science

合集下载

《Science》学会期刊

《Science》学会期刊

一《Science》1 内容简介《Science》是由著名科学家托马斯·爱迪生创办于1880年,是由美国科学促进会支持的综合性科技周刊,在国际科技界享用很高的声誉,对推动科技进步发挥着重点作用。

主要报道科学新闻、科研论文、综述、科研发展趋势,向全世界公布一周内国际性的科技重大新闻,发表精选出的世界上最有突破性、对科学发展产生很大影响的的学术论文,也是世界上发行量最大的科技期刊之一。

其办刊宗旨是认科学家掌握科学前沿发展动态,紧跟科技发展趋势。

《Science》的主要栏目:报告(Reports)――发表新的有广泛意义的重要研究成果。

报告要包括摘要和引言。

参考文献应在30条以内。

研究文章(Research Articles)――发表反映某一领域的重大突破的文章。

技术评论(Technical Comments)――讨论《科学》周刊过去6个月内发表的论,并给予原文章作者答复评论的机会。

评论和答复都要得到评议和必要的编辑。

讨论的提要刊登在印刷版,全文刊登在电子版。

《科学》指南(Science's Compass)――提供由科学家或其他专家撰写的对当前科学问题的评论。

包括:来信(Letters),政策论坛(Policy Forum),科学与社会短文(Essays on Science and Society),书评及其它(Books et al.),研究评述(Perspectives),综述(Review),技术总揽Tech.Views。

《Science》CALIS订购起始于1995年10月,JSTOR西文过刊全文库为1880-1996年,Academic Search Elite(EBSCO学术期刊大全)为1997年至今。

2 操作2.1 浏览检索2.1.1期刊浏览检索点击”Brower”期刊按照卷列在页面上,点击有用的卷号,其中的各期列在页面上,再点击期号,列出所包含的文章的题录格式,有三种排列方法,点击“Table of Contents”即按照目录表排列,点击“Author Index”按著者排列,点击“Subject Index”按照主题排列。

science 的125个问题原文

science 的125个问题原文

《科学》的125个问题科学一直以来都是人们探索和理解世界的重要工具,它涉及到我们生活中的方方面面。

在这篇文章中,我们将探讨科学领域中的125个问题,希望能够为您带来启发和思考。

1. 什么是科学?2. 科学是如何发展起来的?3. 科学的基本特征是什么?4. 什么是科学方法?5. 科学方法的步骤有哪些?6. 科学的研究对象有哪些?7. 科学是如何进行观察和实验的?8. 科学理论和科学事实的区别是什么?9. 为什么科学家要进行实验?10. 科学家在实验中如何控制变量?11. 为什么科学实验需要重复多次?12. 科学研究的目的是什么?13. 科学研究的意义在于什么?14. 什么是自然科学?15. 自然科学包括哪些学科?16. 什么是社会科学?17. 社会科学包括哪些学科?18. 什么是应用科学?19. 应用科学与基础科学有何区别?20. 科学的发展对人类社会的影响是什么?21. 科学技术是如何推动社会进步的?22. 为什么科学普及对社会至关重要?23. 科学教育的意义在于什么?24. 科学素养是什么?25. 为什么每个人都应该具备科学素养?26. 科学素养对个人和社会的影响是什么?27. 什么是科学道德?28. 科学道德的重要性是什么?29. 科学研究中的诚信和公正有何意义?30. 科学错误是如何纠正和修正的?31. 科学研究的权威性和可靠性如何保障?32. 科学研究的伦理问题是什么?33. 什么是伪科学?34. 如何识别伪科学?35. 伪科学的危害是什么?36. 为什么要避免伪科学?37. 什么是科学世界观?38. 科学世界观对认识世界的影响是什么?39. 什么是科学价值观?40. 科学价值观对人类社会的影响是什么?41. 什么是科学技术伦理?42. 科学技术伦理的重要性是什么?43. 科学研究中的社会责任是什么?44. 科学研究中的公共利益是什么?45. 科学研究中的隐私保护是什么?46. 科学研究中的安全风险是什么?47. 什么是科学革命?48. 科学革命对现代科学的影响是什么?49. 什么是科学精神?50. 科学精神对科学研究的意义是什么?51. 什么是科学探索的动力?52. 科学探索的动力对科学发展的影响是什么?53. 什么是科学技术创新?54. 科学技术创新对社会和经济的意义是什么?55. 什么是科学实验的基本要求?56. 科学实验的基本要求对实验结果的可靠性有何影响?57. 什么是科学研究的创新能力?58. 科学研究的创新能力的意义在于什么?59. 什么是科学研究的自主性?60. 科学研究的自主性对研究成果的影响是什么?61. 什么是科学研究的目标导向?62. 科学研究的目标导向对研究过程的影响是什么?63. 什么是科学研究的合作性?64. 科学研究的合作性对研究成果的影响是什么?65. 什么是科学研究的公开性?66. 科学研究的公开性对研究交流和合作的影响是什么?67. 什么是科学研究的符号语言?68. 科学研究的符号语言对科学交流的重要性是什么?69. 什么是科学研究的数据和信息?70. 科学研究的数据和信息对科学研究的意义是什么?71. 什么是科学研究的实践能力?72. 科学研究的实践能力对科学问题的解决有何影响?73. 什么是科学研究的逻辑推理能力?74. 科学研究的逻辑推理能力对科学证明的重要性是什么?75. 什么是科学研究的批判思维能力?76. 科学研究的批判思维能力对科学发现的意义是什么?77. 什么是科学研究的创造力?78. 科学研究的创造力对科学发展的推动作用是什么?79. 什么是科学研究的交流能力?80. 科学研究的交流能力对科学交流和合作的重要性是什么?81. 什么是科学研究的批判性思维?82. 科学研究的批判性思维对科学发现的意义是什么?83. 什么是科学研究的透明性?84. 科学研究的透明性对科学研究结果的可信度有何影响?85. 什么是科学研究的效率和效果?86. 科学研究的效率和效果对科学成果的意义是什么?87. 什么是科学研究的风险管理?88. 科学研究的风险管理对科学实验和研究的安全性有何影响?89. 什么是科学研究的责任和义务?90. 科学研究的责任和义务对科学家和科研机构的影响是什么?91. 什么是科学研究的伦理标准?92. 科学研究的伦理标准对研究过程和结果的影响是什么?93. 什么是科学研究的法律规定?94. 科学研究的法律规定对研究活动和成果的约束和保护作用是什么?95. 什么是科学研究的政策和规划?96. 科学研究的政策和规划对科学研究资源的分配和利用有何影响?97. 什么是科学研究的知识产权保护?98. 科学研究的知识产权保护对科学研究成果的转化和应用有何意义?99. 什么是科学研究的社会审查和监督?100. 科学研究的社会审查和监督对科学研究的公正和公信力有何影响?101. 什么是科学研究的质量评价和控制?102. 科学研究的质量评价和控制对科研成果的评价和应用管理有何意义?103. 什么是科学研究的国际合作?104. 科学研究的国际合作对科学成果的国际传播和影响有何意义?105. 什么是科学研究的跨学科和交叉研究?106. 科学研究的跨学科和交叉研究对科学发现和创新的推动作用是什么?107. 什么是科学研究的大科学项目?108. 科学研究的大科学项目对科学研究资源的集中配置和科学技术的发展有何影响?109. 什么是科学研究的基础理论和应用技术?110. 科学研究的基础理论和应用技术对科学研究发展和社会进步的重要性是什么?111. 什么是科学研究的重大科学问题和前沿研究领域?112. 科学研究的重大科学问题和前沿研究领域对科学发展和创新的引领作用是什么?113. 什么是科学研究的战略性布局和规划?114. 科学研究的战略性布局和规划对科学发展和国家安全战略的影响是什么?115. 什么是科学研究的科学与艺术结合?116. 科学研究的科学与艺术结合对科学研究优秀人才的培养和科学教育的推动作用是什么?117. 什么是科学研究的科技成果转化和产业化?118. 科学研究的科技成果转化和产业化对科学研究成果的应用和社会经济的发展作用是什么?119. 什么是科学研究的科学传播和科学普及?120. 科学研究的科学传播和科学普及对科学知识的传播和社会公众的科学素养提高作用是什么?121. 什么是科学研究的科学家形象和科学精神?122. 科学研究的科学家形象和科学精神对科学工作者的激励和科学研究的推动作用是什么?123. 什么是科学研究的科学伦理和科学修养?124. 科学研究的科学伦理和科学修养对科学家的行为规范和科学研究成果的可信度保障作用是什么?125. 什么是科学研究的科学未来和科学梦想?126. 科学研究的科学未来和科学梦想对科学研究的持续创新和科学研究的发展动力是什么?结语:科学研究是为了寻求真理和创新的一种探索活动,它是人类对世界认识和理解的重要途径。

