带电粒子在电场中的运动(含答案)
微型专题03 带电粒子在电场中的运动(四种题型)(练习题)(解析版)

第十章静电场中的能量微型专题3 带电粒子在电场中的运动(四种题型)一、单选题:1.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图1所示。
则此电场的电场线分布可能是( )【解析】从v-t图象可以看出物体的速度逐渐减小,图线的斜率逐渐增大,v-t图线中图线的斜率表示物体的加速度大小,故物体做加速度逐渐增大的减速运动,所以带负电的粒子顺着电场线运动,电场力做负功,速度逐渐减小,且电场线沿粒子运动方向逐渐密集,故选项A正确,选项B、C、D错误。
【答案】A2.如图所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【答案】D【解析】两平行金属板水平放置时,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.3.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.14【答案】C【解析】电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(Lv)2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.4.一匀强电场的电场强度E 随时间t 变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t =0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)( )A.带电粒子只向一个方向运动B.0~2 s 内,电场力做功等于0C.4 s 末带电粒子回到原出发点D.2.5~4 s 内,电场力做功等于0 【答案】D【解析】画出带电粒子速度v 随时间t 变化的图象如图所示,v-t图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s 末带电粒子不能回到原出发点,A、C错误;2 s末速度不为0,可见0~2 s内电场力做的功不等于0,B错误;2.5 s末和4 s末,速度的大小、方向都相同,则2.5~4 s内,电场力做功等于0,所以D正确.5.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则下列说法正确的是( )A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒【答案】B【解析】由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A错,B对;从a→b,电场力做负功,电势能增大,C 错;由于有电场力做功,机械能不守恒,D错.6.如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab 长为s,竖直边ad长为h.质量均为m、带电量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v0等于( )A.s22qEmhB.s2qEmhC.s42qEmhD.s4qEmh【答案】B【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd的中心,则在水平方向有1 2s=v0t,在竖直方向有12h=12·qEm·t2,解得v0=s2qEmh,故选项B正确,选项A、C、D错误.7.如图甲所示,Q1、Q2为两个被固定的点电荷,a、b、c三点在它们连线的延长线上,其中Q1带负电。
第10讲-【答案解析】带电粒子在电场中的运动

例7
答案: ACD
解答:
A
.由
qU1
=
1 2
mv02
可知,其他条件不变时,当 U1
变大,则电子进入偏转电场的速度变大,故
A
正确
B
.设偏转极板的长度为
L
,由
qU1
=
1 2
mv02
,t
=
L v0
,得 t
=
L
m 2eU1 ,其他条件不变,当U1 变
大时,运动时间变短,故 B 错误
C
.由
F
=
U2q d
可知, U 2
移相等,根据 y = 1 at 2 ,可知运动时间相等,所以在 b 飞离电场的同时, a 刚好打在负极板上.故 A 正 2
确.
B
、b
、 c 竖直方向上的位移不等,
yc
<
yb
.根据
y
=
1 2
at 2
可知, tc
<
tb
.则知 c
先飞离电
场.故 B 错误. C 、在垂直于电场方向即水平方向,三个粒子做匀速直线运动,则有: v = x .因 t
类比重力场,将电场力与重力的合力视为等效重力 mg′ ,大小为
7
_带电粒子在电场中的运动_参考答案
= mg′
= (qE )2 + (mg )2
2 3mg
,
3
tan=θ q= E 3 ,得θ = 30° , mg 3
等效重力的方向与斜面垂直指向右下方,小球在斜面上做匀速运动。因要使小球能安全通过圆轨道,在圆轨
⋅
m ,与比荷有关,故 C 错误。 q
例9
答案: AC
物理带电粒子在电场中的运动练习题含答案

