744y x =-22727441594y x y ax x ⎧=-⎪⎪⎨⎪=+-⎪⎩24309ax x --=1a =-1a =-2564a =-()f x ()f x ,,a b c (),(),()f a f b f c ()f x x =)21,0(,1)(∈-=x x x f x e x f =)()1,0(∈x x x f sin )(=),0(π∈x 0a b a b c +>+>>,111,(11)(1)1()0,a b c a b c b c a b c a ≤≤-≥-≥-∴-+---=-++>则,,abca b c e e e ≤≤≤≤则22()222(2)a b c a b c a b ccc c c e e e e e e ee e e e e +∴+-≥⋅-=->-=-(0,1)c ∈20,()0c a b c e e e e ->∴+->5999999952,,,sin sin sin 3610000100063a b c ππππππ===+<解析:令(),()log ,()x cb f x a g x x h x x ===则12111()2,()log log 22222b b f a g ====-=,11()()222c h ==111232114,,1()441,,244x a b c f x x x x ∴===-∴==⇒===12332x x x ∴++= 12.6,62,a b ta bta b ==+-已知若与 的夹角为钝角,则t 的取值范围为答案: 解析:,∴,又因为与不共线,所以,所以13.定义在R 上的奇函数()y f x =满足(3)0f =,且不等式()()f x xf x '>-在(0,)+∞上恒成立,则函数()()lg 1g x xf x x =++的零点个数为 答案:3 解析:[]()()()0()f x xfx xf x xf x ''>-∴>∴在(0,)+∞单增,又()xf x 为偶函数且有一个零点为3,令()0g x =得()lg 1xf x x =-+,如图可知()g x 有3个零点14.已知命题p :函数在内有且仅有一个零点.命题q :在区间内恒成立.若命题“p 且q”是假命题,实数的取值范围是 .答案:52a >-提示:先确定p 且q 为真命题的a 的取值范围,然后取补集可得结果.15.给出定义:若11,,()22x m m m Z ⎛⎤∈-+∈ ⎥⎝⎦,则m 叫做实数x 的“亲密函数”,记作{}x m =,在此基础上给出下列函数{}()f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =是周期函数,最小正周期为1; ③函数()y f x =的图像关于直线()2kx k Z =∈对称; (2,0)(0,2)-ta b ta b +-与 的夹角为钝角2222()0,0,36720,22ta b ta b t a b t t +⋅-<∴-<∴-<∴-<<)(ta b +ta b -0t ≠(2,0)(0,2)t ∈-2()2f x x ax =+-[1,1]-23(1)20x a x +++≤13[,]22a④当(]0,2x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是 答案:②③④解析:11,22x ⎛⎤∈- ⎥⎝⎦时,{}()0f x x x x =-=-,当13,22x ⎛⎤∈ ⎥⎝⎦时,()1f x x =-当35,22x ⎛⎤∈ ⎥⎝⎦时,()2f x x =-,作出函数的图像可知①错,②,③对,再作出ln y x =的图像可判断有两个交点,④对三、解答题,本大题共6个小题,共75分,请将答案及过程写在答题卷上.16.(12分)已知函数2()3cos 42cos (2)14f x x x π=-++(1)求()f x 得最小正周期;(2)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的取值范围.解析:(1)()3cos 4cos(4)3cos 4sin 42sin(4),233f x x x x x x T πππ=-+=+=+∴=(2)43,4,sin(4)16433323x x x ππππππ-≤≤∴-≤+≤∴-≤+≤ ()f x ∴的取值范围为3,2⎡⎤-⎣⎦ 17. (12分)已知数列满足. (Ⅰ)证明数列是等差数列;(Ⅱ)求数列的通项公式;(Ⅲ)设,求数列的前项和.解析:(Ⅰ)由已知可得1122nnn nn a a a ++=+,所以11221n n n na a ++=+,即11221n nn n a a ++-=, ∴数列2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(Ⅱ)由(Ⅰ)可得122(1)11n n n n a a =+-⨯=+,∴21nn a n =+. .(Ⅲ)由(Ⅱ)知,2n n b n =⋅,所以231222322n n S n =⋅+⋅+⋅++⋅,234121222322n n S n +=⋅+⋅+⋅++⋅,相减得23122222n n n S n +-=++++-⋅ 11222n n n ++=--⋅,∴1(1)22n n S n +=-⋅+18.(12分) ABC ∆为一个等腰三角形形状的空地,腰AC 的长为3(百米),底AB 的长为4(百米).现决定在空地内筑一条笔直的小路EF (宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为1S 和2S .