SCI和science的区别

SCI和science的区别

《工程索引》(The Engineering Index,简称EI)创刊于1884年,是美国工程信息公司(Engineering information Inc.)出版的著名工程技术类综合性检索工具。EI每月出版1期,文摘1.3万至1.4万条;每期附有主题索引与作者索引;每年还另外出版年卷本和年度索引,年度索引还增加了作者单位索引。收录文献几乎涉及工程技术各个领域。例如:动力、电工、电子、自动控制、矿冶、金属工艺、机械制造、土建、水利等。它具有综合性强、资料来源广、地理覆盖面广、报道量大、报道质量高、权威性强等特点。
出版形式有印刷版(期刊形式)、电子版(磁带)及缩微胶片。EI选用世界上工程技术类几十个国家和地区15个语种的3500余种期刊和1000余种会议录、科技报告、标准、图书等出版物。年报道文献量16万余条。
Ei Compendex是全世界最早的工程文摘来源。Ei Compendex数据库每年新增的50万条文摘索引信息分别来自5100种工程期刊、会议文集和技术报告。Ei Compendex收...
科学引文索引数据库(SCI:Science Citation Index),历来被公认为世界范围最权威的科学技术文献的索引工具,能够提供科学技术领域最重要的研究成果。SCI引文检索的体系更是独一无二,不仅可以从文献引证的角度评估文章的学术价值,还可以迅速方便地组建研究课题的参考文献网络。发表的学术论文被SCI收录或引用的数量,已被世界上许多大学作为评价学术水平的一个重要标准。我馆订购的Science Citation Index Expanded (简称SCIE),检索年份从1997年开始至今。共收录期刊5600余种,每周新增17750条记录,记录包括论文与引文(参考文献),其引文记录所涉及的范围十分广泛,包括书、期刊论文、会议论文、专利和其他各种类型的文献。Science Citation Index Expanded是一个多学科的综合性的数据库,其所涵盖的学科超过100个,主要涉及农业、生物及环境科学、工程技术及应用科学、医学与生命科学、物理学及化学、行为科学等。我馆提供的SCI光盘检索年份从2003年至今。SCI expanded与SCI光盘相比,增加了文献收录范围,扩展了系统的检索功能,并能链接到我馆订阅的电子刊物上获取全文。