物理带电粒子在电场中的运动练习题含答案一、高考物理精讲专题带电粒子在电场中的运动1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p vgh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq dt m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mgEq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A gL在D点时,下壁对球的支持力2022vF m mgr==由牛顿第三定律,22F F mg=='方向竖直向下.(3)小物体由P点运动到A点做匀加速直线运动,设所用时间为t1,则:211222L gt=解得12Ltg=小球在圆管内做匀速圆周运动的时间为t2,则:2323244Ar Ltv gππ⋅==小球离开管后做类平抛运动,物块从B到N的过程中所用时间:322Ltg=则:24ttππ=+【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图所示,在直角坐标系x0y平面的一、四个象限内各有一个边长为L的正方向区域,二三像限区域内各有一个高L,宽2L的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L,L<y<2L的区域内,有沿y轴正方向的匀强电场.现有一质量为四电荷量为q的带负电粒子从坐标(L,3L/2)处以初速度v沿x轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.【答案】(1)2mvEqL=(2)04nmvBqL=n=1、2、3 (3)2Ltvπ=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有:0L v t=,2122Lat=,qE ma=联立解得:2mvEqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为2π.则有222x R,此时满足()221L n x=+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、 3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==5.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
2020届高考物理小题狂练13:带电粒子在电场中运动(附解析)

2020届高考物理小题狂练13:带电粒子在电场中运动(附解析)一、考点内容(1)带电粒子在匀强电场中的运动;(2)示波管、常见电容器;(3)电容器的电压、电荷量和电容的关系等。
二、考点突破1.(多选)如图所示,水平放置的平行板电容器,上板带负电,下板带正电,断开电源后一带电小球以速度v水平射入电场,且沿下板边缘飞出,若下板不动,将上板上移一小从原处飞入,则带电小球()段距离,小球仍以相同的速度vA.将打在下板中央B.仍沿原轨迹由下板边缘飞出C.不发生偏转,沿直线运动D.若上板不动,将下板上移一段距离,小球可能打在下板的中央2.如图所示,R是一个定值电阻,A、B为水平正对放置的两块平行金属板,两板间带电微粒P处于静止状态,则下列说法正确的是()A.若增大A、B两金属板的间距,则有向右的电流通过电阻RB.若增大A、B两金属板的间距,P将向上运动C.若紧贴A板内侧插入一块一定厚度的金属片,P将向上运动D.若紧贴B板内侧插入一块一定厚度的陶瓷片,P将向上运动3.(多选)如图所示,正方体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料。
ABCD 面带正电,EFGH 面带负电。
从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴,最后分别落在1、2、3三点,则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间一定相同C .三个液滴落到底板时的速率相同D .液滴3所带电荷量最多4.一匀强电场的方向竖直向上,t =0时刻,一带电粒子以一定初速度水平射入该电场,电场力对粒子做功的功率为P ,不计粒子重力,则P -t 关系图象是( )5.如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A .动能增加12mv 2B .机械能增加2mv 2C .重力势能增加32mv 2D .电势能增加2mv 26.(多选)A 、B 两带电小球置于光滑绝缘水平面上,空间存在平行于水平面的匀强电场,将A 、B 两小球分别沿如图所示轨迹移动到同一电场线上的不同位置。
带电粒子在电场中的运动计算题(含答案)