{}n a 11121,(*)2n nn nn a a a n N a ++==∈+2n n a ⎧⎫⎨⎬⎩⎭{}n a (1)n n b n n a =+{}n b n n S(1)若小路一端E 为AC 的中点,求此时小路的长度; (2)若小路的端点,E F 两点分别在两腰上,求12S S 得最小值. 解:(1)E 为AC 中点,333,34222AE EC ∴==+<+,F ∴不在BC 上,故F 在AB 上,可得72AF =,在ABC ∆中,2cos 3A =,在AEF ∆中,222152cos 2EF AE AF AE AF A =+-⋅=,302EF ∴= (2)若小路的端点,E F 两点分别在两腰上,如图所示,设,CE x CF y ==,则5x y +=1221sin 991121111125sin 22ABC CEF ABCCEF CEFCA CB CS S S S S S S xy x y CE CF C ∆∆∆∆∆⋅-==-=-=-≥-=+⎛⎫⋅ ⎪⎝⎭当且仅当52x y ==时取等号,故12SS 的最小值为1125.19.(12分)如图分别是正三棱台111ABC A B C -的直观图和正视图,1,O O 分别是上下底面的中心,E 是BC 中点.(1)求正三棱台111ABC A B C -的体积;(注:棱台体积公式:1()3V S S S S h =+⋅+下下上上,其中S 上为棱台上底面面积,S 下为棱台下底面面积,h 为棱台高) (2)求平面11EA B 与平面111A B C 的夹角的余弦; (3) 若P 是棱11AC 上一点,求1CP PB +的最小值. 解析:(1)由题意,正三棱台高为(2)设分别是上下底面的中心,是中点,是中点.以 为原点,过平34,3211==C A AC 321,312,33111111===-∆∆C B A ABC C B A ABC V S S 1,O O E BC F 11C B 1O 1O CABE F行的线为轴建立空间直角坐标系. ,, ,,,,,设平面的一个法向量,则即取,取平面的一个法向 量,设所求角为则 (3)将梯形绕旋转到,使其与成平角, 由余弦定理得 即的最小值为20.(13分)已知函数21(),()()sin 2f x xg x f x x λ'==+,其中函数()g x 在[]1,1-上是减函数.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()3sin1g x λ≤+在[]1,1x ∈-上恒成立,求λ得取值范围.(3)关于x 的方程ln (1)2f x x m +=-,1 1.1x e e ⎡⎤∈--⎢⎥⎣⎦有两个实根,求m 的取值范围.解析:(1)2(),()2,(1)2f x x f x x f ''=∴==,∴在点(1,(1))f 处的切线方程为12(1)y x -=-,即210x y --=(2)()sin ,()cos ,()g x x x g x x g x λλ'=+∴=+在[]1,1-上单减()0g x '∴≤在[]1,1-上恒成立,即cos x λ≤-在[]1,1-上恒成立,1λ∴≤-,又()g x 在[]1,1-单减,[]max ()(1)sin1g x g λ∴=-=-()3sin1g x λ≤+在[]1,1x ∈-上恒成立,∴只需sin13sin1λλ--≤+恒成立,2sin1λ∴≥-sin30sin1,12sin1,2sin11λ<<∴-≤≤-(3)由(1)知2(1)(1)f x x +=+∴方程为2ln(1)2x x m +=-,设2()ln(1)2h x x x m =+-+,则11B C x xyz O -1)0,2,32(1-C )3,1,3(-C )3,1,0(E )0,4,0(1-A )0,2,32(1B )3,1,0(1=E A )0,6,32(11=B A 11B EA ),,(z y x n =⎪⎩⎪⎨⎧=⋅=⋅00111B A n E A n ⎪⎩⎪⎨⎧=+=+033035y x z y )5,3,3(--=n 111C B A )1,0,0(=m θ37375cos =⋅⋅=nm n m θ11ACC A 11C A 1''1C C A A 111C B A ∆772sin ,721cos cos 111111111111'=∠=⋅⋅=∠=∠A CC A C C C A C C C A CC A C C 1421)3cos(cos 1111-=+∠=∠∴πA CCB CC 34,3,111'11'==∆B C C C B C C 中671'=∴B C 1PB CP +67方程2ln(1)2x x m +=-根的个数即为函数()h x 图像与x 轴交点的个数.22()211x h x x x-'=-=++,当(1,0)x ∈-时,()0,()h x h x '>∴在(1,0)-上为增函数, 当(,1)(0,)x ∈-∞-+∞时,()0,()h x h x '<∴在(,1)(0,)x ∈-∞-+∞和都是减函数.()h x ∴在1,01e ⎡⎫⎪⎢-⎣⎭上为减函数,在(]0,1e -上为减函数.()h x ∴在1,11e e ⎡⎤-⎢⎥-⎣⎦上的最大值为(0)h m =,又12(1),(1)42h m h e m e e e -=--=+-且224e e ->,∴所求方程有两根需满足1(1)0(0)0(1)0h e h h e ⎧-≤⎪⎪>⎨⎪-≤⎪⎩20m e ⇒<≤时原方程有两根,20,m e ⎛⎤∴∈ ⎥⎝⎦ 21.