science发文标准

science发文标准

science发文标准
一、引言
作为全球范围内享有高度声誉的学术期刊,Science杂志对于论文的发表有着严格的标准。

这些标准不仅确保了论文的科学性和创新性,也维护了学术的严谨性和公信力。

本文将详细介绍Science杂志在论文发表方面的标准。

二、原创性和创新性
原创性:论文必须具有原创性,即研究结果、数据和结论均未在其他地方发表过,且在论文中要明确指出研究的独特贡献和创新点。

创新性:论文必须展示出创新性,即研究结果或结论具有突破性,能够推动相关领域的发展。

三、科学性和准确性
科学性:研究设计和实验方法必须科学、合理,能够得出可靠的结论。

准确性:论文的数据和结论必须准确无误,不能有任何篡改或捏造数据的行为。

四、结构和语言规范
结构:论文必须符合Science杂志的规范,包括摘要、引言、方法、结果、讨论等部分,且各部分内容必须条理清晰。

语言:论文的语言必须严谨、规范,用词准确,句子通顺,符合学术论文的写作规范。

五、文献引用和版权问题
文献引用:论文必须正确引用相关文献,遵循APA或MLA等国际通行的引用格式。

版权问题:作者必须拥有论文的全部版权,或者已经获得了必要的授权,确保论文的合法性和可获得性。

六、结论
综上所述,Science杂志在论文发表方面有着严格的原创性、创新性、科
学性、准确性、结构和语言规范以及文献引用和版权问题等方面的标准。

作者在投稿前应仔细核对各项要求,确保论文能够满足这些标准。

同时,这些标准也是其他学术期刊所共有的要求,对于提高学术论文的质量和水平具有重要意义。

science造句简单六年级

science造句简单六年级

science造句简单六年级有:1.She studied science at university.她在大学里学的是理科。

2.The report provides a comprehensive overview of the science behindclimate change.该报告全面概述了气候变化背后的科学原理。

3.The new technology has revolutionized the science of genetics.这项新技术已经使基因学发生了革命性的变化。

4.He is a leading authority in the science of biology.他是生物学领域的权威人士。

5.The science fair is an annual event held at the school.科学展览会是学校里每年举办的活动。

6.She dreams of becoming a science teacher when she grows up.她长大后梦想成为一名科学教师。

7.The science department at this university is very well regarded.这所大学的理科部门非常受推崇。

8.The students will do experiments in the science lab tomorrow.明天学生们将在科学实验室里做实验。

9.The science of medicine is an ever-changing field.医学是一门不断变化的科学领域。

10.S he switched from history to science as her major.她从历史专业转到了理科专业。

science英文解释

science英文解释

science英文解释Science.Science is a systematic and organized body of knowledge about the natural world. It is based on experimentation, observation, and hypothesis testing. The goal of science is to understand the natural world and how it works.Science is often divided into two main branches: natural science and social science. Natural science deals with the physical world, including the universe, Earth, and living things. Social science deals with human behavior and society.Natural science.Natural science is the study of the natural world. It includes the fields of physics, chemistry, biology, and geology. Physics is the study of matter and energy. Chemistry is the study of the composition and properties ofsubstances. Biology is the study of living things. Geology is the study of the Earth's history and structure.Social science.Social science is the study of human behavior and society. It includes the fields of sociology, psychology, economics, and political science. Sociology is the study of human society and culture. Psychology is the study of the human mind and behavior. Economics is the study of the production, distribution, and consumption of goods and services. Political science is the study of government and politics.The scientific method.The scientific method is a process for testing hypotheses and developing theories. It involves the following steps:1. Observation: Make an observation about the natural world.2. Hypothesis: Develop a hypothesis to explain the observation.3. Experiment: Conduct an experiment to test the hypothesis.4. Data: Collect data from the experiment.5. Analysis: Analyze the data to see if it supports the hypothesis.6. Conclusion: Draw a conclusion based on the data.The importance of science.Science is important because it helps us to understand the natural world and how it works. It also helps us to develop new technologies and solve problems. For example, science has led to the development of new medicines, new energy sources, and new ways to communicate.Science is also important because it helps us to make informed decisions about our lives. For example, sciencecan help us to understand the risks and benefits ofdifferent medical treatments, the effects of climate change, and the impact of our actions on the environment.The future of science.The future of science is bright. Scientists are constantly making new discoveries and developing new technologies. In the future, science will likely continueto play a vital role in our lives, helping us to understand the natural world, solve problems, and make informed decisions.。

发一篇science有多厉害

发一篇science有多厉害
《Science》和《Nature》杂志,被视为科学出版业的“百年老店”。

在一代代编辑的不懈努力之下,持续发表着相对高水平的科研论文(尤其是主刊)。

每周相当有限的版面竞争,涵盖物理、化学、生物、材料......,要在上面发表文章,不是难,是相当的难,特别的难。

众所周知,SCI论文意味着专业领域学术研究的方向和水平,于是发表SCI也成了许多高校和科研单位的目标,并且SCI论文的数量和质量也代表着其高校单位的学术水平。

因此很多高校和单位为了提高自身含金量和促进自身科研水平发展,推出了许多鼓励政策。

《Science》是美国科学促进会(American Association for the Advancement of Science,AAAS)出版的一份学术期刊,为全世界最权威的学术期刊之一。

《Science》是发表最好的原始研究论文、以及综述和分析当前研究和科学政策的同行评议的期刊之一。

该杂志于1880年由爱迪生投资1万美元创办,于1894年成为美国最大的科学团体“美国科学促进会”(American Association for the Advancement of Science ,AAAS)的官方刊物。

全年共51期,为周刊,全球发行量超过150万份。

投稿science的公式

投稿science的公式
摘要:
1.引言:介绍投稿Science 杂志的公式及其重要性
2.投稿Science 的公式:详细解释投稿Science 的公式
3.公式的应用:展示投稿Science 的公式在实际中的应用
4.结论:总结投稿Science 的公式的重要性和应用
正文:
在科学研究中,投稿Science 杂志的公式是非常重要的。

Science 杂志是全球最具影响力的科学期刊之一,它对学术研究的要求非常高。

因此,投稿Science 的公式必须准确、清晰、简洁,并且能够有效地表达研究的主要观点。

投稿Science 的公式通常包括以下几个部分:
首先,是公式的引入。

在这一部分,需要明确公式的来源,以及为什么要使用这个公式。

其次,是公式的详细解释。

在这一部分,需要详细解释公式的每一个部分,以及它们之间的关系。

最后,是公式的应用。

在这一部分,需要展示公式在实际中的应用,以及它能够解决什么问题。

例如,如果我们要投稿一个描述物体运动的公式,我们可能会这样写:“在我们的研究中,我们发现了一个描述物体运动的新公式。

这个公式可以帮助我们更准确地预测物体的运动轨迹,从而更好地理解物体的运动规律。

我们相信,这个公式对于理解物体运动具有重要的意义。


在结论部分,我们需要总结投稿Science 的公式的重要性和应用。

我们可以这样写:
“总的来说,我们开发的这个公式可以帮助我们更好地理解物体的运动规律,对于理解物体运动具有重要的意义。

我们相信,这个公式在实际中的应用将会非常广泛,对于相关领域的研究具有重要的推动作用。

science是可数的吗

science是可数的吗1. 表示一般意义的“科学”或“自然科学”,具有总称意义,是不可数名词。

如:Science means honest, solid knowledge. 科学是老老实实的学问。

It was one of the greatest discoveries in science. 那是科学上最伟大的一项发现。

汉语说“自然科学”,在一定的上下文可直接用science 表示,有时也可用natural science 或physical science 表示。

Do you do science at school? 你在学校里学自然科学吗?I prefer science to the humanities. 我喜爱自然科学不喜欢人文科学。