带电粒子在电场中的运动1、(1)匀强电场场强E的大小、方向如何?(2)试探电荷+q放在点c时,受力F c的大小、方向如何?(3)试探电荷+q放在点b时,受力F b的大小、方向如何?【解析】试题分析:(1)由题意可知:①②由,所以,,匀强电场方向沿db方向.(2)试探电荷放在c点:所以方向与ac方向成45°角斜向下(如右图所示).(3)试探电荷放在b点:所以,方向沿db方向.考点:考查了电场的叠加点评:根据点电荷场强的计算公式及电场叠加原理即可求解.2、如图所示,在一足够大的空间内存在着水平向右的匀强电场,电场强度大小E=3.0×104N/C。
有一个质量m=4.0×10-3kg的带电小球,用绝缘轻细线悬挂起来,静止时细线偏离竖直方向的夹角θ=37°。
取g=10m/s2,sin37°=0.60,cos37°=0.80,不计空气阻力的作用。
求:(1)求小球所带的电荷量及电性;(2)如果将细线轻轻剪断,求细线剪断后,小球运动的加速度大小;(3)从剪断细线开始经过时间t=0.20s,求这段时间内小球电势能的变化量。
【解析】试题分析:(1)小球受到重力mg、电场力F和细线的拉力T的作用,由共点力平衡条件,得F=qE=mgtanθ解得q=mgtanθ/E=1.0×10-6C电场力的方向与电场强度的方向相同,故小球所带电荷为正电荷(2)剪断细线后,小球做匀加速直线运动,设其加速度为a,由牛顿第二定律,得=ma解得a==12.5m/s2(3)在t=0.20s的时间内,小球的位移为l==0.25m小球运动过程中,电场力做的功W=qElsinθ=mglsinθtanθ=4.5×10-3J所以小球电势能的变化量(减少量)ΔE p=4.5×10-3J。
考点:考查了共点力平衡条件的运动点评:本题的综合性较强,关键是根据受力分析,结合牛顿第二定律解题3、如图所示,一根长L=1.5m的光滑绝缘细直杆MN,竖直固定在场强为E=1.0×105N/C、与水平方向成θ=30°角的倾斜向上的匀强电场中。
带电粒子在电场中的运动(含解析)

带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02 非匀强电场中:W =qU =E k2-E k1●带电粒子在匀强电场中的直线运动【例1】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图6A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【答案】A【解析】根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =Q U和匀强电场的电压与电场强度的关系式U =Ed 可得E = 4πkQ εr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.【变式1】 两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh U B .edUh C.eU dh D.eUh d【答案】D【解析】由动能定理得:-e U d h =-E k ,所以E k =eUh d,故D 正确. 二、带电粒子在交变电场中的直线运动【例2】 匀强电场的电场强度E 随时间t 变化的图象如图所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度不为零D .0~3 s 内,电场力做的总功为零【答案】D【解析】由牛顿第二定律可知带电粒子在第1 s 内的加速度和第2 s 内的加速度的关系,因此粒子将先加速1 s 再减速0.5 s ,速度为零,接下来的0.5 s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知前2 s 内的位移为负,故选项B 错误;由图象可知3 s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3 s 内,电场力做的总功为零,故选项D 正确.●带电粒子在电场力和重力作用下的直线运动问题【例3】如图所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的点电荷从两极板正中间处静止释放.重力加速度为g .则点电荷运动到负极板的过程( )A .加速度大小为a =Eq m+g B .所需的时间为t =dm Eq C .下降的高度为y =d 2D .电场力所做的功为W =Eqd 【答案】B【解析】点电荷受到重力、电场力的作用,所以a =(Eq )2+(mg )2m ,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,则d 2=12Eq mt 2,解得t =md Eq ,选项B 正确;下降高度y =12gt 2=mgd 2Eq,选项C 错误;电场力做功W =Eqd 2,选项D 错误. 【例4】如图所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b 沿直线运动到d ,且bd 与竖直方向所夹的锐角为45°,则下列结论不正确的是( )A .此液滴带负电B .液滴的加速度大小为2gC .合力对液滴做的总功等于零D .