高考数学一轮复习第4章平面向量第3讲平面向量的数量积及应用学案

合集下载

高考一轮第四章 第三节 平面向量的数量积及向量应用ppt

高考一轮第四章  第三节  平面向量的数量积及向量应用ppt

返回
|a|2 (3)a· a= ,|a|= a· a.
(4)cos〈a,b〉= (5)|a· b|

a· b |a||b| .
|a||b|.
3.数量积的运算律: (1)交换律:a· b· . b= a
c (2)分配律:(a+b)· a· c= c+b· . b a· (3)对λ∈R,λ(a· b)= (λa)· = (λb) .
(
)
解析:|a· b|=|a|· |b||cos θ|,只有a与b共线时,才有|a· b| =|a||b|,可知B是错误的. 答案:B
返回
2.(2011· 辽宁高考)已知向量a=(2,1),b=(-1,k), a· (2a-b)=0,则k= ( )
A.-12
C.6
B.-6
D.12
解析:∵2a-b=(4,2)-(-1,k)=(5,2-k), 由a· (2a-b)=0,得(2,1)· (5,2-k)=0 ∴10+2-k=0,解得k=12. 答案: D
即18+3x=30,解得:x=4. [答案] C
返回
[例2]
π (2011· 江西高考)已知两个单位向量e1,e2的夹角为3,若向
量b1=e1-2e2,b2=3e1+4e2,则b1·2=________. b
[自主解答] b1=e1-2e2,b2=3e1+4e2,则b1·2=(e1-2e2)· 1+ b (3e
第 四 章 平 面 向 量、 数 系 的 扩 充 与 复 数 的 引 入
第三 节
平面 向量 的数 量积
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
及向
量的 应用
提 能 力
返回
[备考方向要明了] 考 什 么

高考理科第一轮复习课件(4.3平面向量的数量积)

高考理科第一轮复习课件(4.3平面向量的数量积)

【规范解答】(1)选A.由|a·b|=|a||b|知,a∥b. 所以sin 2x=2sin2x,即2sinxcosx=2sin2x,而x∈(0,π), 所以sin x=cos x,即 x= ,故tan x=1.
4
(2)选A.由题意得,BQ AQ AB 1 AC AB,
5.平面向量数量积的坐标表示 设向量a=(x1,y1),b=(x2,y2),向量a与b的夹角为θ ,则
数量积
x1x2+y1y2 a·b=_________
2 2 x1+y1 ①|a|=_______

②若A(x1,y1),B(x2,y2),
2 2 (x1-x 2) +(y1-y2) 则 | AB| =____________________
3.平面向量数量积的性质
设a,b都是非零向量,e是单位向量,θ 为a与b(或e)的夹
角.则
(1)e·a=a·e=|a|cos
a·b=0 (2)a⊥b⇔_______.
θ .
(3)当a与b同向时,a·b=|a|·|b|.
当a与b反向时,a·b=-|a|·|b|, |a|2 a a 特别地,a·a=____或者|a|=____.
第三节 平面向量的数量积
1.两个向量的夹角 定义 范围 向量夹角θ 的范围是 0°≤θ ≤180° _______________, 0°或180° 当θ = ___________时,两向 量共线; 90° 当θ = _____时,两向量垂直, 记作a⊥b(规定零向量可与任 一向量垂直)
非零 已知两个_____向量a,b, 作 OA a,OB b, ∠AOB=θ 叫作向量a与b的 夹角(如图).
又∵a,b为两个不共线的单位向量,

高考数学一轮复习 第四篇 平面向量 第3节 平面向量的数量积及平面向量的应用课件 理

高考数学一轮复习 第四篇 平面向量 第3节 平面向量的数量积及平面向量的应用课件 理

乘积.
|b|cos θ
返回(fǎnhuí)导航
第七页,共四十一页。
3.平面向量数量积的性质及其坐标表示
已知非零向量 a=(x1,y1),b=(x2,y2),θ 为向量 a,b 的夹角.
定义及性质
坐标表示
数量积
a·b=|a||b|cos θ
a·b=x1x2+y1y2

|a|= a·a
|a|=__________
返回(fǎnhuí)导航
第四页,共四十一页。
1.向量的夹角 (1)定义 已知两个非零向量 a 和 b,作O→A=a,O→B=b,如
图所示,则∠AOB=θ 叫做向量 a 与 b 的夹角,也可记 作〈a,b〉=θ.
返回(fǎnhuí)导航
第五页,共四十一页。
(2)范围 向量夹角 θ 的范围是__[_0_,__π_]__,a 与 b 同向时,夹角 θ=__0__;a 与 b 反向时,夹角 θ=__π__. (3)垂直关系 如果非零向量 a 与 b 的夹角是__9_0_°__,我们说 a 与 b 垂直,记作_a⊥__b__. 2.平面向量的数量积 (1)数量积的定义 已知两个非零向量 a 和 b,它们的夹角为 θ,则向量 a 与 b 的数量积 是数量___|a_||_b_|c_o_s_θ____,记作 a·b,即 a·b=___|_a_||_b_|c_o_s_θ_____.
返回(fǎnhuí)导航
第二页,共四十一页。
【教材导读】 1.在等边△ABC 中,向量A→B与B→C的夹角是多少?
提示:〈A→B,B→C〉=23π.
返回(fǎnhuí)导航
第三页,共四十一页。Fra bibliotek2.对于非零向量 a,b,c. (1)若 a·c=b·c,则 a=b 吗? (2)(a·b)c=a(b·c)恒成立吗? 提示:(1)不一定有 a=b,因为 a·c=b·c⇔c·(a-b)=0,即 c 与 a-b 垂直,但不一定有 a=b.因此向量数量积不满足消去律. (2)因为(a·b)c 与向量 c 共线,(b·c)a 与向量 a 共线.所以(a·b)c 与 a(b·c) 不一定相等,即向量的数量积不满足结合律.