We pushed him hard to take up science. 我们极力让他学习自然科学2. 表示一门科学或自然科学,通常是可数名词。

如:Biology is a science. 生物学是一门(自然)科学。

Psychology and economics are social sciences. 心理学和经济学是社会科学。

表示一门或几门科学,通常是可数的,但若具体地指明是某门科学且含义较泛时,它仍然是不可数的。

如以下各例,它们都具体指明了是某门科学,由于含义较泛,所以不可数(注意没有用冠词):political science 政治学social science 社会科学computer science 计算机科学medical science 医学但是我们可以说:a social science 一门社会科学(因为社会科学包含多门学科)a natural science 一门自然科学(因为自然科学包含多门学科)同样的道理,我们还可以说(用了复数和定冠词):the natural sciences 各门自然科学the social sciences 各门社会科学3. 用于the science of, 表示“……学”“……的科学”。

science的用法总结大全

science的用法总结大全(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!science的用法总结大全science的意思n. 科学,技术,知识,学科,理科science用法science可以用作名词science的基本意思是“科学”,指通过观察或实验来反映自然、社会、思维等的客观规律的分科的知识体系,是不可数名词。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Colloids and Surfaces B:Biointerfaces 81 (2010) 329–335Contents lists available at ScienceDirectColloids and Surfaces B:Biointerfacesj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r fbSelf-assembly behavior of peptide amphiphiles (PAs)with different length of hydrophobic alkyl tailsXiao-Ding Xu 1,Yue Jin 1,Yun Liu,Xian-Zheng Zhang ∗,Ren-Xi ZhuoKey Laboratory of Biomedical Polymers of Ministry of Education &Department of Chemistry,Wuhan University,Wuhan 430072,PR Chinaa r t i c l e i n f o Article history:Received 23April 2010Received in revised form 6July 2010Accepted 9July 2010Available online 16 July 2010Keywords:Peptide amphiphile Self-assembly Alkyl taila b s t r a c tAmphiphilic peptide and their derivatives,with distinguished advantages over conventional materials,have received extensively research interesting recently.In this work,four peptide amphiphiles (PAs1-4)with different length of hydrophobic alkyl tails (C9for PA1,C11for PA2,C13for PA3,and C15for PA4)were fabricated and their self-assembly behaviors in aqueous medium at different pHs were investigated systematically.It was found that all the peptide amphiphiles can self-assemble in water at a neutral pH of 7to form tightly packed nanofibers with a ␤-sheet conformation.When altering the solution environment to basic medium (pH 11),due to the strong hydrophobic interaction of long alkyl tails in PA3and PA4,the fibrous nanostructure self-assembled from PA3and PA4was not destroyed.However,the nanofibers self-assembled from PA1in which the length of alkyl tail was relatively short converted into loose spherical micelles with a ␤-sheet conformation.Due to the moderate length of alkyl tail in PA2,both nanofibers and micelles can be formed via the self-assembly of PA2when increasing the pH of the self-assembling system.© 2010 Elsevier B.V. All rights reserved.1.IntroductionThe self-assembly of peptides and their derivatives has attracted much attention as a powerful approach for construction of novel functional materials that promise broad applications in tissue engineering [1–3],3D cell culture [4,5],drug delivery [6,7],and bacteria inhibition [8,9].By exploiting the spontaneous or induced molecular arrangement upon external stimuli such as pH and/or temperature,peptides and their derivatives are able to grow from homogeneous solution into shape-specific nanostructures via non-covalent forces including ␲-stacking [10,11],hydrogen bonding [12,13],and hydrophobic interactions [14–16].Over the past few decades,a variety of structural motifs such as coiled-coils [17],␤-hairpins [12,13],␤-sheets [18,19],and peptide amphiphiles (PAs)[14–16],have been established for the self-assembly of peptides and their derivatives.Among them,peptide amphiphiles consisted of hydrophilic peptide headgroups and hydrophobic tails have been widely employed as building blocks for the self-assembly in water to form shape-specific nanostructures.One of the first designs of synthetic peptide amphiphiles was proposed by Kunitake [20]and consisted of a hydrophobic tail,a linker,a spacer,and a hydrophilic headgroup.By changing the structural segments of an amphiphilic molecule to tailor the fun-∗Corresponding author.Tel.:+862768754509;fax:+862768754509.E-mail address:xz-zhang@ (X.-Z.Zhang).1Authors contributed to this work equally.damental rules of the non-covalent forces,one can control the morphology,characteristics,surface chemistry,and function of the molecule.To date,a number of peptide amphiphiles have been reported,including peptide amphiphiles with different peptide headgroups [14–16]and one or more alkyl tails [20–22].These pep-tide amphiphiles have been shown to form various nanostructures such as micelles,vesicles,nanofibers,nanotapes,and ribbons.For examples,Gore et al.[21]investigated the influence of the number of tails and temperature on the self-assembly of collagen mimetic peptide amphiphiles.It was reported that the resulting morphol-ogy can transfer from spherical micelles to disc-like micelles which can stack up to form extended strand-like structures with the alternation of the length and number of tails.When changing the temperature of the self-assembling system,the triple-helical struc-ture of the peptide segment can be destroyed for the collagen mimetic peptide amphiphile with certain length of tail.We have also reported previously several peptide amphiphiles that exhibit different self-assembly behaviors upon the alter-nation of external pH and salt concentration [23].Moreover,it is interesting to know whether these peptide amphiphiles can self-assemble into different nanostructures including vesicles,micelles,and nanofibers when changing (from alkyl tail to aro-matic tail)or slightly increasing the length of the hydrophobic alkyl tails (from C9to C10)and solution pH.In this study,four peptide amphiphiles (PAs1-4)with different length of alkyl tails (C9for PA1,C11for PA2,C13for PA3,and C15for PA4)were designed and prepared via a standard FMOC chemistry (Fig.1).The self-assembly behaviors of these peptide amphiphiles in water0927-7765/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.colsurfb.2010.07.027330X.