液滴的电势能减少【答案】C【解析】带电液滴由静止开始沿bd 做直线运动,所受的合力方向必定沿bd 直线,液滴受力情况如图所示,电场力方向水平向右,与电场方向相反,所以此液滴带负电,故选项A 正确;由图知液滴所受的合力F =2mg ,其加速度为a =F m =2g ,故选项B 正确;因为合力的方向与运动的方向相同,故合力对液滴做正功,故选项C 错误;由于电场力所做的功W 电=Eqx bd sin 45°>0,故电场力对液滴做正功,液滴的电势能减少,故选项D 正确.三、带电粒子在电场中的偏转1.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 02 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 02得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =U dy ,指初、末位置间的电势差.【例5】 质谱仪可对离子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生电荷量为q 、质量为m 的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器(可上下移动).已知a 、b 板间距为d ,极板M 、N 的长度和间距均为L ,a 、b 间的电压为U 1,M 、N 间的电压为U 2.不计离子重力及进入a 板时的初速度.求:(1)离子从b 板小孔射出时的速度大小;(2)离子自a 板小孔进入加速电场至离子到达探测器的全部飞行时间;(3)为保证离子不打在极板上,U 2与U 1应满足的关系.【答案】 (1)2qU 1m (2)(2d +L )m 2qU 1(3) U 2<2U 1 【解析】(1)由动能定理qU 1=12mv 2,得v =2qU 1m (2)离子在a 、b 间的加速度a 1=qU 1md 在a 、b 间运动的时间t 1=v a 1=2m qU 1·d 在MN 间运动的时间:t 2=Lv =L m 2qU 1离子到达探测器的时间:t =t 1+t 2=(2d +L )m 2qU 1; (3)在MN 间侧移:y =12a 2t 22=qU 2L 22mLv 2=U 2L 4U 1由y <L2,得 U 2<2U 1. 【变式2】 如图所示,电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相同的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则下列说法不正确的是( )A .A 和B 在电场中运动的时间之比为1∶2B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1【答案】D【解析】粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2;竖直方向由h =12at 2得a =2h t 2,它们沿竖直方向运动的加速度大小之比为a A ∶a B =4∶1;根据a =qE m 得m =qE a ,故m A m B =112,A 和B 的位移大小不相等,故选项A 、B 、C 正确,D 错误.【变式3】 如图所示,喷墨打印机中的墨滴在进入偏转电场之前会带上一定量的电荷,在电场的作用下带电荷的墨滴发生偏转到达纸上.已知两偏转极板长度L =1.5×10-2 m ,两极板间电场强度E =1.2×106 N/C ,墨滴的质量m =1.0×10-13 kg ,电荷量q =1.0×10-16 C ,墨滴在进入电场前的速度v 0=15 m/s ,方向与两极板平行.不计空气阻力和墨滴重力,假设偏转电场只局限在平行极板内部,忽略边缘电场的影响.(1)判断墨滴带正电荷还是负电荷?(2)求墨滴在两极板之间运动的时间;(3)求墨滴离开电场时在竖直方向上的位移大小y .【答案】(1)负电荷 (2)1.0×10-3 s (3)6.0×10-4 m【解析】(1)负电荷.(2)墨滴在水平方向做匀速直线运动,那么墨滴在两板之间运动的时间t =L v 0.代入数据可得:t =1.0×10-3 s(3)离开电场前墨滴在竖直方向做初速度为零的匀加速直线运动,a =Eq m代入数据可得:a =1.2×103 m/s 2离开偏转电场时在竖直方向的位移y =12at 2 代入数据可得:y =6.0×10-4 m.。
带电粒子在电场中运动题目及标准答案(分类归纳经典)

带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
人教版高中物理选修3-1第一章第9节带电粒子在电场中的运动(含解析)