2019年高考数学一轮复习第4章平面向量、数系的扩充与复数的引入第3节平面向量的数量积及其应

2019年高考数学一轮复习第4章平面向量、数系的扩充与复数的引入第3节平面向量的数量积及其应

第三节平面向量的数量积及其应用[考纲传真]1.理解平面向量数量积的含义及其物理意义 2 了解平面向量的数量积与向量投影的关系3掌握数量积的坐标表达式,会进行平面向量数量积的运算4能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题6会用向量方法解决简单的力学问题与其他一些实际问题.双基自主测评I基础知识环能力全面巩固■(对应学生用书第61页)[基础知识填充]1. 向量的夹角(1)定义:已知两个非零向量a和b,如图4-3-1 ,作0A= a, 0B= b,则/ AOB=0 (0 °w 0 < 180° )叫作a与b的夹角.0 b B图4-3-1(2)当0 = 0°时,a与b共线同向.当0 = 180°时,a与b共线反向.当0 =90°时,a与b互相垂直. '—2•平面向量的数量积(1) 定义:已知两个非零向量a和b,它们的夹角为0,则数量| a|| b| • cos 0叫做a与b的数量积(或内积).规定:零向量与任一向量的数量积为0.(2) 几何意义:数量积a • b等于a的长度| a|与b在a的方向上的投影| b|cos 0的乘积Jk 曜或b的长度| b|与a在b方向上射影| a|cos 0的乘积.3. 平面向量数量积的运算律(1) 交换律:a • b= b • a;(2) 数乘结合律:(入a) • b=入(a • b) = a •(入b);(3) 分配律:a •( b+ c) = a • b+ a • C.4. 平面向量数量积的性质及其坐标表示122结论几何表示坐标表小2| a || b |cos 0夹角a - bcos 0 — . [[ i .|a || b |X 1X 2+ y 1y 2cos 0 — . y, ------------------------------- .,,V X 2 + y2^/X 2 + y 2a 丄ba -b — 0X 1X 2+ y 1y 2— 0|a • b | 与 | a || b | 的关系|a - b | w| a || b || X 1X 2+ y 1y 2| w 寸X 1 + y 2 •寸 X 2+ y ;[知识拓展]1两个向量a , b 的夹角为锐角? a •b >0且a , b 不共线;两个向量a ,b 的夹角为钝角? a •b <0且a , b 不共线. 2 •平面向量数量积运算的常用公式 (1)( (2)( (3)(2 2a +b ) •( a -b ) = a — b .2 2 2a +b ) = a + 2a • b + b .a -b )2= a 2-2a • b + b 2.3.当a 与b 同向时,a •b = | a||b1.当a 与b 反向时,a ・b = — |a||b |.[基本能力自测](思考辨析)判断下列结论的正误.(正确的打“V”,错误的打“X” (1) 两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.由 a - b = 0,可得 a = 0 或 b = 0.()由a - b = a - c 及a ^0不能推出b = C.()2. 在四边形 ABCDh AB- DC &AC- BD= 0,则四边形 ABCD 为矩形•( [答案](1) V (2) X (3) V(2016 -全国卷川)已知向量BA=A . 30° ,1,则/ ABC=(3.C. 60°D. 120°A [因为BA=2, -2 , BC > 三3, 1,所以 E3A- £=¥+石3=_23.又因为 B A- B <> I B AII 航cos / ABC= 1X 1X cos / ABC 所以 cos / 又 0°<Z ABCc 180°,所以/ABC= 30° .故选 A .](2015 •全国卷 n )向量 a = (1 , - 1), b = ( — 1,2),则(2a + b ) - a =()A . - 1 B. 0 C. 1D. 22C [法: T a = (1 , — 1) , b = ( — 1,2) ,.•. a = 2, a • b =— 3, 从而(2a + b ) • a = 2a 2 + a • b = 4 — 3= 1. 法二:T a = (1 , — 1) , b = ( — 1,2), .2a + b = (2 , — 2) + ( — 1,2) = (1,0),从而(2a + b ) • a = (1,0) • (1 , — 1) = 1,故选 C.]4. ______________ (教材改编)已知|a | = 5, | b | = 4, a 与b 的夹角0 = 120° ,则向量b 在向量a 方向上的 投影为 __ .—2 [由数量积的定义知, b 在a 方向上的投影为| b |cos 0 = 4x cos 120 ° =— 2.]5. (2017 •全国卷I)已知向量 a = ( — 1,2) , b = (m,1).若向量 a + b 与a 垂直,则 m=7 [ T a = ( — 1,2) , b = (m,1), ••• a + b = ( — 1 + m,2 + 1) = ( m- 1,3). 又 a + b 与 a 垂直,二(a + b ) • a = 0, 即(m-1) x ( — 1) + 3X 2= 0, 解得m= 7.]题型分类突破I 高琴题型烦律方法逐-突砸■(对应学生用书第62页)心 ......平面向量数量积的运算■■■I (1)(2016 •天津高考)已知△ ABC 是边长为1的等边三角形,点D, E 分别是边AB,BC 的中点,连接 DE 并延长到点F ,使得DE= 2EF,则AF- BC 勺值为()A . 11D -S'已知正方形 ABCD 勺边长为1,点E 是AB 边上的动点,则DE- CB 勺值为C.;DE ・DC的最大值为 【导学号: 00090135】AF = AM DF又D, E 分别为AB BC 的中点,(1) B (2) 1 1 [(1)如图所示,f 1 f f 1 ・_且DE=2EF所以AD= 1A B DF=2AC+;AC=4AC1f2当E 运动到B 点时,DE^DC 方向上的投影最大,即为 DC = 1, 所以(DE' Dg =| DC - 1= 1.][规律方法]1.求两个向量的数量积有三种方法: 利用定义;利用向量的坐标运算; 利用数量积的几何意义.~T 1 -T 3 ~T 所以 AF = 2AB+ 4AC又 BC= AC- AB3T-4AC-又 | AB =|AQ = 1,z BAO 60°,故AF- E3C = 4-2 — 4X 1X 1X 2= 1.故选 B.4 2 4 2 8⑵ 法一:以射线AB AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),巳1,0),C (1,1) ,D (0,1),设E (t, 0) , t € [0,1],则DE = (t , - 1),(t , -1) - (0,- 1) = 1.因为 DC = (1,0),所以 DE- DC = (t ,- 1) - (1,0) = t w 1, 故D E- DC 的最大值为1.法二:由图知,无论E 点在哪个位置,DE 在CB^向上的投影都是 CB= 1,所以DE- CB= | CB则 AF- BC= -(AC-AB 3 T T2. (1)要有“基底”意识,关键用基向量表示题目中所求相关向量. (2)注意向量夹角的大小,以及夹角0 = 0°, 90°, 180°三种特殊情形.2[变式训练1] ⑴ 已知AB= (2,1),点C ( — 1,0) , D (4,5),则向量AB 在 C [方向上的投影为(1) C (2)C [(1)因为点 C ( —1,0) , Q4,5),所以 C* (5,5),又AB= (2,1),所以向量 AB 在CD?向上的投影为|AB |cos 〈 AB C D =磊=芈I CD%2⑵ 由 AB- AF = 3 得AB ・(AM DF = AB- DF= 3,所以 |DF = 1, |CF = 2,BE • BC= — 6 + 2 = — 4.](1)(2017 •合肥二次质检)已知不共线的两个向量a ,b 满足|a — b | = 2且a 丄(a—2b ),则 | b | =( )A . 2 C. 2 2⑵(2018 •西安模拟)已知平面向量a , b 的夹角为 卡,且|a | = .3, | b | = 2,在厶ABC 中,AB= 2a + 2b , AC= 2a — 6b , D 为 BC 的中点,贝U |AQ = ______ .(1)B (2)2[(1)由 a 丄(a — 2b )得 a - (a — 2b ) = | a | — 2a - b = 0.又•/ | a — b | = 2,「. | a(2)(2018 •榆林模拟)已知在矩形ABCD 中 AB= 3, BC = 3, BE = 2EC 点 F 在边 CD 上.若AB- AF = 3,则 A E- 'BF 的值为()【导学号:00090136】A . 0B 育C.— 4D. 42B.- 3 5 D. 3 5C. 所以 AE - BF = ( AB+ BE ) •( BC+ CF ) =AB- BC+ AB- CF + BE- BC + BE- CF = AB- CF +ISfifl... ......... . ............................ j平面向量数量积的性质角度1平面向量的模MBB. 2 D. 4—b| 2= | a|2—2a - b+ | b|2= 4,则| b|2= 4, | b| = 2,故选B.■ ■ ~9 1 ~> (2)因为 A[> 2(AB+ AC 1=2(2a + 2b + 2a — 6b ) =2a — 2b ,所以 |AD 2= 4(a — b )2= 4(a 2— 2b •a + b 2)—e 2的夹角为B ,贝U cos 3 =⑵ 若向量a = (k, 3) , b = (1,4) , c = (2,1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取2=I — 2X 3X 2X1 X cos a + 4= I ,所以|a | = 3,i i222因为 b = (3e 1 — e 2) = I — 2X 3X 1 XI X cos a + 1 = 8, 所以 | b | = 2 2,a •b = (3 e 1 — 2e 2)- (3 e 1 — e ?)2 21 =9e 1 — 9e 1 • e2 + 2e 2= I — I X 1 X 1 X + 2 = 8,3 所以cos 3= rOi 占=3^=弩.(2) •/ 2a — 3b 与c 的夹角为钝角, ••• (2 a — 3b ) - c v 0, 即(2 k — 3, — 6) - (2,1) v 0,• 4k — 6— 6v 0, • k v 3.9又若(2a — 3b ) // c ,贝U 2k — 3 =— 12,即卩 k =—》 当 k =— I 时,2a — 3b = ( — 12,— 6) = — 6c ,=4X (3 — 2X 2X3 X cos n + 4) = 4,所以 | AD = 2.]角度2平面向量的夹角2-2 1(1)已知单位向量 e 1与e 2的夹角为 a ,且cos a = 3 向量 a = 3e i — 2e 2与 b = 3e i值范围是 (1)弩(2)[(1)因为 a 2= (3 e 1 — 2e 2)2△in 2 x — ¥cos x = 2,2 2即2a -3b 与c 反向. 综上,k 的取值范围为 一R, 角度3平面向量的垂直 (2016 •山东高考)已知向量a = (1 , - 1), b = (6 , - 4).若a 丄(ta + b ),则实 数t 的值为 _________ —5 [ - a = (1 , — 1), b = (6 , — 4),…ta + b = (t + 6, — t — 4). 又 a 丄(ta + b ),则 a •( ta + b ) = 0,即 t + 6 +1 + 4= 0,解得 t =— 5.] a • b [规律方法]1.求两向量的夹角:cos 0 = ,要注意0 c [0 , n ]. 丨a l •丨b | 2.两向量垂直的应用: 两非零向量垂直的充要条件是: a 丄b ? a • b = 0? | a — b | = |a + b |. 3 •求向量的模:利用数量积求解长度问题的处理方法有: (1) a 2= a • a = | a |2 或 | a | = a • a . (2) | a ± b | = a ± b 2= a ±2a • b + b . ⑶若 a = (x , y ),则 | a | = x 2 + y 2. |U3[ 平面向量与三角函数的综合 (2018 •佛山模拟)在平面直角坐标系 xOy 中,已知向量m = ^2, — 2小=(sin cos x ) , x c (1)若 miL n ,求 tan x 的值; n ⑵若m 与n 的夹角为—,求x 的值. 【导学号:00090137】所以 sin x = cos x ,所以 tan x = 1. n 1⑵因为 | m = I n | = 1,所以 m-n = cos —=-,3 2x . 所以 m-n = 0, x , cos x ), n Ln . 即承n cos x(1)因为m = n = (sin所以sin 12因为 O v x v n ,所以—n_< x — n_<n n , 一 n n 5 n 所以x —才=6,即x =〒2. [规律方法]平面向量与三角函数的综合问题的解题思路得到三角函数的关系式,然后求解. (2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题 sin x x= -------cos x •- tan 2 x = —=1 — tan x 53⑵•/ a = sin ^, , b = (cos x , — 1),3 2 2 2 2••• a •b = sin x cos x — ?, b = cos x + ( — 1) = cos x + 1,23 2 1 1 1• f (x ) = (a + b ) - b = a •b + b = sin x cos x — ~ + cos x + 1 = 2sin 2x + 尹 + cos 2x ) — ?⑴ 题目条件给出向量的坐标中含有三角函数的形式, 运用向量共线或垂直或等式成立等, 思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等. [变式训练2] (2018 •郴州模拟)已知向量a = sin x , | , b = (cos X , (1)当a //b 时,求tan 2 x 的值; (2)求函数f (x ) = (a + b ) - b 在|—-2 , 0上的值域. (1) ■/ a //b , a = sin x , | , b = (cos x , 3 x - ( — 1) — 2 • cos 即sin 3 X + 2C0S x = 0, 得sin 3 x = — 2C0S x , 二tan -32,匕2tan x 12 x = 0,1 n 1 sin 2x+ 才.I nT x€ |—— , 0••• sin 2x+4 € —1 ,n故函数 f (X ) = (a + b ) • b 在 | — , 0 • •• f(X)= 刍n -弓,2上的值域为•—, 2。