-D.Xu et al./Colloids and Surfaces B:Biointerfaces81 (2010) 329–335Fig.1.Molecular structures of the peptide amphiphiles (PAs1-4).were monitored by transmission electron microscopy (TEM),cir-cular dichroism (CD),and Raman spectroscopy.The data obtained indicate that the peptide amphiphiles having long alkyl tails (PA3and PA4)can self-assemble into tightly packed nanofibers with a ␤-sheet conformation at a pH range from 3to 11.However,the nanofibers self-assembled from PA1with short alkyl tail become loose micelles with a ␤-sheet conformation when altering the solution environment from acidic to basic medium.2.Materials and methods 2.1.MaterialsN -Fluorenyl-9-methoxycarbonyl (FMOC)protected l -amino acids (FMOC-Gly-OH,FMOC-Asp(OtBu)-OH,FMOC-Arg(Pbf)-OH,FMOC-Val-OH)and 2-chlorotrityl chloride resin (100–200mesh,loading 1.32mmol/g)were pur-chased from GL Biochem (Shanghai)Ltd.(China)and used as received.Piperdine,trifluoroacetic acid (TFA),o -benzotriazole-N,N,N ,N -tetramethyluroniumhexafluorophosphate (HBTU),and N -hydroxybenzotriazole (HOBt)were provided by Shanghai Reagent Chemical Co.(China)and used directly.10-Undecenoic acid,N,N -dimethylformamide (DMF),and diisopropylethylamine (DiEA)were obtained from Shanghai Reagent Chemical Co.(China)and distilled prior to uric acid,myristic acid,and palmitic acid were purchased from Shanghai Reagent Chemical Co.(China)and used after recrystallization from ethanol.Triisopropylsilane (TIS)was purchased from ACROS (USA)and used without further purification.All other reagents and solvents were of analytical grade and used directly2.2.Synthesis of peptide amphiphiles (PAs)All the peptide amphiphiles (PAs1-4)were synthesized man-ually in 1.98mmol scale on the 2-chlorotrityl chloride resin employing a standard FMOC chemistry.Before the synthesis,the resin was washed with CH 2Cl 2(three times)and DMF (three times)and then immersed in DMF for 30min.After draining off DMF solu-tion,a DMF solution of the mixture of FMOC protected amino acid (3equiv relative to resin loading)and DiEA (6equiv)was added to the resin and shaken for 2h at room temperature.After removing the reaction solution,the resin was washed with DMF (three times).Subsequently,20%piperdine/DMF (V/V)solution was introduced to the resin to remove the FMOC protected groups.After shaking for 30min at room temperature,the reaction solution was drained off and the resin was washed with DMF (three times).The presence of free amino groups was indicated by a blue color in the Kaiser test.Thereafter,a DMF solution of the mixture of FMOC protected amino acid (2equiv),HBTU (3equiv),HOBt (3equiv)and DiEA (4equiv)was added.After shaking for 1.5h at room temperature,the reaction solution was drained off and the resin was washed with DMF (three times).The absence of free amino groups was indicated by a yellow color in the Kaiser test.After the repetition of depro-tection and acylation reaction,the resin was finally washed with DMF (three times)and CH 2Cl 2(three times)and dried under vac-uum for 24h.Cleavage of the expected peptide and the removal of side chain protected groups from the dried resin were performed using a mixture of TFA,deionized water,and TIS in the ratio of 95:2.5:2.5.After shaking at room temperature for 2h,the cleav-age mixture and three subsequent TFA washing were collected.The combined solution was concentrated to a viscous solution byX.-D.Xu et al./Colloids and Surfaces B:Biointerfaces81 (2010) 329–335331rotary evaporation.Cold ether was added to precipitate the product. After washing with cold ether(five times)to remove TFA residual, the precipitate was dissolved in distilled water and then freeze-dried under vacuum for3days.The purities of the synthesized peptide amphiphiles were analyzed by high-pressure liquid chro-matography(HPLC)with a C18column and using a linear gradient of acetonitrile and DI water containing0.1%NH4OH.The masses of the peptide amphiphiles were examined by electro spray ionization mass spectrometry(ESI-MS,LCQ Advantage,Finigan,USA).PA1: purity,95.1%by HPLC;IR,∼3450cm−1,amide A band,∼1648cm−1, amide I band,∼1550cm−1,amide II band;MS,calculated698, [M−H]−found697.PA2:purity,93.8%by HPLC;IR,∼3455cm−1, amide A band,∼1652cm−1,amide I band,∼1556cm−1,amide II band;MS,calculated726,[M−H]−found725.PA3:purity,93.4%by HPLC;IR,∼3450cm−1,amide A band,∼1643cm−1,amide I band,∼1550cm−1,amide II band;MS,calculated754,[M−H]−found 753.PA4:purity,95.4%by HPLC;IR,∼3447cm−1,amide A band,∼1645cm−1,amide I band,∼1551cm−1,amide II band;MS,calcu-lated782,[M−H]−found781.2.3.Acid–base titrationThe solution of the peptide amphiphiles was prepared in dis-tilled water at a pH of4with a concentration of1.5mg/mL.Then 0.01M NaOH aqueous solution was added in5–10␮L increments. After each addition,the sample was constantly stirred for5min at room temperature and the pH value of the solution was measured using a PB-10Sartorius pH meter.Each sample was measured three times and the average value of the