(精心整理,诚意制作)带电粒子在电场中的运动一课一练一、单项选择题1.关于带电粒子(不计重力)在匀强电场中的运动情况,下列说法正确的是( )A.一定是匀变速运动B.不可能做匀减速运动C.一定做曲线运动D.可能做匀变速直线运动,不可能做匀变速曲线运动解析:选A.带电粒子在匀强电场中受到的电场力恒定不变,可能做匀变速直线运动,也可能做匀变速曲线运动,故选A.2.如图所示,质子(1H)和α粒子(42He),以相同的初动能垂直射入偏转电场(粒子不计重力),则这两个粒子射出电场时的侧位移y之比为( )A.1∶1 B.1∶2C.2∶1 D.1∶4解析:选B.由y=12EqmL2v20和E k0=12m v20,得:y=EL2q4Ek0可知,y与q成正比,故选B.3.(20xx·济南第二中学高二检测)如图所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行板电场中的P点以相同的初速度垂直于E进入电场,它们分别落到A、B、C三点( )A.落到A点的小球带正电,落到B点的小球不带电B.三小球在电场中运动的时间相等C.三小球到达正极板时动能关系是E k A>E k B>E k CD.三小球在电场中运动的加速度关系是a A>a B>a C解析:选A.初速度相同的小球,落点越远,说明运动时间越长,竖直方向加速度越小.所以A、B、C三个落点上的小球的带电情况分别为带正电、不带电、带负电.故选A.4.如图所示,两金属板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出.现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的( )A.2倍B.4倍C.12D.14解析:选C.电子在两极板间做类平抛运动,水平方向l=v0t,t=lv0,竖直方向d=12at2=qUl22mdv20,故d2=qUl22mv20,即d∝1v0,故选C.5.(20xx·高考广东卷)喷墨打印机的简化模型如图所示.重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( )A.向负极板偏转 B.电势能逐渐增大C.运动轨迹是抛物线 D.运动轨迹与带电量无关解析:选C.带电微滴垂直进入电场后,在电场中做类平抛运动,根据平抛运动的分解——水平方向做匀速直线运动和竖直方向做匀加速直线运动.带负电的微滴进入电场后受到向上的静电力,故带电微滴向正极板偏转,选项A错误;带电微滴垂直进入电场受竖直方向的静电力作用,静电力做正功,故墨汁微滴的电势能减小,选项B错误;根据x=v t,y=12at2及a=qEm,得带电微滴的轨迹方程为y=qEx22mv2,即运动轨迹是抛物线,与带电量有关,选项C正确,D错误.6.两平行金属板相距为d,电势差为U,一电子质量为m、电荷量为e,从O点沿垂直于极板的方向射入电场,最远到达A点,然后返回,如图所示,OA 间距为h,则此电子的初动能为( )A.edhUB.dUehC.eUdhD.eUhd解析:选D.电子从O点到达A点的过程中,仅在电场力作用下速度逐渐减小,根据动能定理可得-eU OA=0-E k,因为U OA=Udh,所以E k=eUhd,故选D.☆7.图甲为示波管的原理图.如果在电极YY′之间所加的电压按图乙所示的规律变化,在电极XX′之间所加的电压按图丙所示的规律变化,则在荧光屏上会看到的图形是图A、B、C、D中的( )解析:选B.由题图乙及题图丙知,当U Y为正时,Y板电势高,电子向Y 偏,而此时U X为负,即X′板电势高,电子向X′板偏,故选B.8.(20xx·江苏天一中学高二测试)如图所示,M、N是真空中的两块平行金属板.质量为m、电荷量为q的带电粒子,以初速度v0由小孔进入电场,当M、N间电压为U时,粒子恰好能到达N板.如果要使这个带电粒子到达M、N板间距的1/2后返回,下列措施中能满足要求的是(不计带电粒子的重力)( )A.使初速度减为原来的1/2B.使M、N间电压加倍C.使M、N间电压提高到原来的4倍D.使初速度和M、N间电压都减为原来的1/4解析:选B.由题意知,带电粒子在电场中做减速运动,在粒子恰好能到达N板时,由动能定理可得:-qU=-12m v20要使粒子到达两极板中间后返回,设此时两极板间电压为U1,粒子的初速度为v1,则由动能定理可得:-q U12=-12m v21联立两方程得:U12U=v21v20可见,选项B符合等式的要求.故选B.9.竖直放置的平行金属板A、B连接一恒定电压,两个电荷M和N以相同的速率分别从极板A边缘和两板中间沿竖直方向进入板间电场,恰好从极板B边缘射出电场,如图所示,不考虑电荷的重力和它们之间的相互作用,下列说法正确的是( )A.两电荷的电荷量相等B.两电荷在电场中运动的时间相等C.两电荷在电场中运动的加速度相等D.两电荷离开电场时的速度大小相等解析:选B.由t=Lv0知两电荷运动时间相等,故B正确;由y=12at2和y M=2y N知,两电荷加速度不等,故C错误;由a=qEm知,仅当m M=12m N时,两电荷量相等,故A错误;由v y=at知,v yM≠v yN,则合速度不等,故D错误.故选B.☆10.如图所示是一个说明示波管工作原理的示意图,电子经电压U1加速后垂直进入偏转电场,离开电场时的偏转量是h,两平行板间的距离为d,电势差为U2,板长为L .为了提高示波管的灵敏度(每单位电压引起的偏转量hU2),可采用的方法是( )A .增大两板间的电势差U 2B .尽可能使板长L 短些C .尽可能使板间距离d 小一些D .使加速电压U 1升高一些解析:选C.电子的运动过程可分为两个阶段,即加速和偏转.分别根据两个阶段的运动规律,推导出灵敏度⎝ ⎛⎭⎪⎫h U2的有关表达式,然后再判断选项是否正确,这是解决此题的基本思路.