高三高考一轮复习优秀导学案:平面向量的数量积及应用

高三高考一轮复习优秀导学案:平面向量的数量积及应用

平面向量的数量积及应用(导学案)一、知识梳理:(请同学们阅读必修四) 1. 平面向量的夹角及表示:(1).平面向量的夹角的定义 (2).范围: 表示方法:当夹角为0或时,则称a 与b ,记作: ; 当夹角为9时,则称a 与b ,记作: ; 2.向量的数量积定义:3.数量积几何意义与投影的概念:4.数量积的性质:设a 与b 是非零向量,e 是单位向量,是a 与e 的夹角,则 ① = ;②a b 时,a b ③同向量,④反向量,⑤| =特别地:=++2a b=+-2a b (a+b) (a-b)=-⑥数量积的运算律: 交换律: ;结合律: ;分配律:⑦数量积的坐标运算: ; ⑧两向量垂直叛定: ; ⑨两向量夹角公式: ;⑩向量的模及两点间的距离: ; 二、题型探究探究一:平面向量的数量积运算例1:已知|a |=5,|b |=4,a 与b 的夹角为12,求: ○1○2○3- ; ○4(2a-b )(a+3b )探究二、数量积的综合应用例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a⋅-)2(=例3:已知平面上三个向量a 、b 、c的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a-⊥c ;(2)若1||>++c b a k)(R k ∈,求k 的取值范围.例4:已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (1)若|c |52=,且a c //,求c 的坐标; (2)若|b |=,25且b a 2+与b a -2垂直,求a 与b 的夹角θ. 三、方法提升运用向是的数量积可以解决有关长度、角度等问题,也可以解决有关向量位置关系问题。

四、课时训练:1.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是()()A 0,24 ()B 24,4 ()C 16,0 ()D 4,02.平面直角坐标系中,O 为坐标原点,已知两点)1,3(A ,)3,1(-B ,若点C 满足OB OA OC βα+=,其中R ∈βα,,且1=+βα,则点C 的轨迹方程为:( )()A 01123=--y x ()B 5)2()1(22=-+-y x ()C 02=-y x ()D 052=-+y x3.已知向量)75sin ,75(cos =a ,)15sin ,15(cos=b ,那么||b a -的值是( )()A 21 ()B 22 ()C 23 ()D 14.在ABC ∆中,0<⋅AC AB ,ABC ∆的面积是415,若3||=AB ,5||=AC ,则BAC ∠=( )()A 6π()B 32π ()C 43π ()D 65π5.已知O 为原点,点,A B 的坐标分别为)0,(a A ,),0(a B ,其中常数0>a ,点P 在线段AB 上,且有AB t AP =)10(≤≤t ,则OP OA ⋅的最大值为 ( )()A a ()B a 2 ()C a 3 ()D 2a6.设12,F F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且120PF PF ⋅=,则||||21PF PF ⋅的值等于 ( )()A 2 ()B 22 ()C 4 ()D 87.设,,a b c 是任意的非零平面向量,且相互不共线,则 ①()()0a b c c a b ⋅-⋅=; ② ||||||a b a b -<-③()()b c a c a b ⋅-⋅不与c 垂直 ④22(32)(32)9||4||a b a b a b +⋅-=-中,是真命题的有 ( )(A )①② (B )②③ (C )③④ (D )②④8.设,,,O A B C 为平面上四个点,a OA =,b OB =,c OC =,且0=++c b a ,c b b a ⋅=⋅=a c ⋅1-=,则||||||c b a++=___________________。

2020版高考数学总复习第四篇平面向量必修4第3节平面向量的数量积及平面向量的应用课件理

2020版高考数学总复习第四篇平面向量必修4第3节平面向量的数量积及平面向量的应用课件理

综上可知,实数λ的取值范围为(- 5 ,0)∪(0,+∞).
答案:(- 5 ,0)∪(0,+∞)
3
3
考查角度3:平面向量的垂直
【例4】 (2016·全国Ⅱ卷)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m等于
()
(A)-8 (B)-6
(C)6
(D)8
解析:a+b=(4,m-2),由(a+b)⊥b得(a+b)·b=(4,m-2)·(3,-2)=122m+4=0,m=8.故选D.
_x_1_x_2_+_y_1_y_2=__0__
|x1x2+y1y2|≤___x_12__y_12__x_22__y_22___
5.向量在平面几何中的应用 平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几 何中的平行、垂直、全等、相似、长度、夹角等问题. 6.平面向量在物理中的应用 (1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加 法和减法相似,可以用向量的知识来解决. (2)物理学中的功是一个标量,这是力F与位移s的数量积.即W=F·s=|F||s|cos θ(θ为F与s的夹角).
②|a±b|= a b2 = a2 2ab b2 .
③若 a=(x,y),则|a|= x2 y2 .
(2)与模有关的最值或范围问题要注意抓住模的几何意义及数形结合思想 的应用.
【跟踪训练 2】 (2018·广东广州珠海区一模)已知向量 a,b 的夹角为 60°,|a|=2, |a-2b|=2,则|b|等于( ) (A)4 (B)2 (C) 2 (D)1
结论
几何表示
坐标表示

夹角

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。

高三数学一轮复习平面向量的数量积及应用教案

命题走向
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2017年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
法二: · = ·( + )
= ·( + + )
=2 · + ·
=2| |·| |·cos ,
=2×| |·| |·
=2×| |2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cosθ求解;
(2)已知向量a,b的坐标,利用数量积的坐标形式求解.
以题试法
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)的一个充分不必要条件是( )
A.x=0或2 B.x=2
C.x=1 D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),向量d如图所示,则( )
A.存在λ>0,使得向量c与向量d垂直
B.存在λ>0,使得向量c与向量d夹角为60°
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
二.典例分析
(1)若向量a=(1, 1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=( )
A.6B.5
C.4D.3
(2) (2012·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 · =________.