three measurements was col-lected.The p K a of the each peptide amphiphile was defined as the pH where half amount of carboxylic acid groups were ionized.2.4.Self-assembly of peptide amphiphiles(PAs)The solution of the peptide amphiphiles was prepared in dis-tilled water at a pH of11with a concentration of6mg/mL.Then concentrated HCl was added to in1–5␮L increments and the cor-responding pH value of the solution was measured on a PB-10 Sartorius pH meter after shaking the solutions for5min.The self-assembly behaviors of the peptide amphiphiles were investigated at various pH using the following transmission electron microscopy (TEM),circular dichroism(CD),and Raman spectroscopy.2.5.Transmission electron microscopy(TEM)The morphology of the self-assembled peptide amphiphiles was observed on a JEM-100CXa transmission electron micro-scope(TEM).Before the observation,the solution of the peptide amphiphiles was applied to a copper grid and stained by a0.2% (w/v)phosphotungstic acid solution.2.6.Circular dichroism(CD)The solution of the self-assembled peptide amphiphiles was fixed in a0.5mm quartz cell and analyzed on a Jasco J-810spec-tropolarimeter with4s accumulations every1nm and averaged over three acquisitions.2.7.Raman spectroscopyThe Raman spectra of the self-assembled peptide amphiphiles were recorded on a Jobin Yvon Raman microspectrometer(LABRAM HR800,helium-neon laser)with the citation wavelength at 632.8nm and long focal length.Before the analysis,the solutions of the self-assembled peptide amphiphiles were freeze-dried in a Freeze Drier(Labconco,CA)under vacuum.3.Results and discussion3.1.Self-assembly of the peptide amphiphiles(PAs)The molecular structures of the peptide amphiphiles(PAs1-4)are presented in Fig.1.All the peptide amphiphiles havea Fig.2.TEM images of the peptide amphiphiles in aqueous solution at pH7(a:PA1,b:PA2,c:PA3,d:PA4).332X.-D.Xu et al./Colloids and Surfaces B:Biointerfaces81 (2010) 329–335Fig.3.TEM images of the peptide amphiphiles in aqueous solution at pH 11(a:PA1,b:PA2,c:PA3,d:PA4).hydrophilic peptide headgroup of VRGDV sequence and hydropho-bic alkyl tail.And the hydrophobic alkyl chains were designed as C9,C11,C13,and C15,respectively in order to study the influence of the length of the tails on their self-assembly behaviors.These four PAs were dissolved in distilled water at a neural pH of 7with a concentration of 6mg/mL.PA1and PA2can dis-perse well in water to form clear solution.While for PA3and PA4,the solubility was comparatively decreased due to their rel-atively longer hydrophobic alkyl tails.Especially PA4,the solution was significantly viscous and some precipitates can be observed in the solution.When adding concentrated HCl (12M)to the solution of the peptide amphiphiles,the viscosity of the solution increased dramatically and three-dimensional hydrogels can be formed when the pH of the self-assembling system reached 3.Based on the experiments,the gelation can also occur even the con-centration of peptide amphiphiles deceased to 3mg/mL.However,by introducing concentrated NaOH solution to the self-assembling system,gel–sol transition took place and can be accomplished when increasing the pH to a neutral (pH 7)or basic value (pH 11).At this time,once adding concentrated HCl to the solution of the peptide amphiphiles at a neutral or basic pH,the viscosity of the solu-tion increased dramatically and three-dimensional hydrogels can be also formed.That is,this pH triggered phase transition of the peptide amphiphiles was reversible and can be repeatedly accom-plished.In order to examine the morphology of the self-assembled peptide amphiphiles,TEM measurements were performed.As pre-sented in Fig.2,all the peptide amphiphiles can self-assemble into tightly packed nanofibers with the width of around 25nm at a neutral pH of 7(Fig.2a–d).It is also found that there is no obvious change of the fibrous morphology for PA3(Fig.3c)and PA4(Fig.3d)with the increasing of the solution pH to a value of 11.However,besides nanofibers,micelles can be also observed in the solution of PA2at a pH of 11(Fig.3b).In case of PA1,after increasing the solution pH to 11,the original nanofibers are com-pletely replaced by spherical micelles with the width of ∼30nm (Fig.3a).The result of dynamic light scattering (DLS)measure-ment revealed in Fig.4indicates that the average diameter of the monodispersed micelles is around 33nm with a polydisper-sity index (PDI)of 0.55,which is in good accordance with the result of TEM measurement.Because PA1has been reported to have an ability to self-assemble into nanofibers at an acidic pH [23],as the derivatives,the TEM images of the self-assembled PAs2-4at an acidic pH are not shown.In fact,several recent reports have also demonstrated that the peptide amphiphiles with the similar molec-ular structures can self-assemble into nanofibers as the functional matrices of supramolecular hydrogels [14–16].As described above,we can see that PAs1-4with different length of alkyl tails present different self-assembly behaviors upon the alternation of external pH.It is known that the self-assembly of the peptide amphiphiles is related to the balance ofhydrophilicFig.4.Size distribution of the micelles self-assembled from PA1in aqueous solution at pH 11.X.