电子经电压U 1加速有eU 1=12m v 20,电子经过偏转电场的过程有L =v 0t ,h =12at 2=eU22md t 2=U2L24dU1.由以上各式可得h U2=L24dU1.因此要提高灵敏度,若只改变其中的一个量,可采取的办法为增大L ,或减小d ,或减小U 1.故选C.二、非选择题 11.在如图所示的示波器的电容器中,电子以初速度v 0沿着垂直场强的方向从O 点进入电场,以O 点为坐标原点,沿x 轴取OA =AB =BC ,再过点A 、B 、C 作y 轴的平行线与电子径迹分别交于M 、N 、P 点,求AM ∶BN ∶CP 和电子途经M 、N 、P 三点时沿x 轴的分速度之比.解析:电子在电场中做类平抛运动,即在x 轴分方向做匀速直线运动,故M 、N 、P 三点沿x 轴的分速度相等,v Mx ∶v Nx ∶v Px =1∶1∶1又OA =AB =BC 所以t OA =t AB =t BC根据电子沿-y 方向做匀加速运动,由y =12at 2得:AM ∶BN ∶CP =1∶4∶9.答案:1∶4∶9 1∶1∶1 ☆12.如图所示虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x .解析:(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第二定律和运动学公式得:a 1=eE1m =eE mL 2=12a 1t 21 v 1=a 1t 1t 2=2L v1运动的总时间为t =t 1+t 2=3mLeE.(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,根据牛顿第二定律得,电子在电场中的加速度为a 2=eE2m =2eE mt 3=L v1v y =a 2t 3tan θ=vy v1解得:tan θ=2.(3)如图,设电子在电场中的偏转距离为x 1x 1=12a 2t 23tan θ=x2L解得:x =x 1+x 2=3L .答案:(1)3mLeE(2)2 (3)3L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中的运动
1.如图所示,两块竖直的彼此绝缘平行金属板A 、B ,两板间距离为d ,让A 、B 两板连接到直流电源上,能在AB 间形成一个匀强电场.一个带电量为q ,质量为m 的小球用绝缘细线悬挂在电场中,带电小球对原电场没有影响.平衡时细线偏离竖直方向夹角30°.求: (1)带电小球带电的性质和AB 间的电场强度;
(2)若保持AB 间电压不变,将AB 间距离变为3d
,再次稳定后细线偏角为多少?
答案及解析:
1.解:(1)小球带负电.(2分) o
mg F 30tan = (1分) F=Eq (1分)
解得
q mg
E 33=
(2分)
保持AB 间电压保持不变,则有
E d U
E 3='=
'(2分)
q E F '=' 3t a n ='
=mg F θ o 60=θ(2分)
2.如图所示,带负电的小球静止在水平放置的平行板电容器两板间,距下板0.8cm ,两板间的电势差为300V ,如果两板间电势差减小到60V ,则带电小球运动到极板上需多长时间?(g=10m/s2)
答案及解析:
7.取带电小球为研究对象,设它带电荷量为q ,则带电小球受重力mg 和电场力qE 的作用.
3.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d=
4.0cm 。
电源电动势E=400V ,内电阻r=20Ω,电阻R1=1980Ω。
闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板。
若小球所带电荷量q=1.0×10-7C ,质量m=2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g=10m/s2。
求: (1)A 、B 两金属板间的电压的大小U ; (2)滑动变阻器消耗的电功率P 滑; (3)电源的效率η。
答案及解析:
9.解:(1)小球从B 板上的小孔射入恰好到达A 板的过程中,
-qU- mgd=0 - 21
mv02 得U=200V……………………(2分)
(2) I=
r
R R E ++滑1 U=IR 滑 R 滑=2.0×103Ω…………(2分)
滑动变阻器消耗的电功率 滑
滑R U P 2
=
=20W……………(2分)
(3)电源的效率
%
5.99)
()(1212=+++==r R R I R R I P P 滑滑总出
η………………………(2分)
4.如图所示为两组平行金属板,一组竖直放置,一组水平放置,今有一质量为m
的电子静止在竖直放置的平行金属板的A 点,经电压U 0加速后通过B 点进入两
板间距为d、电压为U的水平放置的平行金属板间。
若电子从两块水平平行金属板的正中间射入,且最后电子刚好能从右侧的两块平行金属板穿出,A、B分别为两块竖直板的中点。
已知元电荷为e,求:
(1)电子通过B点时的速度大小;
(2)右侧平行金属板的长度;
(3)电子穿出右侧平行金属板时的动能和速度方向。
5.如图所示,电荷量为e、质量为m的电子经电压U1的电场加速,从两极间中点进入平行板电容器中,电子刚进入两极板时的速度跟电场线方向垂直。
