必修1第一章《集合的含义与表示,集合的基本关系》
人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
必修1第一章《集合的含义与表示,集合的基本关系》

学科教师辅导讲义学员编号:年 级: 辅导科目: 课时数:3 课 题集合的含义与表示,集合的基本关系教学目的1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.掌握集合的两种常用表示方法(列举法和描述法)5.理解子集、真子集概念;6.会判断和证明两个集合包含关系;7.理解“或 ”、“ 且 ”的含义;8.会判断简单集合的相等关系;教学内容一、课前检测:1、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不能,因为不确定) (2)好心的人 (不能,因为不确定) (3)1,2,2,3,4,5.(不能,因为有重复)2、设a,b 是非零实数,那么bb aa +可能取的值组成集合的元素是_-2,0,2__3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素 4、用描述法表示下列集合①{1,4,7,10,13} 答案:}5,23|{≤∈-=n N n n x x 且 ②{-2,-4,-6,-8,-10} 答案: }5,2|{≤∈-=n N n n x x 且5、用列举法表示下列集合①{x ∈N|x 是15的约数} 答案:{1,3,5,15} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}答案:{(1,1),(1,2),(2,1)(2,2)}二、知识梳理:1、集合的含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
说明:(1)在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
2、集合元素的三个特征(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
北师大版高中数学课本目录大全(必修)

北师大版(新课标)高中数学课本目录大全(含必修和选修)北师大必修《数学1(必修)》全书目录:第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算阅读材料康托与集合论第二章函数§1 生活中的变量关系§2 对函数的进一步认识§3 函数的单调性§4 二次函数性质的再研究§5 简单的幂函数阅读材料函数概念的发展课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数概念的扩充§3 指数函数§4 对数§5 对数函数§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程§2 实际问题的函数建模阅读材料函数与中学数学探究活动同种商品不同型号的价格问题必修2全书目录:第一章立体几何初步§1 简单几何体§2 三视图§3 直观图§4 空间图形的基本关系与公理§5 平行关系§6 垂直关系§7 简单几何体的面积和体积§8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程§2 圆与圆的方程§3 空间直角坐标系阅读材料笛卡儿与解析几何探究活动1 打包问题探究活动2 追及问题必修3全书目录第一章统计§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句课题学习确定线段n等分点的算法第三章概率§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用探究活动用模拟方法估计圆周率∏的值必修4 全书目录:第一章三角函数§1 周期现象与周期函数§2 角的概念的推广§3 弧度制§4 正弦函数§5 余弦函数§6 正切函数§7 函数的图像§8 同角三角函数的基本关系阅读材料数学与音乐课题学习利用现代信息技术探究的图像第二章平面向量§1 从位移、速度、力到向量§2 从位移的合成到向量的加法§3 从速度的倍数到数乘向量§4 平面向量的坐标§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例阅读材料向量与中学数学第三章三角恒等变形§1 两角和与差的三角函数§2 二倍角的正弦、余弦和正切§3 半角的三角函数§4 三角函数的和差化积与积化和差§5 三角函数的简单应用课题学习摩天轮中的数学问题探究活动升旗中的数学问题必修5全书共三章:数列、解三角形、不等式。
(完整word)高中数学北师大版目录.doc

高中数学北师大版目录北师大版《数学 (必修 1)》§ 5 平行关系全书目录:§ 6 垂直关系第一章集合§ 7 简单几何体的面积和体积§ 1 集合的含义与表示§ 8 面积公式和体积公式的简单应用§ 2 集合的基本关系阅读材料蜜蜂是对的§ 3 集合的基本运算课题学习正方体截面的形状阅读材料康托与集合论第二章解析几何初步第二章函数§ 1 直线与直线的方程§ 1 生活中的变量关系§ 2 圆与圆的方程§ 2 对函数的进一步认识§ 3 空间直角坐标系§ 3 函数的单调性阅读材料笛卡儿与解析几何§ 4 二次函数性质的再研究探究活动 1 打包问题§ 5 简单的幂函数探究活动 2 追及问题阅读材料函数概念的发展课题学习个人所得税的计算必修 3全书目录第三章指数函数和对数函数第一章统计§ 1 正整数指数函数§ 1 统计活动:随机选取数字§ 2 指数概念的扩充§ 2 从普查到抽样§ 3 指数函数§ 3 抽样方法§ 4 对数§ 4 统计图表§ 5 对数函数§ 5 数据的数字特征§ 6 指数函数、幂函数、对数函数增长§ 6 用样本估计总体的比较§ 7 统计活动:结婚年龄的变化阅读材料历史上数学计算方面的三大§ 8 相关性发明§ 9 最小二乘法阅读材料统计小史第四章函数应用课题学习调查通俗歌曲的流行趋势§ 1 函数与方程§ 