线性规划地灵敏度分析资料报告实验资料报告材料

合集下载

实验二___线性规划灵敏度分析

实验二___线性规划灵敏度分析

实验二线性规划模型及灵敏度分析(一)实验目的:掌握使用Excel软件进行灵敏度分析的操作方法。

(二)实验内容和要求:用Excel软件完成案例。

(三)实例操作:(1)建立电子表格模型;(2)使用Excel规划求解功能求解问题并生成“敏感性报告”;(3)结果分析:哪些问题可以直接利用“敏感性报告”中的信息求解,哪些问题需要重新规划求解,并对结果提出你的看法;(4)在Word文档中书写实验报告,包括线性规划模型、电子表格模型、敏感性报告和结果分析等。

案例1 市场调查问题某市场调查公司受某厂的委托,调查消费者对某种新产品的了解和反应情况。

该厂对市场调查公司提出了以下要求:(1)共对500个家庭进行调查;(2)在被调查家庭中,至少有200个是没有孩子的家庭,同时至少有200个是有孩子的家庭;(3)至少对300个被调查家庭采用问卷式书面调查,对其余家庭可采用口头调查;(4)在有孩子的被调查家庭中,至少对50%的家庭采用问卷式书面调查;(5)在没有孩子的被调查家庭中,至少对60%的家庭采用问卷式书面调查。

对不同家庭采用不同调查方式的费用如下表所示:市场调查费用表家庭类型调查费用(元)问卷式书面调查口头调查有孩子的家庭50 30没有孩子的家庭40 25问:市场调查公司应如何进行调查,使得在满足厂方要求的条件下,使得总调查费用最少?案例2 经理会议建议的分析某公司生产三种产品A1,A2,A3,它们在B1,B2两种设备上加工,并耗用C1,C2两种原材料,已知生产单位产品耗用的工时和原材料以及设备和原材料的每天最多可使用量如下表所示:生产三种产品的有关数据资源产品A1 产品A2 产品A3 每天最多可使用量设备B1(min) 1 2 1 430设备B2(min) 3 0 2 460原料C1(kg) 1 4 0 420原料C2(kg) 1 1 1 300每件利润(元) 30 20 50已知每天对产品A2的需求不低于70件,对A3不超过240件。

实验2 线性规划的灵敏性分析

实验2  线性规划的灵敏性分析

实验2 线性规划的灵敏性分析实验类型:●验证性实验○综合性实验实验目的:熟练线性规划的灵敏性分析。

实验内容:线性规划的灵敏性分析4个(题目自选b,c,A灵敏性分析)实验原理在线性规划单纯形法求出最优解的情况下,分析b,c,A分别变化对最优解的影响,确定最优解或最有基德变化范围,在变化的情况下能求出最优解。

实验步骤1 要求上机实验前先编写出程序代码2 编辑录入程序3 调试程序并记录调试过程中出现的问题及修改程序的过程4 经反复调试后,运行程序并验证程序运行是否正确。

5 记录运行时的输入和输出。

预习编写程序代码:1)分析b变化对最优解的影响的代码functionyy=lingmiudu(bb,b,b0 ,AA,k)m=length(b);if k==0B=AA(:,1:m);if B*bb>=0flg='the base is optimal'elseflg='the baseis changed'endelsefor i=1:mif AA(i,k)>0d1=-b(i)/AA(i,k);endif AA(i,k)<0d2=-b(i)/AA(i,k);endendld=max(d1)+b0(k);gd=min(d2)+b0(k);flg=[ld,gd];endyy=flg2)分析c变化对最优解的影响的代码:functionyy=lingc(cc,c,A,AA,s gma,xx,k,i)m=length(c);B=AA(1,1:m);if k==0if sgma(i)+cc(i)<0flg=' the base is optimal 'elseflg=' the base is changed 'endelsefor j=1:mif(AA(k,j)>0)&(sgma(j)~=0)c1=sgma(j)/AA(k,j);endif(AA(k,j)<0)&(sgma(j)~=0)c2=sgma(j)/AA(k,j);endendcl=max(c1)+c(xx(k));cg=min(c2)+c(xx(k));flg=[cl,cg];endyy=flg实验报告:根据实验情况和结果撰写并递交实验报告。