2020年高考数学一轮复习教案:第4章 第3节 平面向量的数量积与平面向量应用举例(含解析)

第三节平面向量的数量积与平面向量应用举例[考纲传真] 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量的夹角已知两个非零向量a和b,作OA→=a,OB→=b,则∠AOB叫做向量a与b的夹角,向量夹角的范围是[0°,180°],其中当a与b的夹角是90°时,a与b垂直,记作a⊥b,当a与b的夹角为0°时,a∥b,且a与b同向,当a与b的夹角为180°时,a∥b,且a与b反向.2.平面向量的数量积定义已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|·cosθ叫做a与b的数量积(或内积),记作a·b.规定:零向量与任一向量的数量积为投影|a|cos θ叫做向量a在b方向上的投影;|b|cos θ叫做向量b在a方向上的投影几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积(1)交换律:a·b=b·a;(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb);(3)分配律:a ·(b +c )=a ·b +a ·c .4.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.1.两个向量a ,b 的夹角为锐角⇔a·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2. 3.当a 与b 同向时,a·b =|a||b |; 当a 与b 反向时,a·b =-|a||b |.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)在△ABC 中,向量AB →与BC →的夹角为∠B . ( )(2)向量在另一个向量方向上的投影为数量,而不是向量. ( )(3)若a·b >0,则a 和b 的夹角为锐角;若a·b <0,则a 和b 的夹角为钝角.( )(4)a·b=a·c(a≠0),则b=c. ()[答案](1)×(2)√(3)×(4)×2.(教材改编)设a=(5,-7),b=(-6,t),若a·b=-2,则t的值为()A.-4B.4 C.327D.-327A[a·b=5×(-6)-7t=-2,解得t=-4,故选A.]3.(教材改编)已知|a|=2,|b|=6,a·b=-63,则a与b的夹角θ为()A.π6 B.π3 C.2π3 D.5π6D[cos θ=a·b|a||b|=-632×6=-32,又0≤θ≤π,则θ=5π6,故选D.]4.已知向量a=(-2,3),b=(3,m),且a⊥b,则m=________.2[由a⊥b得a·b=0,即-6+3m=0,解得m=2.]5.(教材改编)已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________.-2[由数量积的定义知,b在a方向上的投影为|b|cos θ=4×cos 120°=-2.]平面向量数量积的运算1.(2018·全国卷Ⅱ)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4B.3C.2D.0B[因为|a|=1,a·b=-1,所以a·(2a-b)=2|a|2-a·b=2×12-(-1)=3,故选B.]2.已知AB →=(2,1),点C (-1,0),D (4,5),则向量AB →在CD →方向上的投影为( )A .-322B .-3 5 C.322D .3 5C [因为点C (-1,0),D (4,5),所以CD =(5,5),又AB →=(2,1),所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322,故选C.]3.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58 B.18C.14D.118B [如图所示,AF →=AD →+DF →. 又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18. 故选B.][规律方法] 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解. 平面向量数量积的应用►考法1 求向量的模【例1】 (1)已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 中点,则|AD →|等于( )A .2B .4C .6D .8(2)(2019·广州模拟)已知向量a ,b 的夹角为60°,|a |=2,|a -2b |=2,则|b |等于( )A .4B .2C. 2 D .1(1)A (2)D [(1)因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2b·a +b 2)=4×⎝ ⎛⎭⎪⎫3-2×2×3×cos π6+4=4,则|AD →|=2.(2)由|a -2b |=2,得(a -2b )2=|a |2-4a·b +4|b |2=4, 即|a |2-4|a||b |cos 60°+4|b |2=4,即|b |2-|b |=0,解得|b |=0(舍去)或|b |=1,故选D.] ►考法2 求向量的夹角【例2】 (1)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A.3π4B.π4C.π3D.2π3(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.(1)C (2)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3 [(1)∵(a +2b )·(5a -4b )=0,∴5a 2+6a·b -8b 2=0. 又|a |=|b |=1, ∴a·b =12, ∴cos θ=a·b |a||b |=12.又θ∈[0,π],∴θ=π3,故选C.(2)因为2a -3b 与c 的夹角为钝角,所以(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,所以4k -6-6<0,所以k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.]►考法3 平面向量的垂直问题【例3】 (1)已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________.(2)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.(1)-5 (2)712[(1)∵a =(1,-1),b =(6,-4),∴t a +b =(t +6,-t -4). 又a ⊥(t a +b ),则a ·(t a +b )=0,即t +6+t +4=0,解得t =-5. (2)由AP →⊥BC →得AP →·BC →=0,即(λAB →+AC →)·(AC →-AB →)=0, ∴(λ-1)AB →·AC →-λAB →2+AC →2=0, 即-3(λ-1)-9λ+4=0. 解得λ=712.][规律方法] 平面向量数量积求解问题的策略 (1)求两向量的夹角:,要注意θ∈[0,π].(2)两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |.(3)求向量的模:利用数量积求解长度问题的处理方法有:(1)(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(2)(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.(1)23 (2)33[(1)法一:|a +2b |=(a +2b )2=a 2+4a·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3.法二:(数形结合法)由|a|=|2b|=2,知以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=|OC→|.又∠AOB=60°,所以|a+2b|=2 3.(2)由题意知|e1|=|e2|=1,e1·e2=0,|3e1-e2|=(3e1-e2)2=3e21-23e1·e2+e22=3-0+1=2.同理|e1+λe2|=1+λ2.所以cos 60°=(3e1-e2)·(e1+λe2) |3e1-e2||e1+λe2|=3e21+(3λ-1)e1·e2-λe2221+λ2=3-λ21+λ2=12,解得λ=33.]平面向量与三角函数的综合【例4】(2017·江苏高考)已知向量a=(cos x,sin x),b=(3,-3),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.[解](1)因为a=(cos x,sin x),b=(3,-3),a∥b,所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2 x +cos 2 x =1矛盾, 故cos x ≠0. 于是tan x =-33. 又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3; 当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[规律方法] 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等.在平面直角坐标系xOy 中,已知向量m = ⎛⎪⎫2,-2,n =(sinx ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.[解] (1)因为m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m·n =cos π3=12, 即22sin x -22cos x =12,所以sin ⎝ ⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4, 所以x -π4=π6,即x =5π12.1.(2016·全国卷Ⅲ)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°A [因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32.又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.]2.(2015·全国卷Ⅱ)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0C .1D .2C [法一:∵a =(1,-1),b =(-1,2),∴a 2=2,a ·b =-3, 从而(2a +b )·a =2a 2+a ·b =4-3=1. 法二:∵a =(1,-1),b =(-1,2),∴2a+b=(2,-2)+(-1,2)=(1,0),从而(2a+b)·a=(1,0)·(1,-1)=1,故选C.]3.(2014·全国卷Ⅱ)设向量a,b满足|a+b|=10,|a-b|=6,则a·b=() A.1 B.2 C.3 D.5A[|a+b|2=(a+b)2=a2+2a·b+b2=10,|a-b|2=(a-b)2=a2-2a·b+b2=6,将上面两式左右两边分别相减,得4a·b=4,∴a·b=1.]4.(2017·全国卷Ⅰ)已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________.7[∵a=(-1,2),b=(m,1),∴a+b=(-1+m,2+1)=(m-1,3).又a+b与a垂直,∴(a+b)·a=0,即(m-1)×(-1)+3×2=0,解得m=7.]。