(14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式;(2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,12sin 22x <<,10cos 22x <<所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++-因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增,又1()064G π=-<,2()042G π=>且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意(Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈现研究(0,)(,2)x πππ∈U 时方程解的情况,令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x+'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表x(0,)2π 2π(,)2ππ 3(,)2ππ 32π 3(,2)2ππ ()h x '+ 0 - -0 + ()h xZ1]]1-Z 当0x >且x 趋近于0时,()h x 趋向于-∞,当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞,当2x π<且x 趋近于2π时,()h x 趋向于+∞ 故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点.。
四川省成都市第七中学高三一诊模拟——数学(理)数学理

成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)提示:9.构造函数,则2()()()()()()x x x xf x e e f x f x f xg x e e ''--'==, ∵任意均有,并且,∴,故函数在上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C.10. 不妨设,122222221b c a b b b b b c b +<=+≤+=⇒<≤+,,,..,,,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内都使得成立.①错,,又1212112(2)2(2)x x x x -+=-+ ,显然时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对都使得成立(可数形结合);③错,,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-,当时不合题意;④对,当时,,若具有“可平行性”,必要条件是:当时,,解得,又时,分段函数具有“可平行性”,(可数形结合).三、解答题:本大题共6小题,共75分.16.解:(Ⅰ)设的公差为,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得,解得.6(1)17n a n n =-+-⋅=-. ……………6分 (Ⅱ), 1()(13)22n n a a n n n S +-== . 令,即, ……………10分解得或.又,.的最小值为. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA ,∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . ………………………………………………8分 若cosA=0,即A=时,△ABC 是直角三角形,且B=,于是b=ctanB=2tan=,∴ S △ABC =bc=. ……………………10分若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .②联立①②,结合c=2,解得a=,b=,∴ S △ABC =absinC=×××=.综上,△ABC 的面积为或.………………………………………12分(Ⅱ)连,过作于.由于,故.过作于,连.则,即为二面角的平面角. 60,FMH FH ∴∠==., .………………10分.在中,,,.直线与平面所成角的大小为. ……………12分解法二:以为坐标原点,为轴建立空间直角坐标系.(0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C,. ………………7分设平面的法向量,由00n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得. 又面法向量为.由1212cos 60n n n n ⋅=⋅ , 解得. ………………10分在中,,,.直线与平面所成角的大小为. ……………12分19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯= 这60人的平均月收入约为百元. ………………4分 (Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为人,其中1人不赞成.[25,35)的人数为人,其中2人不赞成. ………………6分的所有可能取值为.