两极板间的电势差为U2,两
极板长为L1,间距为d 。
电子离开偏转电场后做匀速直线运动(不考虑电容器外的电场),打在距极板为L2的荧光屏上的P 点。
求: (1)电子进入偏转电场时的初速度v0; (2)电子飞出偏转电场时沿电场线的偏移量y ; (3)P 点偏离荧光屏中央O 的距离Y 。
答案及解析:
2.1
02eU v m =
2211U L y 4U d = 21121U L Y (L 2L )4U d +=
(1)电子在加速电场中只有电场力对电子做功,加速时由动能定理可得:2
101eU mv 0
2-=
得电子进入偏转电场的速度为:
1
02eU v m =
;
(2)电子在偏转电场中做类平抛运动,由平抛运动可得电子在水平方向做匀速直线运动, 故有:
10L v t
=
得电子在偏转电场中运动的时间为:
10L t v =
电子在偏转电场中的加速度为:
2eU a md =
所以电子离开偏转电场时的侧位移为:2
22212101eU L U L 11y at 22md v 4U d ⎛⎫
=
⎪⎝⎭==;
(3)平抛运动出电容器时竖直分速度为:
y v at
=
则电子射出偏转电场时速度的偏向角的正切:y 21
1v U L tan v 2U d θ=
=
电子离开偏转电场后做匀速运动,
在打到荧光屏上的这段时间内,竖直方向上发生的位移为:
21221U L L y 'L tan 2U d θ==
所以电子打到荧光屏上时的侧移为:21
121U L Y y y (L 2L )4U d +'+==。
6.如图,水平放置的两平行金属板,板长L0=10cm,两极板间距d=2cm,一束电子以v0=4×107m/s的初速度从两板中央水平射入板间,然后从板间飞出射到距离板L=45cm,宽D=20cm竖直放置的荧光屏上(不计重力,荧光屏中点在两板间的中央线上,电子质量为m=0.91×10﹣30kg,电荷量e=1.6×10﹣19C).求:
(1)若电子飞入两板前,是从静止开始经历了加速电场的加速,则该电场的电压为多大?(2)为了使带电粒子能射中荧光屏所有的位置,两板间所加的电压应取什么范围?
答案及解析:
解:(1)设加电场的电压为U1,由动能定理得:
eU1=①
代入数据解得.
(2)设所加电压为U2时,电子恰好能打在荧光屏的上边缘,电子的轨迹恰好与上极板边缘相切,则由类平抛运动规律及几何知识可得:
③
其中y为电子在电场中的偏转位移.
又y=④
且y=⑤
由③④⑤可得:U2=,代入数据解得U2=364V
同理要使电子能打在荧光屏下边缘应加反向电压364V ⑦
所以两板间所加电压范围为:﹣364V≤U2≤364V ⑧
答:(1)电子飞入两板前所经历的加速电场的电压是4.55×103V.
(2)为了使带电粒子能射中荧光屏所有位置,两板间所加电压应取的范围是:﹣
364V≤U2≤364V .
7.如图所示,电荷量为-e ,质量为m 的电子从A 点沿与电场垂直的方向进入匀强电场,初速度为
0v ,当它通过电场中B 点时,速度与场强方向成0150角,不计电子的重力,求:
(1)电子经过B 点的速度多大; (2)AB 两点间的电势差多大。
答案及解析:
8..如图所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行且向下,一质量为m 、电荷量为q 的带正电粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,并由Q 点射
出电场,已知OP=L,OQ=23L,不计粒子重力.求:
(1)粒子在第一象限中运动的时间.
(2)粒子离开第一象限时速度方向与x轴的夹角.
答案及解析:
9.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:
(1)M、N两点间的电势差UMN;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t. 答案及解析:
6.
10.如图所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m
q =4×10-10 kg/C 的带正电粒子从x 轴上的A 点以初速度v0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求:
(1)粒子经过y 轴时的位置到原点O 的距离
(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入电场后的运动情况.)
答案及解析:
3.0.4m B≥(22+2)×10-2T
(1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,
y=v0t
联立解得a=1.0×1015m/s2;t=2.0×10-8s;y=0.4m
(2)粒子经过y轴时在电场方向的分速度为:
vx=at=2×107m/s
要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周运动的轨道半径为R,
联立解得B≥(22+2)×10-2T.。