线性规划问题及灵敏度分析

线性规划问题及灵敏度分析

实验一 线性规划问题及灵敏度分析实验目的:了解WinQSB 软件在Windows 环境下的文件管理操作,熟悉软件界面内容,掌握操作命令。

用WinQSB 软件求解线性规划,掌握winQSB 软件写对偶规划,灵敏度分析和参数分析的操作方法。

实验每组人数及学时:组人数1人,学时数:4学时 实验环境:装有WinQSB 软件的个人电脑 实验类型:验证性 实验内容:一、 用WinQSB 软件求解线性规划的方法:操作步骤:1.将WinQSB 文件复制到本地硬盘;在WinQSB 文件夹中双击setup.exe 。

2.指定安装WinQSB 软件的目标目录(默认为C:\ WinQSB )。

3. 安装过程需输入用户名和单位名称(任意输入),安装完毕之后,WinQSB 菜单自动生成在系统程序中。

4.熟悉WinQSB 软件子菜单内容及其功能,掌握操作命令。

5.求解线性规划。

启动程序 开始→程序→WinQSB→Linear and Integer Programming 。

6.学习例题 点击File→Load Problem→lp.lpp, 点击菜单栏Solve and Analyze 或点击工具栏中的图标用单纯形法求解,观赏一下软件用单纯形法迭代步骤。

用图解法求解,显示可行域,点击菜单栏Option →Change XY Ranges and Colors,改变X1、X2的取值区域(坐标轴的比例),单击颜色区域改变背景、可行域等8种颜色,满足你的个性选择。

下面结合例题介绍WinQSB 软件求解线性规划的操作步骤及应用。

用WinQSB 软件求解下列线性规划问题:1234max657Z x x x x =+++s.t. 12341234123123431234269260852150730001020,,0,x x x x x x x x x x x x x x x x x x x x +++≤⎧⎪-+-≥⎪⎪++=⎪-≥⎨⎪-≥⎪≤≤⎪⎪≥⎩无约束解:应用WinQSB 软件求解线性规划问题不必化为标准型,如果是可以线性化的模型则先线性化,对于有界变量及无约束变量可以不用转化,只需要修改系统的变量类型即可,对于不等式约束可以在输入数据时直接输入不等式符号。

线性规划实验报告

线性规划实验报告

一、实验目的通过本次实验,了解线性规划的基本原理和方法,掌握线性规划模型的建立和求解过程,提高解决实际问题的能力。

二、实验内容1. 线性规划模型的建立2. 利用Lingo软件进行线性规划模型的求解3. 分析求解结果,进行灵敏度分析三、实验步骤1. 建立线性规划模型以某公司生产问题为例,建立线性规划模型。

设该公司有三种产品A、B、C,每种产品分别需要原材料X1、X2、X3,且原材料的价格分别为p1、p2、p3。

公司拥有一定的生产设备,每种产品的生产需要消耗一定的设备时间,设备时间的价格为p4。

设A、B、C产品的生产量分别为x1、x2、x3,原材料消耗量分别为y1、y2、y3,设备使用量分别为z1、z2、z3。

目标函数:最大化利润Z = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3)约束条件:(1)原材料消耗限制:y1 ≤ 10x1,y2 ≤ 8x2,y3 ≤ 5x3(2)设备使用限制:z1 ≤ 6x1,z2 ≤ 4x2,z3 ≤ 3x3(3)非负限制:x1 ≥ 0,x2 ≥ 0,x3 ≥ 0,y1 ≥ 0,y2 ≥ 0,y3 ≥ 0,z1 ≥ 0,z2 ≥ 0,z3 ≥ 02. 利用Lingo软件进行线性规划模型的求解打开Lingo软件,按照以下步骤输入模型:① 在“Model”菜单中选择“Enter Model”;② 输入目标函数:@max = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3);③ 输入约束条件:@and(y1 <= 10x1, y2 <= 8x2, y3 <= 5x3);@and(z1 <= 6x1, z2 <= 4x2, z3 <= 3x3);@and(x1 >= 0, x2 >= 0, x3 >= 0, y1 >= 0, y2 >= 0, y3 >= 0, z1 >= 0, z2 >= 0, z3 >= 0);④ 在“Model”菜单中选择“Solve”进行求解。