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455, 得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455, 把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1. ………………3分 (Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分 (Ⅲ)解 设直线OA 的斜率为k 0.当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x , 联立⎩⎪⎨⎪⎧ y =k 0x ,x 24+y 2=1,得⎩⎨⎧ x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧ x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1), 则S =2t 24t 2+9t -9=21-9t 2+9t +4, 令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1. 当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 21.解:(Ⅰ)由题意得ln ()(1ln )x f x a x x ⋅=-⋅()(1)ln x f x ax x x∴=-≠. ………………2分 在上是减函数, 等价于2ln 1()0(ln )x f x a x -'=-≤在上恒成立.…………4分 222ln 1111111()()(ln )ln ln ln 244x x x x x -=-+=--+≤, 当且仅当即时取到最大值.. ………………6分 (Ⅱ)题意等价于min max 1()(())4f x f x a '≤+=. 由(Ⅰ)知2111()()ln 24f x a x '=--+-. ,.在上单调递增,且的值域为. ………8分当时,,在上单调递增,min 1()()4f x f e e ae ==-≤与前提矛盾,无解. 当时,,在上单调递减,222min 1()()24e f x f e ae ==-≤. .当时,存在唯一零点,且时,,单调递减,时,,单调递增,0min 0001()()ln 4x f x f x ax x ∴==-≤. 设211()()ln 4h x e x e x x=-<<,2111()()(ln )4h x x x x '∴=--, , 211()0()(ln )4h x h x x x'>∴<∴单减. 222111111111()ln 4ln 424244h x x x e e e ∴=->-=->-=. 00111ln 44a x x ⇒≥->与前提矛盾,无解. 综上所述,实数的取值范围是. ………………14分。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
四川省成都七中2015届高三一诊模拟试题参考答案

四川省成都七中2015届高三一诊模拟试题参考答案1.C(C项fēi/fěi,qiào/kã,nì/ní,yì/ài;A项qūn/jùn,xuâ/xiě,wãi/wěi,pǐ;B项jìnɡ,páo/bào,yī/qǐ,hùn/hún;D项chuǎi/chuǎn,juǎn /juàn,láng,dāng/dàng)2.B(A项险相环生——险象环生;C项批露——披露;D项敞蓬车——敞篷车)3.D(D项鱼目混珠:比喻拿假的东西冒充真的东西。
A项基于:介词,根据,表示以某种事物作为结论的前提或语言行动的基础。
此处可用连词“鉴于”。
B项拷问:拷打审问。
此处可用“考问”。
C 项亦步亦趋:比喻自己没有主张,或为了讨好,每件事都效仿或依从别人,跟着人家行事。
此处感情色彩不当)4.A(B项不合逻辑,“日前”是“以前”“几天前”的意思,不能与“正在”连用。
C项成分残缺,“那些环境……”前应加上“对”。
D项语序不当,“为用户”移到“提供”的前面)5.B(理解片面。
“气候模式能预估全球温度的变化情况”原因的很多,不只局限于“对过去1000年气候变化的准确模拟”)6.D(A项表述扩大了范围,原文说“时间长的要用高速计算机算好几个月”;B项表述绝对,原文只说“这样可靠性会大大增强”而非可以完全消除差异;C项表述缺少限制,原文强调气候模式是“目前唯一能定量客观……”)7.B(理解有误,原文中“不同的模式对天空中云的状态处理方式不同”是科学家质疑气候模式可靠性的原因之一)8.C(恤:救济)9.B(两个“以”均为介词,可译为“把”。
A项第一个“之”为结构助词“的”;第二个“之”助词,取消独立性,无义。
C项第一个“而”为表转折的连词,;第二个“而”为表并列的连词。
D项第一个“因”表承接的连词,译为“于是,就”;第二个“因”介词,译为“通过”)10.(8分)(1)(4分)遇到有人乞求借钱,(顾隐君)马上分钱给予,就是知道那人一定会背弃(信义),自己已经答应了,也一定不会改变承诺。
四川省成都市2015届高三第一次诊断适应性考试数学理试题(word版,含答案)

