实验二-一元线性回归模型的估计、检验、预测和应用-学生实验报告
一元线性回归预测实验报告

1、实验过程和结果记录:(1)实验数据(2)人均可支配收入与人均消费性支出散点图(3)数据分析步骤4、(5)最终实验结果2、人均可支配收入为12千元时的人均消费性支出和置信度为95%的预测区间计算步骤: (1)一元线性回归方程为Y=0.72717+0.6741420X(2)将0X =12带入样本回归方程可得0Y 的预测值=0.72717+0.674142*12=8.816874千元(3)0e S =千元 结论:因此,当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)六、实验结果及分析1、实验结果:当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)2、实验分析(1)相关系数:相关系数R 实际上是判定系数的平方根,相关系数R 从另一个角度说明了回归直线的拟合优度。
|R|越接近1,表明回归直线对观测数据的拟合程度就越高。
R=0.999592,接近于1,所以人均可支配收入和人均消费支出相关程度高。
(2)判定系数:该指标测度了回归直线对观测数据的拟合程度。
若所有观测点,落在直线上,残差平方和RSS=0,则R^2=1,拟合是完全的;0≤R^2≦1。
R^2越接近1,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用X 的变化来解释Y 值的部分就越多,回归直线的拟合度就越好;反之,R^2越接近0,回归直线的拟合度就越差。
所以,判定系数R^2=0.999185,表示所观测到的我国城镇居民家庭人均消费支出的值与其均值的偏差平方和中有99.92%可以通过人均可支配收入来解释。
线性回归分析实验报告

线性回归分析实验报告实验报告:线性回归分析一、引言线性回归是一种基本的统计分析方法,用于研究自变量与因变量之间的线性关系。
此实验旨在通过一个实际案例对线性回归进行分析,并解释如何使用该方法进行预测和解释。
二、实验方法1.数据收集:从电商网站收集了一份销售量与广告费用的数据集,其中包括了十个月的数据。
该数据集包括两个变量:广告费用(自变量)和销售量(因变量)。
2.数据处理:首先对数据进行清洗,包括处理缺失值和异常值等。
然后进行数据转换,对广告费用进行对数转换,以适应线性回归的假设。
3.构建模型:使用线性回归模型,将广告费用作为自变量,销售量作为因变量,构建一个简单的线性回归模型。
模型的公式为:销售量=β0+β1*广告费用+ε,其中β0和β1是回归系数,ε是误差项。
4.模型评估:通过计算回归系数的置信区间和检验假设以评估模型的拟合程度和相关性。
此外,还使用残差分析来检验模型的合理性和独立性。
5.模型预测:根据模型的回归系数和新的广告费用数据,预测销售量。
三、实验结果1.数据描述:首先对数据进行描述性统计。
数据集的平均广告费用为1000元,标准差为200元。
平均销售量为1000件,标准差为150件。
广告费用和销售量之间的相关系数为0.8,说明两者存在一定的正相关关系。
2. 模型拟合:通过拟合线性回归模型,得到回归系数的估计值。
估计值的标准误差很小,R-square值为0.64,说明模型可以解释63%的销售量变异。
3.置信区间和假设检验:通过计算回归系数的置信区间,发现β1的置信区间不包含零,说明广告费用对销售量有显著影响。
假设检验结果也支持这一结论。
4.残差分析:通过残差分析,发现残差的分布基本符合正态性假设,没有明显的模式或趋势。
这表明模型的合理性和独立性。
四、结论与讨论通过线性回归分析,我们得出以下结论:1.广告费用对销售量有显著影响,且为正相关关系。
随着广告费用的增加,销售量也呈现增加的趋势。
2.线性回归模型可以解释63%的销售量变异,说明模型的拟合程度较好。
计量经济学实验报告一元线性回归模型实验

2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。
目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。
利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。
2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
实验内容以下面1、2题为例进行操作。
1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。
测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。
航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。
实验二-一元线性回归模型的估计、检验、预测和应用-学生实验报告