2 实际问题的函数建模第二章算法初步阅读材料函数与中学数学§ 1 算法的基本思想探究活动同种商品不同型号的价格问§ 2 算法的基本结构及设计题§ 3 排序问题§ 4 几种基本语句必修 2 课题学习确定线段 n 等分点的算法全书目录:第一章立体几何初步第三章概率§ 1 简单几何体§ 1 随机事件的概率§ 2 三视图§ 2 古典概型§ 3 直观图§ 3 模拟方法――概率的应用§ 4 空间图形的基本关系与公理探究活动用模拟方法估计圆周率∏的值 1.2 数列的函数特性§ 2 等差数列必修 4 全书目录: 2.1 等差数列2.2 等差数列的前n项和第一章三角函数§ 3 等比数列§ 1 周期现象与周期函数 3.1 等比数列§ 2 角的概念的推广 3.2 等比数列的前n项和§ 3 弧度制§ 4 书雷在日常经济生活中的应§ 4 正弦函数用§ 5 余弦函数本章小节建议§ 6 正切函数复习题一§ 7 函数的图像课题学习教育储蓄§ 8 同角三角函数的基本关系阅读材料数学与音乐第二章解三角形课题学习利用现代信息技术探究的图§ 1 正弦定理与余弦定理像 1.1 正弦定理1.2 余弦定理第二章平面向量§ 2 三角形中的几何计算§ 1 从位移、速度、力到向量§ 3 解三角形的实际应用举例§ 2 从位移的合成到向量的加法本章小结建议§ 3 从速度的倍数到数乘向量复习题二§ 4 平面向量的坐标§ 5 从力做的功到向量的数量积第三章不等式§ 6 平面向量数量积的坐标表示§ 1 不等关系§ 7 向量应用举例 1.1 不等关系阅读材料向量与中学数学 1.2 比较大小§ 2 一元二次不等式第三章三角恒等变形 2.1 一元二次不等式的解法§ 1 两角和与差的三角函数 2.2 一元二次不等式的应用§ 2 二倍角的正弦、余弦和正切§ 3 基本不等式§ 3 半角的三角函数 3.1 基本不等式§ 4 三角函数的和差化积与积化和差 3.2 基本不等式与最大(小)§ 5 三角函数的简单应用值课题学习摩天轮中的数学问题§ 4 简单线性规划探究活动升旗中的数学问题 4.1 二元一次不等式(组)与平面区域4.2 简单线性规划必修 5 4.3 简单线性规划的应用全书共三章:数列、解三角形、不等式。
高一数学必修1知识点归纳

高一数学必修1知识点归纳《高中数学必修1》是高中生必须学习的一门课程书籍。
小编准备了高一数学必修1知识点,希望你喜欢。
第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:X Kb 1.C om非负整数集(即自然数集) 记作:N正整数集:N*或 N+整数集: Z有理数集: Q实数集: R1)列举法:{a,b,c}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xR|x-32} ,{x|x-32}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.相等关系:A=B 5,且55,则5=5)实例:设 A={x|x2-1=0} B={-1,1} 元素相同则两集合相等即:① 任何一个集合是它本身的子集。
AA② 真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)③ 如果 AB, BC ,那么 AC④ 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B 的交集.记作A B(读作A交B),即A B={x|x A,且x B}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作A并B),即A B ={x|x A,或x B}).设S是一个集合,A是S的一个子集,由S中所有不属于A 的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CSA=韦恩图示性质 A A=AAA B=B AA B AA B BA A=AA =AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= .二、函数的有关概念1.函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作: y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| xA }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高一数学必修1 数学 第一章 完整知识点梳理大全(最全)

【1.1.1】集合的含义与表示1、集合的概念集合中的元素具有确定性、互异性和无序性. 2、常用数集及其记法N ——自然数集,N *或N +——正整数集,Z ——整数集,Q ——有理数集,R ——实数集.集合与函数概念3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集,记为∅.【1.1.2】集合间的基本关系6、子集、真子集、集合相等7、已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算8、交集、并集、补集)【补充知识】含绝对值的不等式与一元二次不等式的解法1、含绝对值的不等式的解法0)〖1.2〗函数及其表示【1.2.1】函数的概念1、函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 2、区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a ≥b ,而后者必须a b <.3、求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.(暂不讲)⑤tan y x =中,()2x k k Z ππ≠+∈.(暂不讲)⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 4、求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的. 事实上,如果在函数的值域中存在一个最小(大)数,这个数就是 函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6、映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元a Ab B素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值1、函数的单调性①定义及判定方法yxo②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.简称:同增异减。