线性规划的灵敏度分析

线性规划的灵敏度分析

实验课程名称运筹学实验项目名称线性规划的灵敏度分析年级 08数学专业应用数学学生姓名吴进强学号 080701110186理学院实验时间:2010 年10 月20日学生实验室守则一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。

二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。

三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。

四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。

五、实验中要节约水、电、气及其它消耗材料。

六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。

七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。

仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。

八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。

九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。

十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。

十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。

学生所在学院:专业:班级:姓名吴进强学号080701110186 实验组无2010-10-2指导教师杨辉成绩实验时间实验项目名称线性规划的灵敏度分析实验目的及要求:1. 运用LINDO,TORA的验证价值系数和左端项变化时的灵敏度分析2. 分析其它参数发生变从时的最优基不变的范围3. 输入模型4 求解保存结果实验(或算法)原理:线性规划单存行法单纯形法是一种迭代算法,其基本原理及主要步骤是:首先设法找到一个(初始)基可行解,然后再根据最优性理论判断这个基可行解是否最优解。

论述:线性规划的灵敏度分析

论述:线性规划的灵敏度分析

论述:线性规划的灵敏度分析论述:线性规划的灵敏度分析。

分析的基本步骤,各参数变化带来的影响以及最优基发⽣改变后相应的处理⽅法。

线性规划的灵敏度分析研究的问题是:研究线性规划模型中aij、bi、cj等参数中的⼀个或⼏个发⽣变化时,问题最优解会发⽣什么变化;研究这些参数在⼀个多⼤范围内变化时,问题的最优解不变。

研究的前提条件:1、原线性规划问题已取得了最优解;2、每次只讨论⼀种参数的变化,⽽参数之间的变化互不关联。

分析的基本步骤:1、将参数的改变通过计算反映到最终单纯形表上来2、检查原问题是否仍为可⾏解3、检查对偶问题是否仍为可⾏解4、按照单纯形表所列情况得出结论活决定继续计算的步骤。