B. E(SLC | GDPS i ) 1 2GDPS i D. GDPS i ˆ1 ˆ2SLCi ei
(1)分别用最小二乘法估计以上三个回归模型的参数,保存实验结
果。(注:只需附上模型估计的结果即可,无需分析;模型如果常数项
不能通过检验,仍保留,本实验中不要求大家对模型进行修正。)
(请对得到的图表进行处理,“模型结果”部分不得超过本页)
7 / 20文档可自由编辑
Null Hypothesis: SLC does not Granger Cause GDPS GDPS does not Granger Cause SLC
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:09 Sample: 1978 2005 Lags: 3 Null Hypothesis: SLC does not Granger Cause GDPS GDPS does not Granger Cause SLC
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 3 Null Hypothesis: CS does not Granger Cause GDPS GDPS does not Granger Cause CS
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:10 Sample: 1978 2005 Lags: 5 Null Hypothesis: SLC does not Granger Cause GDPS GDPS does not Granger Cause SLC
一元线性回归分析研究实验报告

一元线性回归分析研究实验报告一元线性回归分析研究实验报告一、引言一元线性回归分析是一种基本的统计学方法,用于研究一个因变量和一个自变量之间的线性关系。
本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,并对所得数据进行统计分析和解读。
二、实验目的本实验的主要目的是:1.学习和掌握一元线性回归分析的基本原理和方法;2.分析两个变量之间的线性关系;3.对所得数据进行统计推断,为后续研究提供参考。
三、实验原理一元线性回归分析是一种基于最小二乘法的统计方法,通过拟合一条直线来描述两个变量之间的线性关系。
该直线通过使实际数据点和拟合直线之间的残差平方和最小化来获得。
在数学模型中,假设因变量y和自变量x之间的关系可以用一条直线表示,即y = β0 + β1x + ε。
其中,β0和β1是模型的参数,ε是误差项。
四、实验步骤1.数据收集:收集包含两个变量的数据集,确保数据的准确性和可靠性;2.数据预处理:对数据进行清洗、整理和标准化;3.绘制散点图:通过散点图观察两个变量之间的趋势和关系;4.模型建立:使用最小二乘法拟合一元线性回归模型,计算模型的参数;5.模型评估:通过统计指标(如R2、p值等)对模型进行评估;6.误差分析:分析误差项ε,了解模型的可靠性和预测能力;7.结果解释:根据统计指标和误差分析结果,对所得数据进行解释和解读。
五、实验结果假设我们收集到的数据集如下:经过数据预处理和散点图绘制,我们发现因变量y和自变量x之间存在明显的线性关系。
以下是使用最小二乘法拟合的回归模型:y = 1.2 + 0.8x模型的R2值为0.91,说明该模型能够解释因变量y的91%的变异。
此外,p 值小于0.05,说明我们可以在95%的置信水平下认为该模型是显著的。
误差项ε的方差为0.4,说明模型的预测误差为0.4。
这表明模型具有一定的可靠性和预测能力。
六、实验总结通过本实验,我们掌握了一元线性回归分析的基本原理和方法,并对两个变量之间的关系进行了探讨。
计量经济学实验二-一元线性回归模型的估计、检验和预测

目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。
实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。
实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。
实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。
实验二~实验十二主要都是用这些数据来完成一系列工作。
表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。
二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。
1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。
图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。
但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。
所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。
实验报告