2015届成都市第一次诊断适应性考试数 学(理)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( ) A 、),1(+∞- B 、)2,1[- C 、)2,1(- D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”.3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( )A 、()0,1B 、()1,2C 、()2,eD 、()3,44、执行上图所示的程序框图,则输出的结果是( ) A 、5 B 、7 C 、9 D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(xx +展开式中的常数项是( )A 、180B 、90C 、45D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( ) A 、2a b = B 、//a b C 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM +的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( )A 、54B 、53C 、43D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1 B.2C .3D .4二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ;12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
四川省成都市第七中学2015届高三考试数学(理)试题 Word版含答案

成都七中高2015届“高考热身考试”数学理科试题第Ⅰ卷(非选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2lg,1x M x y N x x x -⎧⎫===<⎨⎬⎩⎭,则 =N C M R ( ) [)),0(.2,1.)4,0(.)2,0(.+∞D C B A答案:C2.已知复数z 满足i i z -=+1)1(3,则复数z 对应的点在( )上.A 直线x y 21-= .B 直线x y 21= .C 直线21-=x .D 直线21-=y答案:C3.已知命题R x p ∈∃:,使25sin =x ;命题R x q ∈∀:,都有012>++x x .给出下列结论: ① 题""q p ∧是真命题 ②命题""q p ⌝∧是假命题 ③命题""q p ∧⌝是真命题 ④命题""q p ⌝∨⌝是假命题 其中正确的是( ).A ②④.B ②③.C ③④.D ①②③答案:B4.已知实数[]10,1∈x 执行如图所示的流程图,则输出的x 不小于63的概率为( )103.52.94.31.D C B A 答案:A5.函数)62sin(π-=x y 的图像与函数)3cos(π-=x y 的图像( ).A 有相同的对称轴但无相同的对称中心 .B 有相同的对称中心但无相同的对称轴 .C 既有相同的对称轴但也有相同的对称中心 .D 既无相同的对称中心也无相同的对称轴答案:A6. 已知函数)(x f 的图像如图所示,则)(x f 的解析式可能是( )3121)(.x x x f A --=3121)(.x x x f B +-=3121)(.x x x f C -+=3121)(.x x x f D ---=答案:A7.已知点()0,2A ,抛物线C:2(0)y ax a =>(0a >)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若则a 的值等于( )4.1.21.41.D C B A答案:D解析:5:1:),0,4(=∴=MN KM MKMF a F ,则42421:2:=∴=∴=a a KM KN8.已知M 是ABC ∆内一点,且23AB AC ⋅=,30BAC ∠=,若MBC ∆、MAB ∆、MAC ∆的面积分别为12、x 、y ,则14x y+的最小值是( ) 20.81.16.9.D C B A答案:C9.⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2,27.2,25.27,25.25,0.D C B A 答案:D10. 已知实数d c b a ,,,满足1112=--=-d cb e a a 其中e 是自然对数的底数 , 则22)()(d bc a -+-的最小值为( )18.12.10.8.D C B AO xy答案:A解析:∵实数d c b a ,,,满足1112=--=-d cb e a a ,cde a b a -=-=∴2,2,∴点),(b a 在曲线xe x y 2-=上,点),(d c 在曲线x y -=2上,22)()(d b c a -+-的几何意义就是曲线x e x y 2-=到曲线x y -=2上点的距离最小值的平方.考查曲线x e x y 2-=上和直线x y -=2平行的切线,x e y 21-=' ,求出x e x y 2-=上和直线x y -=2平行的切线方程,121-=-='x e y ,解得∴=,0x 切点为)2,0(-该切点到直线x y -=2的距离2211220=+--=d 就是所要求的两曲线间的最小距离,故22)()(d b c a -+-的最小值为82=d .故选A .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为 答案:π29解析:由三视图知,三棱锥有相交于一点的三条棱互相垂直,将此三棱锥补成长方体,它们有共同的外接球,ππ29422923322222==∴=++=R S R12.在52⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数为____________.答案:4013.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表: 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为________. 