-D.Xu et al./Colloids and Surfaces B:Biointerfaces81 (2010) 329–335333Fig.5.Acid–base titration curves of the peptide amphiphiles(a:PA1,b:PA2,c:PA3,d:PA4)at a concentration of1.5mg/mL. and hydrophobic interactions[14–16,20–22].The alternation ofthe solution pH can accomplish the protonation or deprotona-tion,resulting in the change of the hydrophilic interaction.Onthe other hand,changing in the length of the hydrophobic tailsalso has an influence on the hydrophobic interaction of the self-assembling systems.In this study,in order to determine whetherthe alternation of the solution pH induces the protonation or not,the classic acid–base titration was employed to measure the p K a sof the peptide amphiphiles.All the titrations started at a pHwhereFig.6.CD spectra of the peptide amphiphiles(PAs1-4)in aqueous solution at pH7 (a)and pH11(b).the molecules have already being the aggregated states to avoid kinetic effect of the self-assembly.From the data in Fig.5,the titra-tions of PA1(Fig.5a)and PA2(Fig.5b)present sharp transitions, corresponding to two apparent p K a s,mainly relating to the pro-tonation of the terminal carboxylic acid groups of PA1(Fig.5c) and PA2(Fig.5d).However,it is difficult to exactly determine the p K a of PA3and PA4,implying that their protonation/deprotonation processes occur slowly with variations of acidity due to thelocalFig.7.Raman spectra of the peptide amphiphiles(PAs1-4)in aqueous solution at pH7(a)and pH11(b).334X.-D.Xu et al./Colloids and Surfaces B:Biointerfaces81 (2010) 329–335Fig.8.Schematic illustration of the self-assembly of the peptide amphiphiles (PAs1-4)at acidic,neutral,and basic mediums.microenvironment within the nanofibers [15].According to the result of acid–base titration,the hydrophobic interaction of the alkyl tails at an acidic pH can make the unionized PAs1-4self-assemble into nanofibers.With the increasing pH of the self-assembling system,the peptide headgroups are ionized to provide electrostatic repulsion and the whole hydrophilicity of the system is improved,resulting in the morphology change for PA1from tightly packed nanofibers to loose micelles.However,due to the presence of relatively longer hydrophobic alkyl tails with strong hydrophobic interaction of PA3and PA4,there is no obvious morphology change in their self-assembled nanostructures.Because of the moderate length hydrophobic alkyl tail in PA2,both nanofibers and micelles can be formed via the self-assembly of PA2.From all these results,it is reasonable to conclude that the nanofibers self-assembled from peptide amphiphiles could be stabilized via the increasing of the length of the hydrophobic alkyl ly,the nanofibers become more tightly packed due to the strengthened hydropho-bic interaction,which is the driven force of the self-assembly of peptide amphiphiles,to resist the influence of pH changing.3.2.Secondary structures of the self-assembled peptide amphiphiles (PAs)In order to further understand the backbone orientation of the peptide amphiphiles in the self-assembled nanostructures,the sec-ondary structures were investigated using circular dichroism (CD).Because the CD analysis of peptide-based supramolecular materials is significantly affected by the status of the samples (tiny undis-solved pieces generally induce large light scattering effect),clear solution of the self-assembled PAs1-4was applied for CD analy-sis.As revealed in Fig.6,either at an acidic pH or basic pH,the CD spectra have a negative band at ∼219nm which shares a com-mon feature of ␤-sheet conformation of a polypeptide [14–16,24],suggesting that the self-assembly of PAs1-4leads to the formation of ␤-sheet conformation in the nanofibers or micelles.Besides CD analysis,the solution of the self-assembled PAs1-4was also freeze-dried for Raman analysis.As exhibited in Fig.7,the absorbance maxima of amide I frequency is at ∼1670cm −1,a typical band of ␤-sheet conformation formed via intermolecular hydrogen bond-ing interactions [25,26],which is consistent with the result of CDanalysis.It is noted that the Raman peak centered at ∼1450cm −1in Fig.7mainly corresponds to the variation of methylene groups of the peptide amphiphiles [25,26].Based on the information of CD and Raman analysis,the self-assembly mechanism of PAs1-4at various pH is proposed as that illustrated in Fig.8.At an acidic pH,the hydrogen bonding inter-action of the peptide headgroups and hydrophobic interaction of the alkyl tails are the driven forces to trigger the self-assembly of PAs1-4to form tightly packed nanofibers with a ␤-sheet conforma-tion.When increasing the pH of self-assembling system,leading to the deprotonation of the peptide headgroups,the generated elec-trostatic repulsion will disturb the self-assembly.However,the presence of hydrophobic interaction from the alkyl tails has an abil-ity to protect the self-assembled nanostructures.As a result,the nanofibers self-assembled from PA1in which the alkyl tail is too short to provide enough hydrophobic interaction can convert into loose spherical micelles,which is similar with self-assembly behav-iors of ionic surfactants [27–29].With the increasing length of the hydrophobic alkyl tail,the hydrophobic interaction is strengthened gradually,resulting in the co-existence of nanofibers and spherical micelles in the self-assembly of PA2.Further increasing the length of the hydrophobic alkyl tail,the hydrophobic interaction becomes stronger enough to tolerate the electrostatic repulsion and main-tains the fibrous nanostructures self-assembled from PA3and PA4regardless of pH changing.4.ConclusionsA series of peptide amphiphiles (PAs1-4)with different length of hydrophobic alkyl tails were designed.It is found that at an acidic pH,all these peptide amphiphiles can self-assemble into tightly packed nanofibers with a ␤-sheet conformation.Upon pH increasing,the nanofibers self-assembled from PA1having rela-tively short hydrophobic alkyl tail convert into spherical micelles.However,due to the strong hydrophobic interaction among the long hydrophobic alkyl tails in PA3and PA4,the fibrous nanostruc-tures remain unchanged regardless of the pH changing.Due to the moderate length of alkyl tail in PA2,both nanofibers and spherical micelles can be formed at a basic pH of 11.X.