重庆交通大学学生实验报告实验课程名称预测与决策开课实验室管理学院实验室学院07 年级数学专业班一班学生姓名龙凯学号07450115开课时间2009 至2010 学年第 2 学期一元线性回归预测实验报告一、实验要求1、建立一元线性回归预测模型2、回归方程的四项基本的显著性检验3、D-W检验二、实验目的1、通过模型建立和求解的过程,加深对知识的理解。
2、独立自主的完成作业,加强思考和实践能力3、对预测模型的适应范围和用处有更多的了解三、实验题目某商品的需求量同当地农村的人均收入有关,试建立回归预测方程,预测下月人均收入为700元时的商品需求量。
1、输入形式x y350 45400 48450 51500 58550 62600 65630 69670 782、实验结果SUMMARY OUTPUT回归统计Multiple R 0.983373 R Square 0.967022 Adjusted RSquare0.961526 标准误差 2.206747 观测值8 方差分析df SS MS F Significance F回归分析 1 856.7816856.7816175.94011.13E-05残差 6 29.21844.869733总计7 886Coefficients 标准误差t StatP-valueLower 95%Upper95%下限95.0%上限95.0%Intercept 9.022379 3.8846952.3225450.059242-0.4831318.52789-0.4831318.52789X Variable 1 0.097306 0.00733613.264241.13E-050.0793560.1152570.0793560.115257D-W检验x y yi e(i) e(i)*e(i) (e(i)-e(i-1)^2350 45 43.07724 1.92276 3.697006400 48 47.94224 0.05776 0.003336 3.478225450 51 52.80724 -1.80724 3.266116 3.478225500 58 57.67224 0.32776 0.107427 4.558225550 62 62.53724 -0.53724 0.288627 0.748225600 65 67.40224 -2.40224 5.770757 3.478225630 69 70.32124 -1.32124 1.745675 1.168561670 78 74.21324 3.78676 14.33955 26.09166∑e(t)^2=29.2185 ∑(e(t)-e(t-1))^2=43.00135 d=1.471717 3、结果分析根据回归分析结果得出预测方程:y=9.022+0.97x1、可决系数检验:r2=0.97,所以在y的变异中有97%是由x的变化引起的2、相关系数检验:r=0.98,查表得r>r0.05(6)=0.707∴x与y线性相关程度显著。
计量经济学实验二 一元线性回归模型