答案:20,30解析:设黄瓜和韭菜的种植面积分别为y x ,亩,总利润z 万元,则目标函数y x y y x x z 9.0)9.063.0()2.1455.0(+=-⨯+-⨯=线性约束条件为⎪⎩⎪⎨⎧≥≥≤+≤+0,0549.02.150y x y x y x即⎪⎩⎪⎨⎧≥≥≤+≤+0,01803450y x y x y x ,做出可行域,求得)45,0(),20,30(),50,0(C B A 平移直线,9.0y x z +=可知直线,9.0y x z +=经过点),20,30(B 即20,30==y x 时,z 取得最大值.14.将9~1这9个数平均分成3组,则每组的3个数都成等差数列的分组方法的种数是 答案:5解析:设3组中每组正中间的数分别c b a ,,且c b a <<,则15,45333=++=++c b a c b a , 而42≤≤a ,故),,(c b a 所有可能取的值为)6,5,4(),7,5,3(),8,4,3(),7,6,2(),8,5,2(此时相对应的分组情况是());8,7,6(),9,5,1(),4,3,2();9,8,7(),6,4,2(),5,3,1();9,7,5(),8,6,4(,3,2,1);9,8,7(),6,5,4(),3,2,1()9,6,3(),8,5,2(),7,4,1(故分组方法有5种.15.如果)(x f 的定义域为R ,对于定义域内的任意x ,存在实数a 使得)()(x f a x f -=+成立,则称此函数具有“)(a P 性质”. 给出下列命题: ①函数x ysin =具有“)(a P 性质”;②若奇函数)(x f y =具有“)2(P 性质”,且1)1(=f ,则(2015)1f =;③若函数)(x f y =具有“(4)P 性质”, 图象关于点(10),成中心对称,且在(1,0)-上单调递减,则)(x f y =在(2,1)--上单调递减,在(1,2)上单调递增;④若不恒为零的函数)(x f y =同时具有“)0(P 性质”和 “(3)P 性质”,且函数)(x g y =对R x x ∈∀21,,都有1212|()()||()()|f x f x g x g x -≥-成立,则函数)(x g y =是周期函数. 其中正确的是(写出所有正确命题的编号).答案:①③④三、解答题,本大题共6小题,共75分. 16.(本小题满分12分)设函数R x x x x f ∈++=,cos 2)322cos()(2π. (Ⅰ)求函数)(x f 的最小正周期和单调减区间;(Ⅱ)将函数)(x f 的图象向右平移3π个单位长度后得到函数)(x g 的图象,求函数)(x g 在区间⎥⎦⎤⎢⎣⎡2,0π 上的最小值. 解析:(Ⅰ)x x x x x x f 2cos 12sin 232cos 21cos 2322cos )(2++--=+⎪⎭⎫ ⎝⎛+=π 132cos 12sin 232cos 21+⎪⎭⎫ ⎝⎛+=+-=πx x x所以函数)(x f 的最小正周期为π.由πππ)12(322+≤+≤k x k ,可解得36ππππ+≤≤-k x k所以单调减区间是Z k k k ∈⎥⎦⎤⎢⎣⎡+-,3,6ππππ (Ⅱ)由(Ⅰ)得1)32cos(1)3)3(2cos()(+-=++-=πππx x x g 因为20π≤≤x ,所以32323πππ≤-≤-x 所以1)32cos(21≤-≤-πx ,因此21)32cos(21≤+-≤πx ,即)(x f 的取值范围为⎥⎦⎤⎢⎣⎡2,21. 17.(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为21,32,43,乙队每人答对的概率都是32.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (Ⅰ)求随机变量ξ的分布列及其数学期望)(ξE ;(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. (1)ξ的可能取值为3,2,1,041213141213241213143)1(;241213141)0(=⨯⨯+⨯⨯+⨯⨯===⨯⨯==ξξP P41213243)3(;2411213143213241213243)2(=⨯⨯===⨯⨯+⨯⨯+⨯⨯==ξξP Pξ的分布列为1223413241124112410)(=⨯+⨯+⨯+⨯=ξE(2)设“甲队和乙队得分之和为4”为事件A ,“甲队比乙队得分高”为事件B 则31313241313224113241)(213223333=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯+⨯⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=C C C A P181313241)(213=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯=C AB P 6131181)()()|(===∴A P AB P A B P 18.(本小题满分12分)如图,在四棱锥ABCD P -中, 四边形ABCD 是直角梯形,ABCD PC CD AB AD AB 底面⊥⊥,//,,E a PC CD AD AB ,2,422====是PB 的中点.(Ⅰ)求证:平面EAC ⊥平面PBC ;ξ1 23 P 241412411 41(Ⅱ)若二面角E AC P --的余弦值为36,求直线PA 与平面EAC 所成角的正弦值. 