1.1.1集合的含义与表示
1.1.1集合的含义与表示一、教材1、教材的地位和作用本节课主要学习内容是理解集合的概念,元素与集合的关系和掌握集合的两种常用表达方法。
集合是高中数学必修1第一章第一节的内容,是现代数学的基本语言。
在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础。
2、教学目标根据《课程标准》的要求和结合学生的认知特点,我确定了以下目标:(1)知识与技能:理解集合的定义、元素与集合的关系,掌握集合的两种表述方式−列举法、描述法,同时培养学生类比、分析、归纳的能力。
(2)过程与方法:通过让学生从一些集合的实例中概括出集合的含义,了解集合与元素的关系,并且学会灵活正确的选用集合的两种表述方式−列举法、描述法。
(3)情感态度与价值观: 通过本节的学习,使学生感受数学的简洁美与和谐统一美,培养学生独立思考、敢于创新、勇于探索的科学精神,激发学生学习数学的兴趣。
3、教学重点、难点及确定依据根据《课程标准》的规定、上述教材的分析和学生已有知识的储备,本课的重点、难点如下:重点:集合的定义理解,元素与集合的关系及集合的两种常用表达方法。
难点:运用集合的两种常用的表达方法−列举法、描述法。
二、学情学习的对象是高一学生,他们已具备一定的数学基础,逻辑思维从经验型逐步走向理论型发展。
高中生好奇心强,渴望明白原理、知道方法,同时他们也希望得到平等的交流研讨,厌烦空洞的说教。
三、教法学法1、教法根据本节课的教学目标以及学生的实际情况,为了更有效地突出重点、突破难点,按照学生的认知规律,遵循以教师为主导,学生为主体,训练为主线的指导思想,采用以启发式引导法为主,问答式教学法、反馈式评价法为辅。
教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力,最终完成本节课的教学目标。
2、学法新课程标准要求教师转换角色,不仅关注教授学生的具体知识,更应关注教授学生学习的策略。
高中数学必修一第一章 1.1.1 第1课时集合的含义
第1课时 集合的含义第一章 1.1.1 集合的含义与表示学习目标1.通过实例理解集合的有关概念;2.初步理解集合中元素的三个特性;3.体会元素与集合的属于关系;4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.问题导学题型探究达标检测 新知探究点点落实知识点一 集合的概念思考 有首歌中唱道:“他大舅他二舅都是他舅”你能从集合的角度解读一下这句话吗?答案 “某人的舅”是一个集合,某人的大舅、二舅都是这个集合中的元素.元素与集合的概念:(1)把 统称为元素,通常用 表示.(2)把 叫做集合(简称为集),通常用________表示.研究对象小写拉丁字母a ,b ,c ,…一些元素组成的总体字母A ,B ,C ,…大写拉丁我们先看一些实例:(1)1—20以内的所有质数;(2)我国从1991-2003年的13年内所发射的所有人造卫星;(3)金星汽车厂2003年生产的所有汽车;(4)2004年1月1日之前与我国建立外交关系的所有国家;(5)所有的正方形;(6)到直线l的距离等于定长d的所有的点(7) 方程的所有实数根;(8)**中学2020年9月入学的高一学生的全体;2320x x +-=研究对象?元素? 问题:如何理解“把一些元素组成的总体叫做集合”,这些集合里的元素必须具备什么特性?知识点二 元素的三个特性思考1 某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?答案 某班所有的“帅哥”不能构成集合,因“帅哥”无明确的标准.高于175厘米的男生能构成一个集合,因标准确定.①确定性:集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.思考2 构成单词“bee”的字母形成的集合,其中的元素有多少个?答案 2个.集合中的元素互不相同,这叫元素的互异性.思考3 “中国的直辖市”构成的集合中,元素包括哪些?甲同学说:北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他们的回答都正确吗?由此说明什么?怎么说明两个集合相等?答案 两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的,由此说明集合中的元素是无先后顺序的,这就是元素的无序性,只要构成两个集合的元素一样,我们就称这两个集合是相等的.确定性互异性无序性一般地,元素的三个特性是指 、 、.①确定性:集合中的元素必须是确定的。
高一数学必修一各章知识:集合的中元素的三个特
高一数学必修一各章知识:集合的中元素的三个特高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
高中数学必修一集合知识点总结
必修一第一章 集合与函数概念一、集合知识点1:集合的含义1》元素的含义:我们把研究对象称为元素,把一些元素组成的总体叫做集合 2》集合的表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C …表示, 而元素用小写的拉丁字母a,b,c …表示。
列举法:A={a,b,c}3》集合相等:构成两个集合的元素完全一样。