高考数学一轮复习 第4章 平面向量 第3讲 平面向量的数

第3讲 平面向量的数量积及应用板块一 知识梳理·自主学习[必备知识]考点1 数量积的有关概念1.两个非零向量a 与b ,过O 点作OA →=a ,OB →=b ,则∠AOB =θ,叫做向量a 与b 的夹角;范围是0°≤θ≤180°.2.a 与b 的夹角为90度时,叫a ⊥b .3.若a 与b 的夹角为θ,则a ·b =|a ||b |cos θ. 4.若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 5.a 在b 的方向上的投影为|a |cos θ.6.若a =(x 1,y 1),b =(x 2,y 2),夹角为θ,则|a |=x 21+y 21,cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. a ⊥b ⇔x 1x 2+y 1y 2=0. a ∥b ⇔x 1y 2-x 2y 1=0.考点2 数量积满足的运算律已知向量a ,b ,c 和实数λ,则向量的数量积满足下列运算律: 1.a ·b =b ·a .2.(λa )·b =λ(a ·b )=a ·(λb ). 3.(a +b )·c =a ·c +b ·c .[必会结论]1.设e 是单位向量,且e 与a 的夹角为θ,则e ·a =a ·e =|a |cos θ;2.当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =a 2或|a |=a 2;3.a ·b ≤|a ||b |.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)两个向量的数量积是一个向量.( )(2)向量在另一个向量方向上的投影也是向量.( )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) (4)若a ·b =0,则a =0或b =0.( ) (5)(a ·b )·c =a ·(b ·c ).( )(6)若a ·b =a ·c (a ≠0),则b =c .( )答案 (1)× (2)× (3)× (4)× (5)× (6)×2.[2018·重庆模拟]已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 D.152答案 C解析 因为2a -3b =(2k -3,-6),(2a -3b )⊥c ,所以(2a -3b )·c =2(2k -3)-6=0,解得k =3.选C.3.[2017·全国卷Ⅰ]已知向量a ,b 的夹角为60°,|a |=2, |b |=1,则|a +2b |=________.答案 2 3解析 解法一:|a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos60°+4×12=12=2 3.解法二:(数形结合法)由|a |=|2b |=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.4.[2018·济南模拟]已知向量|b |=3,a ·b =-12, 则向量a 在向量b 方向上的投影是________.答案 -4解析 因为向量|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是a ·b |b |=-123=-4.5.[2016·北京高考]已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为________.答案π6解析 a ·b =23,∴cos 〈a ,b 〉=a ·b |a ||b |=232×2=32,又〈a ,b 〉∈[0,π],∴〈a ,b 〉=π6.6.[课本改编]已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 1 1解析 以D 为坐标原点,建立平面直角坐标系如图所示.则D (0,0),A (1,0),B (1,1),C (0,1).设E (1,a )(0≤a ≤1),所以DE →·CB →=(1,a )·(1,0)=1,DE →·DC →=(1,a )·(0,1)=a ≤1.故DE →·DC →的最大值为1.板块二 典例探究·考向突破 考向平面向量数量积的运算例 1 (1)[2016·山东高考]已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94答案 B解析 因为n ⊥(t m +n ),所以t m ·n +n 2=0,所以m ·n =-n 2t,又4|m |=3|n |,所以cos 〈m ,n 〉=m ·n |m |·|n |=4m ·n 3|n |2=-43t =13,所以t =-4.故选B. (2)[2017·北京高考]已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.答案 6解析 解法一:根据题意作出图象,如图所示,A (-2,0),P (x ,y ). 由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0). AO →·AP →=|AO →||AP →|cos θ,|AO →|=2,|AP →|=(x +2)2+y 2, cos θ=AQ AP=x +2(x +2)2+y2,所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1].所以AO →·AP →的最大值为2+4=6.解法二:如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π),所以AO →=(2,0),AP →=(cos α+2,sin α),AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立. 触类旁通向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.【变式训练1】 (1)[2018·湖北模拟]已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为( )A.322 B.3152 C .-322 D .-3152答案 A解析 AB →=(2,1),CD →=(5,5),由定义知AB →在CD →方向上的投影为AB →·CD→|CD→|=1552=322. (2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 解法一:AE →·BD →=⎝⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=AD →2-12AB →2=22-12×22=2.解法二:以A 为原点建立平面直角坐标系(如图),可得A (0,0),E (1,2),B (2,0),C (2,2),D (0,2),AE →=(1,2),BD →=(-2,2),则AE →·BD →=(1,2)·(-2,2)=1×(-2)+2×2=2.考向平面向量数量积的性质命题角度1 平面向量的垂直例 2 (1)如图所示,在△ABC 中,AD ⊥AB ,BC →=3BD →,|AD →|=1,则AC →·AD →=( )A .2 3 B.32 C.33D. 3 答案 D解析 AC →·AD →=(AB →+BC →)·AD →=AB →·AD →+BC →·AD →=BC →·AD →=3BD →·AD →=3|BD →||AD →|cos ∠BDA =3|AD →|2= 3.(2)[2017·全国卷Ⅰ]已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.答案 7解析 ∵a =(-1,2),b =(m,1), ∴a +b =(-1+m,2+1)=(m -1,3). 又a +b 与a 垂直,∴(a +b )·a =0, 即(m -1)×(-1)+3×2=0, 解得m =7.命题角度2 平面向量的模例 3 (1)[2018·济南模拟]设向量a ,b 满足|a |=1,|a -b |=3,a ·(a -b )=0,则|2a +b |=( )A .2B .2 3C .4D .4 3 答案 B解析 ∵a ·(a -b )=0,∴a 2=a ·b =1,|a -b |2=a 2-2a ·b +b 2=3,∴b 2=4,∴|2a +b |=4a 2+4a ·b +b 2=4+4+4=2 3.故选B.(2)已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |等于( ) A .5 B .4 C .3 D .1 答案 B解析 |a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+2|a ||b |cos120°+|b |2=32+2×3×|b |×⎝ ⎛⎭⎪⎫-12+|b |2=9-3|b |+|b |2=13, 即|b |2-3|b |-4=0,解得|b |=4或|b |=-1(舍去). 命题角度3 平面向量的夹角例 4 (1)已知平面向量a ,b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与向量a +b 的夹角为( )A.π2 B.π3 C.π6D .π 答案 B解析 由题意,得|2a +b |2=4+4a ·b +3=7,所以a ·b =0,所以a ·(a +b )=1,且|a +b |=(a +b )2=2,故cos 〈a ,a +b 〉=a ·(a +b )|a |·|a +b |=12,所以〈a ,a +b 〉=π3.故选B.(2)[2017·山东高考]已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0, |3e 1-e 2|= (3e 1-e 2)2= 3e 21-23e 1·e 2+e 22 =3-0+1=2.同理|e 1+λe 2|=1+λ2.所以cos60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 触类旁通平面向量数量积求解问题的策略(1)求两向量的夹角:cos θ=a ·b|a ||b |,要注意θ∈[0,π]. (2)两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |.(3)求向量的模:利用数量积求解长度问题的处理方法有: ①a 2=a ·a =|a |2或|a |=a ·a ; ②|a ±b |=(a ±b )2=a 2±2a ·b +b 2; ③若a =(x ,y ),则|a |=x 2+y 2.