-D.Xu et al./Colloids and Surfaces B:Biointerfaces81 (2010) 329–335335AcknowledgementsWe acknowledge thefinancial support from the National Nat-ural Science Foundation of China(20974083),Ministry of Science and Technology of China(2009CB930300),Natural Science Foun-dation of Hubei Province,China(2009CDA024)and Research Fund for the Doctoral Program of Wuhan University of China (20082030201000010).References[1]Y.Wang,G.A.Ameer,B.J.Sheppard,nger,A tough biodegradable elastomer,Nat.Biotechnol.20(2002)602–606.[2]K.Y.Lee,D.J.Mooney,Hydrogels for tissue engineering,Chem.Rev.101(2001)1869–1880.[3]P.Y.W.Dankers,M.C.Harmsen,L.A.Brouwer,M.J.A.VanLuyn,E.W.A.Meijer,Amodular and supramolecular approach to bioactive scaffolds for tissue engi-neering,Nat.Mater.4(2005)568–574.[4]H.Storrie,M.O.Guler,S.N.Abu-Amara,T.Volberg,M.Rao,B.Geiger,S.I.Stupp,Supramolecular crafting of cell adhesion,Biomaterials28(2007) 4608–4618.[5]M.Zhou,A.M.Smith,A.K.Das,N.W.Hodson,R.F.Collins,R.V.Ulijin,J.E.Gough,Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells,Biomaterials30(2009)2523–2530.[6]Y.Nagai,L.D.Unsworth,S.Koutsopoulos,S.G.Zhang,Slow release of moleculesin self-assembling peptide nanofiber scaffold,J.Control.Rel.115(2006)18–25.[7]M.C.Branco,D.J.Pochan,N.J.Wagner,J.P.Schneider,Macromolecular diffusionand release from self-assembled beta-hairpin peptide hydrogels,Biomaterials 30(2009)1339–1347.[8]D.A.Salick,J.K.Kretsinger,D.J.Pochan,J.P.Schneider,Inherent antibacterialactivity of a peptide-based beta-hairpin hydrogel,J.Am.Chem.Soc.129(2007) 14793–14799.[9]Z.M.Yang,G.L.Liang,Z.F.Guo,Z.H.Guo,B.Xu,Intracellular hydrogelation ofsmall molecules inhibits bacterial growth,Angew.Chem.Int.Ed.46(2007) 8216–8219.[10]Y.Zhang,H.G.Gu,Z.M.Yang,B.Xu,Supramolecular hydrogels respond toligand-receptor interaction,J.Am.Chem.Soc.125(2003)13680–13681. [11]V.Jayawarna,M.Ali,T.A.Jowitt,ler,A.Saiani,J.E.Gough,R.V.Ulijn,Nanostructured hydrogels for three-dimensional cell culture through self-assembly offluorenylmethoxycarbonyl-dipeptides,Adv.Mater.18(2006) 611–614.[12]J.P.Schneider,D.J.Pochan,B.Ozbas,K.Rajagopal,L.Pakstis,J.K.Kretsinger,Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide,J.Am.Chem.Soc.124(2002)15030–15037.[13]J.K.Kretsinger,L.A.Haines,B.Ozbas,D.J.Pochan,J.P.Schneider,Cytocompati-bility of self-assembled␤-hairpin peptide hydrogel surfaces,Biomaterials26 (2005)5177–5186.[14]K.L.Niece,J.D.Hartgerink,J.J.J.M.Donners,S.I.Stupp,Self-assembly combiningtwo bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction,J.Am.Chem.Soc.125(2003)7146–7147.[15]H.A.Behanna,J.J.J.M.Donners, A.C.Gordon,S.I.Stupp,Coassembly ofamphiphiles with opposite peptide polarities into nanofibers,J.Am.Chem.Soc.127(2005)1193–1200.[16]H.K.Lee,S.Soukasene,H.Z.Jiang,S.M.Zhang,W.C.Feng,S.I.Stupp,Light-induced self-assembly of nanofibers inside liposomes,Soft Matter4(2008) 962–964.[17]A.M.Smith,S.F.A.Acquah,N.Bone,H.W.Kroto,M.G.Ryadnov,M.S.P.Stevens,D.R.M.Walton,D.N.Woolfson,Polar assembly in a designed proteinfiber,Angew.Chem.Int.Ed.44(2005)325–328.[18]S.G.Zhang,Emerging biological materials through molecular self-assembly,Biotechnol.Adv.20(2002)321–339.[19]S.Ramachandran,P.Flynn,Y.Tseng,Y.B.Yu,Electrostatically controlled hydro-gelation of oligopeptides and protein entrapment,Chem.Mater.17(2005) 6583–6588.[20]T.Kunitake,Synthetic bilayer membranes:molecular design,self-organization,and application,Angew.Chem.Int.Ed.31(1992)709–726.[21]T.Gore,Y.Dori,Y.Talmon,M.Tirrell,H.Bianco-Peled,Self-assembly of modelcollagen peptide amphiphiles,Langmuir17(2001)5352–5360.[22]Y.C.Yu,M.Tirrell,G.B.Fields,Minimal lipidation stabilizes protein-like molec-ular architecture,J.Am.Chem.Soc.120(1998)9979–9987.[23]Y.Jin,X.D.Xu,C.S.Chen,S.X.Cheng,X.Z.Zhang,R.X.Zhuo,Bioactive amphiphilicpeptide derivatives with pH triggered morphology and structure,Macromol.Rapid Commun.29(2008)1726–1731.[24]X.D.Xu,C.S.Chen,B.Lu,S.X.Cheng,X.Z.Zhang,R.X.Zhuo,Co-assembly of oppo-sitely charged short peptides into well-defined supramolecular hydrogels,J.Phys.Chem.B114(2010)2365–2372.[25]T.J.Measey,R.Schweitzer-Stenner,Aggregation of the amphipathic pep-tides(AAKA)(n)into antiparallel beta-sheets,J.Am.Chem.Soc.128(2006) 13324–13325.[26]N.I.Topilina,V.V.Ermolenkov,S.Higashiya,J.T.Welch,I.K.Lednev,Beta-sheetfolding of11-kDafibrillogenic polypeptide is completely aggregation driven, Biopolymers86(2007)261–264.[27]S.Vauthey,S.Santoso,H.Y.Gong,N.Watson,S.G.Zhang,Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles,Proc.Natl.Acad.Sci.U.S.A.99(2002)5355–5360.[28]S.Santoso,W.Hwang,H.Hartman,S.G.Zhang,Self-assembly of surfactant-likepeptides with variable glycine tails to form nanotubes and nanovesicles,Nano Lett.2(2002)687–691.[29]G.von Maltzahn,S.Vauthey,S.Santoso,S.G.Zhang,Positively chargedsurfactant-like peptides self-assemble into nanostructures,Langmuir19(2003) 4332–4337.。

相关文档
最新文档