知识点2:集合元素的特征以及集合与元素之间的关系 1》集合的元素特征:①确定性:给定一个集合,一个元素在不在这个集合中就确定了。
②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}③无序性:即集合中的元素无顺序,可以任意排列、调换。
2》元素与集合的关系有“属于∈”及“不属于∉两种) ①若a 是集合A 中的元素,则称a 属于集合A a ∈A ; ②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。
注意:常见数集 ①非负整数集(或自然数集),记作N ; ②正整数集,记作N *或N +; ③整数集,记作Z ; ④有理数集,记作Q ; ⑤实数集,记作R ;典例分析题型1:判断是否形成集合例1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数; (2)我国的小河流; (3)非负奇数; (4)方程x 2+1=0的解; (5)某校2011级新生; (6)血压很高的人; 题型2:集合中元素的互异性的考察 例1:由实数-a, a,a,a2, -5a5为元素组成的集合中,最多有_______个元素,分别为__________。
题型3:集合与元素之间关系的考察 例1:用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4;(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。
题型4:根据元素互异性确定参数的值: 例1:已知A={ 33,)1(,222+++-a a a a },若1∈A ,则实数a 的值为_________.知识点3:集合的表示方法【1】列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义学员编号:年 级: 辅导科目: 课时数:3课 题 集合的含义与表示,集合的基本关系教学目的1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.掌握集合的两种常用表示方法(列举法和描述法)5.理解子集、真子集概念;6.会判断和证明两个集合包含关系;7.理解“或 ”、“ 且 ”的含义;8.会判断简单集合的相等关系;教学内容 一、课前检测:1、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不能,因为不确定)(2)好心的人 (不能,因为不确定)(3)1,2,2,3,4,5.(不能,因为有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、用描述法表示下列集合①{1,4,7,10,13} 答案:}5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} 答案: }5,2|{≤∈-=n N n n x x 且5、用列举法表示下列集合①{x ∈N|x 是15的约数} 答案:{1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}答案:{(1,1),(1,2),(2,1)(2,2)}二、知识梳理:1、集合的含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
说明:(1)在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
2、集合元素的三个特征(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
如A={2,4,8,16},则4∈A,8∈A,32∉A.(请学生填充)。
(2)互异性:即同一集合中不应重复出现同一元素。
说明:一个给定集合中的元素是指属于这个集合的互不相同的对象.因此,以后提到集合中的两个元素时,一定是指两个不同的元素. 如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}(3)无序性:即集合中的元素无顺序,可以任意排列,调换. 。
3.常见数集的专用符号N:非负整数集(自然数集)N*或N+:正整数集,N内排除0的集Z:整数集Q:有理数集R:全体实数的集合4、集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号里的方法.说明:(1)书写时,元素与元素之间用逗号分开;(2)一般不必考虑元素之间的顺序;(3)在表示数列之类的特殊集合时,通常仍按惯用的次序;(4)在列出集合中所有元素不方便或不可能时,可以列出该集合的一部分元素,以提供某种规律,其余元素以省略号代替;例1.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除而且大于4小于15的自然数组成的集合;(3)从51到100的所有整数的集合;(4)小于10的所有自然数组成的集合;=的所有实数根组成的集合;(5)方程2x x(6)由1~20以内的所有质数组成的集合。
(2)描述法:用集合所含元素的共同特征表示集合的方法(即把集合中元素的公共属性描述出来, 写在大括号里的方法)。
表示形式:A={x ∣p},其中竖线前x 叫做此集合的代表元素;p 叫做元素x 所具有的公共属性;A={x ∣p}表示集合A 是由所有具有性质P 的那些元素x 组成的,即若x 具有性质p ,则x ∈A ;若x ∈A,则x 具有性质p 。
说明: (1)有些集合的代表元素需用两个或两个以上字母表示;(2)应防止集合表示中的一些错误。
如,把{(1,2)}表示成{1,2}或{x=1,y=2},{x ∣1,2},用{实数集}或{全体实数}表示R 。