考向向量运算的最值或取值范围例 5 [2018·福建质检]平行四边形ABCD 中,AB =4,AD =2,AB →·AD →=4,点P 在边CD 上,则PA →·PB →的取值范围是( )A .[-1,8]B .[-1,+∞)C .[0,8]D .[-1,0]答案 A解析 由题意得AB →·AD →=|AB →|·|AD →|·cos∠BAD =4,解得∠BAD =π3.以A 为原点,AB所在的直线为x 轴建立平面直角坐标系,则A (0,0),B (4,0),C (5,3),D (1,3),因为点P 在边CD 上,所以不妨设点P 的坐标为(a ,3)(1≤a ≤5),则PA →·PB →=(-a ,-3)·(4-a ,-3)=a 2-4a +3=(a -2)2-1,则当a =2 时,PA →·PB →取得最小值-1,当a =5时,PA →·PB →取得最大值8.故选A.触类旁通求向量的最值或范围问题求最值或取值范围必须有函数或不等式,因此,对于题目中给出的条件,要结合要求的夹角或长度或其他量,得出相应的不等式或函数(包括自变量的范围),然后利用相关知识求出最值或取值范围.【变式训练2】 在平行四边形ABCD 中,∠A =π3,边AB ,AD 的长分别为2,1,若M ,N 分别是边BC ,CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →·AN →的取值范围是________.答案 [2,5]解析 设|BM →||BC →|=|CN →||CD →|=λ(0≤λ≤1),则BM →=λBC →=λAD →,DN →=(1-λ)DC →=(1-λ)AB →,则AM →·AN →=(AB →+BM →)·(AD →+DN →) =(AB →+λAD →)·[AD →+(1-λ)AB →]=AB →·AD →+(1-λ)AB →2+λAD →2+λ(1-λ)AD →·AB →. 又∵AB →·AD →=2×1×cos π3=1,AB →2=4,AD →2=1,∴AM →·AN →=-λ2-2λ+5=-(λ+1)2+6.∵0≤λ≤1,∴2≤AM →·AN →≤5, 即AM →·AN →的取值范围是[2,5].核心规律1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算. 3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 满分策略1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.向量夹角的概念要领会,比如正三角形ABC 中,AB →与BC →的夹角应为120°,而不是60°.3.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.板块三 启智培优·破译高考创新交汇系列5——平面几何中的向量数量积运算[2017·天津高考]在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.解题视点 用平面向量解决平面几何问题时有两种方法:基向量法和坐标系法. 解析 解法一:由BD →=2DC →得AD →=13AB →+23AC →,所以AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC →-AB →)=13λAB →·AC →-13AB →2+23λAC →2-23AB →·AC →,又AB →·AC →=3×2×cos60°=3,AB →2=9,AC →2=4, 所以AD →·AE →=λ-3+83λ-2=113λ-5=-4,解得λ=311.解法二:以A 为原点,AB 所在的直线为x 轴建立平面直角坐标系,如图,因为AB =3,AC =2,∠BAC =60°,所以B (3,0),C (1,3),又BD →=2DC →,所以D ⎝ ⎛⎭⎪⎫53,233,所以AD →=⎝ ⎛⎭⎪⎫53,233,而AE →=λAC →-AB →=λ(1,3)-(3,0)=(λ-3,3λ),因此AD →·AE →=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案311答题启示 向量具有代数和几何的双重特征,比如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题变得更加简捷.跟踪训练在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,求AB 的长.解 解法一:由题意可知,AC →=AB →+AD →,BE →=-12AB →+AD →.因为AC →·BE →=1,所以(AB →+AD →)·⎝ ⎛⎭⎪⎫-12AB →+AD →=1,即AD →2+12AB →·AD →-12AB →2=1.①因为|AD →|=1,∠BAD =60°,所以AB →·AD →=12|AB →|,因此①式可化为1+14|AB →|-12|AB →|2=1.解得|AB →|=0(舍去)或|AB →|=12,所以AB 的长为12.解法二:以A 为原点,AB 所在直线为x 轴建立如图所示的直角坐标系,过D 作DM ⊥AB 于点M .由AD =1,∠BAD =60°,可知AM =12,DM =32,则D ⎝ ⎛⎭⎪⎫12,32.设|AB |=m (m >0),则B (m,0),C ⎝ ⎛⎭⎪⎫m +12,32,因为E 是CD 的中点,所以E ⎝ ⎛⎭⎪⎫m 2+12,32.所以BE →=⎝ ⎛⎭⎪⎫12-12m ,32,AC →=⎝⎛⎭⎪⎫m +12,32. 由AC →·BE →=1可得⎝ ⎛⎭⎪⎫m +12⎝ ⎛⎭⎪⎫12-12m +34=1, 即2m 2-m =0,所以m =0(舍去)或m =12.故AB 的长为12.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·许昌模拟]设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5 D .10 答案 B解析 由a ⊥c ,得a ·c =2x -4=0,解得x =2.由b ∥c ,得12=y-4,解得y =-2.所以a =(2,1),b =(1,-2),a +b =(3,-1),|a +b |=10.故选B.2.[2015·广东高考]在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=( )A .5B .4C .3D .2 答案 A解析 AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),所以AD →·AC →=(2,1)·(3,-1)=2×3+1×(-1)=5.故选A.3.[2016·全国卷Ⅲ]已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30° B.45° C.60° D.120° 答案 A解析 cos ∠ABC =BA →·BC→|BA →|·|BC →|=32,所以∠ABC =30°.故选A. 4.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π3,πC.⎣⎢⎡⎦⎥⎤π3,2π3D.⎣⎢⎡⎦⎥⎤π6,π答案 B解析 由于|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a·b =0有实根,则|a |2-4a·b ≥0,即a·b ≤14|a |2.设向量a 与b 的夹角为θ,则cos θ=a·b |a ||b |≤14|a |212|a |2=12,∴θ∈⎣⎢⎡⎦⎥⎤π3,π.故选B.5.在△ABC 中,∠C =90°,且CA =CB =3,点M 满足BM →=2AM →,则CM →·CA →=( )A .18B .3C .15D .12 答案 A解析 由题意可得△ABC 是等腰直角三角形,AB =32,AM →=BA →,故CM →·CA →=(CA →+AM →)·CA →=CA →2+AM →·CA →=9+(CA →-CB →)·CA →=9+CA →2-CB →·CA →=9+9-0=18.故选A.6.[2018·济宁模拟]平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( )A .矩形B .正方形C .菱形D .梯形答案 C解析 因为AB →+CD →=0,所以AB →=-CD →=DC →,所以四边形ABCD 是平行四边形.又(AB →-AD →)·AC →=DB →·AC →=0,所以四边形对角线互相垂直,所以四边形ABCD 是菱形.故选C.7.[2018·重庆模拟]已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( )A.π3 B.π2 C.2π3 D.5π6答案 C解析 ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.故选C.8.[2018·南宁模拟]已知平面向量α,β,且|α|=1,|β|=2,α⊥(α-2β),则|2α+β|=________.答案10解析 由α⊥(α-2β)得α·(α-2β)=α2-2α·β=0,所以α·β=12,所以(2α+β)2=4α2+β2+4α·β=4×12+22+4×12=10,所以|2α+β|=10.9.[2018·北京东城检测]已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.答案 8 2解析 由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.10.如图,在△ABC 中,AB =3,AC =2,D 是边BC 的中点,则AD →·BC →=________.答案 -52解析 利用向量的加减法法则可知AD →·BC →=12(AB →+AC →)·(-AB →+AC →)=12(-AB →2+AC →2)=-52.[B 级 知能提升]1.[2018·石家庄模拟]在△ABC 中,AB =4,AC =3,AC →·BC →=1,则BC =( ) A. 3 B. 2 C .2 D .3 答案 D解析 设∠A =θ,因为BC →=AC →-AB →,AB =4,AC =3,所以AC →·BC →=AC →2-AC →·AB →=9-AC →·AB →=1. AC →·AB →=8.cos θ=AC →·AB→|AC →||AB →|=83×4=23,所以BC =16+9-2×4×3×23=3.故选D.2.在平面直角坐标系xOy 中,已知OA →=(3,-1),OB →=(0,2).若OC →·AB →=0,AC →=λOB →,则实数λ的值为________.答案 2解析 由已知得AB →=(-3,3),设C (x ,y ), 则OC →·AB →=-3x +3y =0,所以x =y . AC →=(x -3,y +1).