实验二一元线性回归模型2.1 实验目的掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
2.2 实验内容建立中国消费函数模型。
以表2.1中国的收入与消费的总量数据为基础,建立中国消费函数的一元线性回归模型。
表2.1数据来源:2004年中国统计年鉴,中国统计出版社2.3 实验步骤2.3.1 散点相关图分析将表1.1的GDP设为变量X,总消费设为Y,建立变量X和Y的相关图,如图2.1所示。
可以看X和Y之间呈现良好的线性关系。
可以建立一元线性回归模型。
2.3.2 估计线性回归模型在数组窗口中点击Proc\Make Equation ,如果不需要重新确定方程中的变量或调整样本区间,可以直接点击OK 进行估计。
也可以在EViews 主窗口中点击Quick\Estimate Equation ,在弹出的方程设定框(见图2.2)内输入模型:Y C X 或 Y = C (1) + C (2) * X图2.2图2.3还可以通过在EViews 命令窗口中键入LS 命令来估计模型,其命令格式为:LS 被解释变量 C 解释变量系统将弹出一个窗口来显示有关估计结果(如图2.3 所示)。
因此,我国消费函数的估计式为:ˆY2329.4010.547*X =+St 1191.923 0.014899t 1.95 36.71R 2=0.99 s.e.=2091s.e .是回归函数的标准误差,即σˆ=)216(ˆ2-∑t u。
R 2是可决系数。
R 2 = 0.99,说明上式的拟合情况好,y t 变差的99%由变量x t 解释。
因为t = 36.71> t 0.05 (15) = 2.13,所以检验结果是拒绝原假设β1 = 0,即总消费和GDP 之间存在线性回归关系。
上述模型的经济解释是,GDP 每增长1 亿元,我国消费将总额将增加0.547亿元。
图2.42.3.3 残差图在估计方程的窗口选择View\ Actual, Fitted,Residual\Actual, Fitted,Residual Table,得到相应的残差图2.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Obs F-Statistic
Prob.
25
3.13450
0.0512
6.34347
0.0040
Pairwise Granger Causality Tests 4
Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 4 Null Hypothesis: CS does not Granger Cause GDPS GDPS does not Granger Cause CS
26
6.26728
0.0073
6.14373
0.0079
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 3
Null Hypothesis:
CS does not Granger Cause GDPS GDPS does not Granger Cause CS
【实验步骤】
已知广东省宏观经济部分数据(参见附表“广东省宏观经济数据-第二章”), 要根据这些数据分别研究和分析广东省宏观经济,建立宏观计量经济模型。
本实验要求具体验证分析: (1)“国内生产总值的变化引起财政收入的变化” (2)“财政收入影响财政支出” (3)“国内生产总值对社会消费品零售额的影响模型” 并根据相应的回归模型进行经济预测、经济分析和政策评价。
广东财经大学华商学院实验报告
实验项目名称
实验二 一元线性回归模型的估计、检验、预测和应用
课程名称
计量经济学
成绩评定
良
实验类型:验证型□√ 综合型□设计型□ 实验日期
学生姓名
学号
专业班级
一、实验项目训练方案
指导教师
小组合作:是□ 否□√ 小组成员:无
实验目的: 掌握简单相关分析、格兰杰因果关系检验、简单线性回归模型的设定和模型的参
注:在实验中对应的空白处写出实验的结果。全部完成后,把该文档以“学号+姓
名”为名进行命名,提交到教师机。
(一)建立工作文件
进入Eviews,建立一工作文件,并命名为GD,新建4个序列,并对应输入广东
1
省经济数据表中的数据:收入法国内生产总值-GDPS,财政收入-CS,财政支出-CZ, 社会消费品零售额-SLC。
Pairwise Granger Causality Tests
Obs F-Statistic
数估计、简单线性回归模型的区间估计、假设检验和预测方法,并能利用所建立的模 型分析实际问题。
实验场地及仪器、设备和材料: 实验室:普通配置的计算机,Eviews 软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):
【实验原理】
相关分析,格兰杰因果关系检验,普通最小二乘法(OLS),拟合优度的判定系数 检验和参数显著性t3
SLC
0.996795
1.000000
(三)回归分析
1.【模型设定】(请对得到的图表进行处理,“模型设定”部分不得超过本页)
(1)作因果关系检验(辅助“模型设定”) 分别对上述三组变量作因果关系检验(3组检验结果),并根据因果关系检验的 结果,作简单描述及分析。(其中,因果关系检验结果表:请对同一个模型的滞后期 从2-5多试几次,并选定最终的结果。) GDPS/CS:
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 2
Null Hypothesis:
Obs F-Statistic
Prob.
CS does not Granger Cause GDPS GDPS does not Granger Cause CS
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:07 Sample: 1978 2005 Lags: 5 Null Hypothesis: CS does not Granger Cause GDPS GDPS does not Granger Cause CS
(二)相关分析(请对得到的图表进行处理,“相关分析”部分不得超过本页)
1.作散点图 分别作上述三组变量之间的散点图(3个散点图),并根据散点图作简单分析,
写出各组变量的关系。 散点图:
2,000
1,600
1,200
CS
800
400
0
0
2,000
4,000
6,000
8,000
SLC
CZ
2,400 2,000 1,600 1,200
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:08 Sample: 1978 2005 Lags: 3 Null Hypothesis: CZ does not Granger Cause CS CS does not Granger Cause CZ
800 400
0 0
500
1,000
1,500
2,000
CS
2
SL C
8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000
0 0
5,000 10,000 15,000 20,000 25,000 GDPS
分析:由(1)可知,x,y系数互为正相关关系。 由(2)可知,x,y系数互为正相关关系由 由(3)可知,x,y系数互为正相关关系
2、计算简单线性相关系数 分别计算上述三组变量之间的简单线性相关系数,并根据相关系数作简单分析。
GDPS CS
GDPS 1.000000 0.992864
CS 0.992864 1.000000
CS
CZ
CS
1.000000
0.997638
CZ
0.997638
1.000000
GDPS
GDPS 1.000000
CS/CZ: Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:07 Sample: 1978 2005 Lags: 2 Null Hypothesis: CZ does not Granger Cause CS CS does not Granger Cause CZ