解析:(Ⅰ)PC AC ABCD AC ABCD PC ⊥∴⊂⊥,,平面平面.2,2,4==∴===BC AC CD AD ABBC AC AB BC AC ⊥∴=+∴,222,又PBC AC C PC BC 平面⊥∴=,PBC EAC EAC AC 平面平面平面⊥∴⊂ .(Ⅱ)如图,以点C 为原点,CP CD DA ,,分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则)0,2,2(),0,2,2(),0,0,0(-B A C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,每小题5分,共25分.11.15; 12.[)5,7; 13.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,,; 14.3:2:1; 15.②④. 提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a bc ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然12x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)xf x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-==. 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . (8)分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .② 联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分18.(Ⅰ)证明:连接AC 交BE 于点M ,连接FM .由//EM CD12AM AE PFMC ED FC∴===. //FM AP ∴. ………………4分 FM BEF PA BEF ⊂⊄面,面, //PA BEF ∴面.………………6分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE ==PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =,tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n nn ⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan 3PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 直线的参数方程也可以做,更简洁。
21.解:(Ⅰ)由题意得ln ()(1ln )x f x a x x ⋅=-⋅()(1)ln xf x ax x x∴=-≠. ………………2分 ()f x 在(1,)+∞上是减函数,∴等价于2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立max 2ln 1()(ln )x a x -⇔≥.…………4分 222ln 1111111()()(ln )ln ln ln 244x x x x x -=-+=--+≤,当且仅当11ln 2x =即2x e =时取到最大值. ∴1=4a . ………………6分(Ⅱ)题意等价于min max 1()(())4f x f x a '≤+=.由(Ⅰ)知2111()()ln 24f x a x '=--+-. 2e x e ≤≤,∴1112ln x≤≤. ∴()f x '在2,x e e ⎡⎤∈⎣⎦上单调递增,且()f x '的值域为1,4a a ⎡⎤--⎢⎥⎣⎦. ………8分 1 当0a ≤时,()0f x '≥,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递增,min 1()()4f x f e e ae ==-≤11-04a e⇒≥>与前提矛盾,无解. 2 当14a ≥时,()0f x '≤,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递减, 222min1()()24e f x f e ae ==-≤2111244a e ⇒≥->.∴21124a e ≥-. 3 当104a <<时, ()y f x '=存在唯一零点20(,)x e e ∈,且[]0,x e x ∈时,()0f x '≤,()f x 单调递减,(20,x x e ⎤∈⎦时,()0f x '>,()f x 单调递增,0min 0001()()ln 4x f x f x ax x ∴==-≤0011ln 4a x x ⇒≥-. 设211()()ln 4h x e x e x x =-<<,2111()()(ln )4h x x x x'∴=--, 211(,1)(ln )4x ∈,2111(,)444x e e ∈211()0()(ln )4h x h x x x '>∴<∴单减. 222111111111()ln 4ln 424244h x x x e e e ∴=->-=->-=. 00111ln 44a x x ⇒≥->与前提矛盾,无解. 综上所述,实数a 的取值范围是211,24e ⎡⎫-+∞⎪⎢⎣⎭. ………………14分 也可分离参数做,更简洁.。