又AC →=λOB →,即(x -3,y +1)=λ(0,2),所以⎩⎪⎨⎪⎧x -3=0,y +1=2λ,由x =y 得,y =3,所以λ=2.3.[2018·东营模拟]若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为________.答案π3解析 由|a +b |=|a -b |,得a 2+2a ·b +b 2=a 2-2a ·b +b 2,即a ·b =0,所以(a +b )·a =a 2+a ·b =|a |2.故向量a +b 与a 的夹角θ的余弦值为 cos θ=(a +b )·a |a +b ||a |=|a |22|a ||a |=12.又0≤θ≤π,所以θ=π3.4.已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,求实数λ的取值范围. 解 ∵a 与a +λb 均为非零向量,且夹角为锐角, ∴a ·(a +λb )>0,即(1,2)·(1+λ,2+λ)>0. ∴(1+λ)+2(2+λ)>0. ∴λ>-53.当a 与a +λb 共线时,存在实数m ,使a +λb =m a , 即(1+λ,2+λ)=m (1,2),∴⎩⎪⎨⎪⎧1+λ=m ,2+λ=2m ,解得λ=0.即当λ=0时,a 与a +λb 共线, 综上可知,λ>-53且λ≠0.5.[2017·全国卷Ⅱ改编]已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,求PA →·(PB →+PC →)的最小值.解 解法一:设BC 的中点为D ,AD 的中点为E ,则有PB →+PC →=2PD →, 则PA →·(PB →+PC →)=2PA →·PD →=2(PE →+EA →)·(PE →-EA →)=2(PE →2-EA →2).而AE →2=⎝⎛⎭⎪⎫322=34,当P 与E 重合时,PE →2有最小值0,故此时PA →·(PB →+PC →)取最小值, 最小值为-2EA →2=-2×34=-32.解法二:以AB 所在直线为x 轴,AB 的中点为原点建立平面直角坐标系,如图, 则A (-1,0),B (1,0),C (0,3),设P (x ,y ),取BC 的中点D ,则D ⎝ ⎛⎭⎪⎫12,32.PA →·(PB →+PC →)=2PA →·PD →=2(-1-x ,-y )·⎝ ⎛⎭⎪⎫12-x ,32-y =2⎣⎢⎡⎦⎥⎤(x +1)·⎝ ⎛⎭⎪⎫x -12+y ·⎝⎛⎭⎪⎫y -32=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y -342-34.因此,当x =-14,y =34时,PA →·(PB →+PC →)取得最小值,为2×⎝ ⎛⎭⎪⎫-34=-32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考数学一轮复习第4章平面向量第3讲平面向量的数量积及应用学案板块一知识梳理·自主学习[必备知识]考点1 数量积的有关概念1.两个非零向量a与b,过O点作=a,=b,则∠AOB=θ,叫做向量a与b的夹角;范围是0°≤θ≤180°.2.a与b的夹角为90度时,叫a⊥b.3.若a与b的夹角为θ,则a·b=|a||b|cosθ.4.若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.5.a在b的方向上的投影为|a|cosθ.6.若a=(x1,y1),b=(x2,y2),夹角为θ,则|a|=,cosθ=.a⊥b⇔x1x2+y1y2=0.a∥b⇔x1y2-x2y1=0.考点2 数量积满足的运算律已知向量a,b,c和实数λ,则向量的数量积满足下列运算律:1.a·b=b·a.2.(λa)·b=λ(a·b)=a·(λb).3.(a+b)·c=a·c+b·c.[必会结论]1.设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a|cosθ;2.当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,特别地,a·a=a2或|a|=;3.a·b≤|a||b|.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)两个向量的数量积是一个向量.( )(2)向量在另一个向量方向上的投影也是向量.( )(3)若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.( )(4)若a·b=0,则a=0或b=0.( )(5)(a·b)·c=a·(b·c).( )(6)若a·b=a·c(a≠0),则b=c.( )答案(1)×(2)×(3)×(4)×(5)×(6)×2.[2018·重庆模拟]已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )A.- B.0 C.3 D.152答案C解析因为2a-3b=(2k-3,-6),(2a-3b)⊥c,所以(2a-3b)·c=2(2k-3)-6=0,解得k=3.选C. 3.[2017·全国卷Ⅰ]已知向量a,b的夹角为60°,|a|=2, |b|=1,则|a+2b|=________.答案23解析解法一:|a+2b|=错误!=a2+4a·b+4b2=22+4×2×1×cos60°+4×12==2.解法二:(数形结合法)由|a|=|2b|=2,知以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=||.又∠AOB=60°,所以|a+2b|=2. 4.[2018·济南模拟]已知向量|b|=3,a·b=-12, 则向量a在向量b方向上的投影是________.答案-4解析因为向量|b|=3,a·b=-12,则向量a在向量b方向上的投影是==-4. 5.[2016·北京高考]已知向量a=(1,),b=(,1),则a与b夹角的大小为________.答案π6解析 a·b=2,∴cos〈a ,b 〉===,又〈a ,b 〉∈[0,π],∴〈a ,b 〉=. 6.[课本改编]已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则·的值为________;·的最大值为________.答案 1 1解析 以D 为坐标原点,建立平面直角坐标系如图所示.则D(0,0),A(1,0),B(1,1),C(0,1).设E(1,a)(0≤a≤1),所以·=(1,a)·(1,0)=1,·=(1,a)·(0,1)=a≤1.故·的最大值为1.板块二 典例探究·考向突破 考向 平面向量数量积的运算例 1 (1)[2016·山东高考]已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=.若n⊥(tm+n),则实数t 的值为( )A .4B .-4 C. D .-94答案 B解析 因为n⊥(tm+n),所以tm·n+n2=0,所以m·n=-,又4|m|=3|n|,所以cos 〈m ,n 〉===-=,所以t =-4.故选B.(2)[2017·北京高考]已知点P 在圆x2+y2=1上,点A 的坐标为(-2,0),O 为原点,则·的最大值为________.答案 6解析 解法一:根据题意作出图象,如图所示,A(-2,0),P(x ,y).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0).AO →·=||||cos θ,||=2,||=, cos θ==,所以·=2(x +2)=2x +4.点P 在圆x2+y2=1上,所以x∈[-1,1].所以·的最大值为2+4=6.解法二:如图所示,因为点P 在圆x2+y2=1上,所以可设P(cos α,sin α)(0≤α<2π),所以=(2,0),=(cos α+2,sin α),AO →·=2cos α+4≤2+4=6, 当且仅当cos α=1,即α=0,P(1,0)时“=”号成立.触类旁通向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x1,y1),b =(x2,y2),则a·b=x1x2+y1y2.【变式训练1】 (1)[2018·湖北模拟]已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为( )A. B. C .- D .-3152答案 A解析 =(2,1),=(5,5),由定义知在方向上的投影为==. (2)已知正方形ABCD 的边长为2,E 为CD 的中点,则·=________.答案 2解析 解法一:·=·(-)=2-2=22-×22=2.解法二:以A 为原点建立平面直角坐标系(如图),可得A(0,0),E(1,2),B(2,0),C(2,2),D(0,2),=(1,2),=(-2,2),则·=(1,2)·(-2,2)=1×(-2)+2×2=2. 考向 平面向量数量积的性质平面向量的垂直1命题角度例 2 (1)如图所示,在△ABC 中,AD⊥AB,=,||=1,则·=( )A .2 B. C. D.3答案 D解析 ·=(+)·=·+·=·=·=||||cos∠BDA=||2=.(2)[2017·全国卷Ⅰ]已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.答案 7解析 ∵a=(-1,2),b =(m,1),∴a+b=(-1+m,2+1)=(m-1,3).又a+b 与a垂直,∴(a+b)·a=0,即(m-1)×(-1)+3×2=0,解得m=7.命题角度平面向量的模2例 3 (1)[2018·济南模拟]设向量a,b满足|a|=1,|a-b|=,a·(a-b)=0,则|2a+b|=( )A.2 B.2 C.4 D.43答案B解析∵a·(a-b)=0,∴a2=a·b=1,|a-b|2=a2-2a·b+b2=3,∴b2=4,∴|2a+b|===2.故选B.(2)已知向量a与b的夹角为120°,|a|=3,|a+b|=,则|b|等于( )A.5 B.4 C.3 D.1答案B解析|a+b|2=(a+b)2=a2+2a·b+b2=|a|2+2|a||b|cos120°+|b|2=32+2×3×|b|×+|b|2=9-3|b|+|b|2=13,即|b|2-3|b|-4=0,解得|b|=4或|b|=-1(舍去).命题角度3平面向量的夹角例 4 (1)已知平面向量a,b,|a|=1,|b|=,且|2a+b|=,则向量a与向量a+b的夹角为( )A. B. C. D.π答案B解析由题意,得|2a+b|2=4+4a·b+3=7,所以a·b=0,所以a·(a+b)=1,且|a+b|==2,故cos〈a,a+b〉==,所以〈a,a+b〉=.故选B.(2)[2017·山东高考]已知e1,e2是互相垂直的单位向量.若e1-e2与e1+λe2的夹角为60°,则实数λ的值是________.