例2.用描述法表示下列集合:例3.试分别用列举法和描述法表示下列集合:5、集合的分类集合的分类:::()empty set ⎧⎪⎨⎪∅-⎩有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含有任何元素的集合6、文氏图集合的表示除了上述两种方法以外,还有文氏图法,叙述如下:画一条封闭的曲线,用它的内部来表示一个集合,如图所示:表示任意一个集合A 表示{3,9,27}说明:边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.7、子集定义:一般地,对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,记作A ⊆B (或B ⊇A ),即若任意x ∈A,有x ∈B ,则A ⊆B(或A ⊂B)。
这时我们也说集合A 是集合B 的子集。
如果集合A 不包含于集合B ,或集合B 不包含集合A,就记作A B (或B A ),即:若存在x ∈A,有x ∉B ,则A B(或B A)说明:A ⊆B 与B ⊇A 是同义的,而A ⊆B 与B ⊆A 是互逆的。
规定:空集∅是任何集合的子集,即对于任意一个集合A 都有∅⊆A 。
(1) 由适合x 2-x-2>0的所有解组成的集合; (2) 到定点距离等于定长的点的集合; (3) 抛物线y=x 2上的点; (4) 抛物线y=x 2上点的横坐标; (5) 抛物线y=x 2上点的纵坐标; (1)方程220x -=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。
例4.判断下列集合的关系.(1) N_____Z; (2) N_____Q; (3) R_____Z; (4) R_____Q;(5) A={x| (x-1)2=0}, B={y|y2-3y+2=0};(6) A={1,3}, B={x|x2-3x+2=0};(7) A={-1,1}, B={x|x2-1=0};(8)A={x|x是两条边相等的三角形} B={x|x是等腰三角形}。
问题3:观察(7)和(8),集合A与集合B的元素,有何关系?⇒集合A与集合B的元素完全相同,从而有:8、集合相等定义:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素(即A⊆B),同时集合B的任何一个元素都是集合A的元素(即B⊆A),则称集合A等于集合B,记作A=B。
如:A={x|x=2m+1,m∈Z},B={x|x=2n-1,n∈Z},此时有A=B。
问题4:(1)集合A是否是其本身的子集?(由定义可知,是)(2)除去∅与A本身外,集合A的其它子集与集合A的关系如何?(包含于A,但不等于A)9、真子集:由“包含”与“相等”的关系,可有如下结论:(1)A⊆A (任何集合都是其自身的子集);(2)若A⊆B,而且A≠B(即B中至少有一个元素不在A中),则称集合A是集合B的真子集,记作A⊂≠ B。
(空集是任何非空集合的真子集)(3)对于集合A,B,C,若A B,B C,即可得出A C;对A⊂≠ B,B⊂≠ C,同样有A⊂≠ C, 即:包含关系具有“传递性”。
10、证明集合相等的方法:(1)证明集合A,B中的元素完全相同;(具体数据)(2)分别证明A⊆B和B⊆A即可。
(抽象情况)对于集合A,B,若A⊆B而且B⊆A,则A=B。
例5.判断下列两组集合是否相等?(1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}例6.(教材P7例3)写出{a,b}的所有子集,并指出其中哪些是它的真子集.例7.解不等式x-3>2,并把结果用集合表示。
结论:一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个,其非空子集数为2n-1个,其非空真子集数为2n-2个,特别地,空集的子集个数为1,真子集个数为0。
三、重难点突破:例1(1)写出N,Z,Q,R的包含关系,并用文氏图表示(2)判断下列写法是否正确A⊆④A A①Φ⊆A ②Φ A ③A解(1):N⊂Z⊂Q⊂R(2)①正确;②错误,因为A可能是空集③正确;④错误例2 (1)填空:N___Z, N___Q, R___Z, R___Q,Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗?(3)是否对任意一个集合A ,都有A ⊆A ,为什么?(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 .解:(1)N ⊂Z, N ⊂Q, R ⊃Z, R ⊃Q , Φ{0}(2)∵A={x ∈R|x 2-3x-4=0}={-1,4},B={x ∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A ⊆B 正确(3)对任意一个集合A ,都有A ⊆A ,(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}(5)A 、B 的关系为B A ⊆.例3 解不等式x+3<2,并把结果用集合表示出来.解:{x ∈R|x+3<2}={x ∈R|x<-1}.例4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+-且22222,2ba b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G四、课堂练习1.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个2.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个4.用符号“∈”或“∉”填空(1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3)2323-++________{}|6,,x x a b a Q b Q =+∈∈5. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C AB =,则C 的 非空子集的个数为 。