解析由题意知|e1|=|e2|=1,e1·e2=0,|e1-e2|==3e21-23e1·e2+e22==2.同理|e1+λe2|=.所以cos60°=错误!===,解得λ=.触类旁通平面向量数量积求解问题的策略(1)求两向量的夹角:cosθ=,要注意θ∈[0,π].(2)两向量垂直的应用:两非零向量垂直的充要条件是:a⊥b⇔a·b=0⇔|a-b|=|a+b|.(3)求向量的模:利用数量积求解长度问题的处理方法有:①a2=a·a=|a|2或|a|=;②|a±b|==;③若a=(x,y),则|a|=.考向向量运算的最值或取值范围例 5 [2018·福建质检]平行四边形ABCD中,AB=4,AD=2,·=4,点P在边CD上,则·的取值范围是( )B.[-1,+∞)A.[-1,8]D.[-1,0]C.[0,8]答案A解析由题意得·=||·||·cos∠BAD=4,解得∠BAD=.以A为原点,AB所在的直线为x轴建立平面直角坐标系,则A(0,0),B(4,0),C(5,),D(1,),因为点P在边CD上,所以不妨设点P的坐标为(a,)(1≤a≤5),则·=(-a,-)·(4-a,-)=a2-4a+3=(a-2)2-1,则当a=2 时,·取得最小值-1,当a=5时,·取得最大值8.故选A.触类旁通求向量的最值或范围问题求最值或取值范围必须有函数或不等式,因此,对于题目中给出的条件,要结合要求的夹角或长度或其他量,得出相应的不等式或函数(包括自变量的范围),然后利用相关知识求出最值或取值范围.【变式训练2】 在平行四边形ABCD 中,∠A=,边AB ,AD 的长分别为2,1,若M ,N 分别是边BC ,CD 上的点,且满足=,则·的取值范围是________.答案 [2,5]解析 设==λ(0≤λ≤1),则=λ=λ,DN →=(1-λ)=(1-λ),则·=(+)·(+) =(+λ)·[+(1-λ)]=·+(1-λ)2+λ2+λ(1-λ)·. 又∵·=2×1×cos=1,2=4,2=1, ∴·=-λ2-2λ+5=-(λ+1)2+6.∵0≤λ≤1,∴2≤·≤5, 即·的取值范围是[2,5].核心规律1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a|2=a2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 满分策略1.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0)不能得出b =c ,两边不能约去一个向量.2.向量夹角的概念要领会,比如正三角形ABC 中,与的夹角应为120°,而不是60°.3.两个向量的夹角为锐角,则有a·b>0,反之不成立;两个向量夹角为钝角,则有a·b<0,反之不成立.板块三启智培优·破译高考创新交汇系列5——平面几何中的向量数量积运算[2017·天津高考]在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为________.解题视点用平面向量解决平面几何问题时有两种方法:基向量法和坐标系法.解析解法一:由=2得=+,所以·=·(λ-)=λ·-2+λ2-·,又·=3×2×cos60°=3,2=9,2=4,所以·=λ-3+λ-2=λ-5=-4,解得λ=.解法二:以A为原点,AB所在的直线为x轴建立平面直角坐标系,如图,因为AB=3,AC=2,∠BAC=60°,所以B(3,0),C(1,),又=2,所以D,所以=,而=λ-=λ(1,)-(3,0)=(λ-3,λ),因此·=(λ-3)+×λ=λ-5=-4,解得λ=.答案311答题启示向量具有代数和几何的双重特征,比如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题变得更加简捷.跟踪训练在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若·=1,求AB 的长.解解法一:由题意可知,=+,=-+.因为·=1,所以(+)·=1,即2+·-2=1.①因为||=1,∠BAD=60°,所以·=||,因此①式可化为1+||-||2=1.解得||=0(舍去)或||=,所以AB 的长为.解法二:以A 为原点,AB 所在直线为x 轴建立如图所示的直角坐标系,过D 作DM⊥AB 于点M.由AD =1,∠BAD=60°,可知AM =,DM =,则D.设|AB|=m(m>0),则B(m,0),C , 因为E 是CD 的中点,所以E. 所以=,AC →=.由·=1可得⎝ ⎛⎭⎪⎫m +12⎝ ⎛⎭⎪⎫12-12m +=1, 即2m2-m =0,所以m =0(舍去)或m =. 故AB 的长为.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·许昌模拟]设x ,y∈R,向量a =(x,1),b =(1,y),c =(2,-4),且a⊥c,b∥c,则|a +b|=( )A. B. C .2 D .10答案 B解析 由a⊥c,得a·c=2x -4=0,解得x =2.由b∥c,得=,解得y =-2.所以a =(2,1),b =(1,-2),a +b =(3,-1),|a +b|=.故选B.2.[2015·广东高考]在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,=(1,-2),=(2,1),则·=( )A .5B .4C .3D .2答案 A解析 =+=(1,-2)+(2,1)=(3,-1),所以·=(2,1)·(3,-1)=2×3+1×(-1)=5.故选A.3.[2016·全国卷Ⅲ]已知向量=,=,则∠ABC=( )A .30° B.45° C.60° D.120°答案 A解析 cos∠ABC==,所以∠ABC=30°.故选A.4.已知|a|=2|b|≠0,且关于x 的方程x2+|a|x +a·b=0有实根,则a 与b的夹角的取值范围是( )A. B.⎣⎢⎡⎦⎥⎤π3,π C.D.⎣⎢⎡⎦⎥⎤π6,π 答案 B解析 由于|a|=2|b|≠0,且关于x 的方程x2+|a|x +a·b=0有实根,则|a|2-4a·b≥0,即a·b≤|a|2.设向量a 与b 的夹角为θ,则cos θ=≤=,∴θ∈.故选B.5.在△ABC 中,∠C=90°,且CA =CB =3,点M 满足=2,则·=( )A .18B .3C .15D .12答案 A解析 由题意可得△ABC 是等腰直角三角形,AB =3,=,故·=(+)·=2+·=9+(-)·=9+2-·=9+9-0=18.故选A.6.[2018·济宁模拟]平面四边形ABCD 中,+=0,(-)·=0,则四边形ABCD是( )A .矩形B .正方形C .菱形D .梯形答案 C解析 因为+=0,所以=-=,所以四边形ABCD 是平行四边形.又(-)·=·=0,所以四边形对角线互相垂直,所以四边形ABCD 是菱形.故选C. 7.[2018·重庆模拟]已知非零向量a ,b 满足|b|=4|a|,且a⊥(2a+b),则a与b 的夹角为( ) A. B. C. D.5π6答案 C解析 ∵a⊥(2a+b),∴a·(2a+b)=0,∴2|a|2+a ·b =0,即2|a|2+|a||b|cos 〈a ,b 〉=0.∵|b|=4|a|,∴2|a|2+4|a|2cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=-,∴〈a ,b 〉=.故选C.8.[2018·南宁模拟]已知平面向量α,β,且|α|=1,|β|=2,α⊥(α-2β),则|2α+β|=________.答案 10解析 由α⊥(α-2β)得α·(α-2β)=α2-2α·β=0,所以α·β=,所以(2α+β)2=4α2+β2+4α·β=4×12+22+4×=10,所以|2α+β|=.9.[2018·北京东城检测]已知平面向量a =(2,4),b =(1,-2),若c =a -(a·b)b,则|c|=________.答案 82解析 由题意可得a·b=2×1+4×(-2)=-6,∴c =a -(a ·b)b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c|==8.10.如图,在△ABC 中,AB =3,AC =2,D 是边BC 的中点,则·=________.答案 -52解析 利用向量的加减法法则可知AD →·=(+)·(-+)=(-2+2)=-.[B 级 知能提升]1.[2018·石家庄模拟]在△ABC 中,AB =4,AC =3,·=1,则BC =( )A. B. C .2 D .3答案 D解析 设∠A=θ,因为=-,AB =4,AC =3,所以·=2-·=9-·=1.AC →·=8.cos θ===,所以BC ==3.故选D.2.在平面直角坐标系xOy 中,已知=(3,-1),=(0,2).若·=0,=λ,则实数λ的值为________.答案 2解析 由已知得=(-3,3),设C(x ,y),则·=-3x +3y =0,所以x =y.AC →=(x -3,y +1).又=λ,即(x -3,y +1)=λ(0,2),所以由x =y 得,y =3,所以λ=2.3.[2018·东营模拟]若两个非零向量a ,b 满足|a +b|=|a -b|=2|a|,则向量a +b 与a 的夹角为________.答案 π3解析 由|a +b|=|a -b|,得a2+2a·b+b2=a2-2a·b+b2,即a·b=0,所以(a +b)·a=a2+a·b=|a|2.故向量a +b 与a 的夹角θ的余弦值为cos θ===.又0≤θ≤π,所以θ=.4.已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,求实数λ的取值范围.解 ∵a 与a +λb 均为非零向量,且夹角为锐角,∴a ·(a +λb)>0,即(1,2)·(1+λ,2+λ)>0.∴(1+λ)+2(2+λ)>0.∴λ>-.当a 与a +λb 共线时,存在实数m ,使a +λb =ma ,即(1+λ,2+λ)=m(1,2),∴解得λ=0.即当λ=0时,a 与a +λb 共线,综上可知,λ>-且λ≠0.5.[2017·全国卷Ⅱ改编]已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,求·(+)的最小值.解 解法一:设BC 的中点为D ,AD 的中点为E ,则有+=2,→则·(+)=2·PD=2(+)·(-)=2(2-2).而2=2=,当P与E重合时,2有最小值0,故此时·(+)取最小值,最小值为-22=-2×=-.解法二:以AB所在直线为x轴,AB的中点为原点建立平面直角坐标系,如图,则A(-1,0),B(1,0),C(0,),设P(x,y),取BC的中点D,则D.·(+)=2·=2(-1-x,-y)·=2=2.因此,当x=-,y=时,·(+)取得最小值,为2×=-.。

相关文档
最新文档