各参数变化带来的影响:1、⾮基变量cj发⽣变化当⽬标函数中cj发⽣变化,将影响最终单纯形表中⾮基变量的检验数。

如果是⾮基变量的价值系数发⽣变化,只影响该⾮基变量的检验数。

如果是基变量的价值系数发⽣变化,将影响所有⾮基变量的检验数。

如果变化后所有的检验数仍然⼩于等于0,则最优解不变;否则,使⽤单纯形法求变化后的新最优解。

2、右端常数项bi发⽣变化当右端常数项发⽣变化时,将影响最优单纯形表中基变量的值。

如果基变量的值仍然都⼤于等于0,则线性规划问题的最优解不变,但是基变量的值将发⽣变化;如果有基变量的值⼩于0,则⽤对偶单纯形法对原最优单纯形表继续求解。

3、增加⼀个变量增加⼀个变量也就是多⽣产⼀种产品。

只需考虑该产品(变量)的检验数是否⼤于0,如果⼤于0则表⽰应该⽣产,⽤单纯形表进⾏求解;如果⼩于等于0则该产品不⽤⽣产,最优解也不发⽣变化。

4、增加⼀个约束条件增加⼀个约束条件,可能影响的只是该约束条件的松弛变量的值。

如果该松弛变量的值⼤于等于0,则线性规划最优解不变;如果该松弛变量的值⼩于0,则⽤对偶单纯形法进⾏计算。

5、aij发⽣变化改变aij只会影响检验数,如果改变后所有的检验数均⼩于等于0,则最优解不变;如果存在检验数⼤于0,则⽤单纯形法进⾏求解。

线性规划的灵敏度分析

线性规划的灵敏度分析
23
,
b3
33
5
1
,
5 1
,
15
1
5,5,15
故有 15 b3 5,b3 在[0,20]上变化时最优基不变。
若线性规划模型是一个生产计划模型,当求出cj或bi 的最大允许变化范围时,就可随时根据市场的变化来掌握 生产计划的调整。
灵敏度分析方法还可以分析工艺系数aij的变化对最优解 的影响,对增加约束、变量或减少约束、变量等情形的分 析,下面以一个例子来说明这些分析方法。
(8)增加新约束 5x1 x2 2x3 10
§2.4 灵敏度分析
Ch2 Dual Problem
Sensitivity Analysis
2023年2月1日星期三 Page 19 of 34
【解】加入松弛变量x4、x5、x6,用单纯形法计算,最优表如2-7所 示。
表2-7
Cj
2 -1
4
0
0
0
b
CB XB x1
x2
x3
x4
x5
x6
4 x3 0 5/7
1
1/7 3/7
0
2
2 x1 1 2/7
0 -1/7 4/7
0
1
0 x6 0 -2
0
0
-1
1
1
λj
0 -31/7 0 -2/7 -20/7 0
§2.4 灵敏度分析 Sensitivity Analysis
Ch2 Dual Problem
2023年2月1日星期三 Page 20 of 34
§2.4 灵敏度分析 Sensitivity Analysis
cj
-2 1
-4
0

浅谈线性规划问题的灵敏度分析

浅谈线性规划问题的灵敏度分析

浅谈线性规划问题的灵敏度分析符龙飞2016年5月15日摘要线性规划是运筹学的一个重要的分支,本文主要讨论有关线性规划问题的灵敏度分析,灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析,在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.因此本文讨论在实际问题中当技术系数、资源系数、价值系数以及增加一个变量和增加一个约束条件时,原问题最优解的变化,对原线性规划问题进行灵敏度分析.关键词:线性规划;灵敏度;最优解AbstractLinear programming is an important branch of operational research, this paper mainly discusses the sensitivity analysis of linear programming, sensitivity analysis of the definition refers to the analysis of the sensitivity of its own because of changes in ambient conditions and displayed on things or to make the whole system of linear programming problems, we assume that the technology of data resources the data value and data vector or matrix elements in the known constant, but in the actual problems in these data are just some forecast data and estimates, the establishment of a linear programming model to deal with practical problems, will not change the data, is not very accurate, may be modified in this paper.When discussing technical factors, in the actual problem of resource factor, value factor and add a variable and add a constraint condition, the original problem of optimal solution Sensitivity analysis of the original linear programming problem.Keywords: Linear programming; sensitivity; optimal solution目录第一章前言 (1)1.1 线性规划问题及线性规划发展史 (1)1.2 灵敏度分析的概念 (1)1.3线性规划模型 (1)1.4灵敏度分析的方法及步骤 (2)1.5 符号说明 (2)第二章技术系数a的变化分析 (3)ij2.1 非基变量系数列向量发生变化 (3)2.2 基变量系数列向量发生变化 (4)第三章资源系数b的变化分析 (7)ic的变化分析 (10)第四章价值系数i4.1 非基变量价值系数变化 (10)4.2基变量价值系数变化 (11)第五章增加新的变量的变化分析 (13)第六章增加新约束条件的变化分析 (16)总结 (18)[参考文献] (19)第一章前言1.1 线性规划问题及线性规划发展史线性规划是我们研究运筹学最基本的也是最重要的问题之一,是运筹学中相对比较成熟的一个重要分支.线性规划是近几十年发展起来的一种数学规划的方法,它主要研究在给定的线性不等式或者线性方程约束条件下,对所求的目标函数在一定意义下的极值问题,使其线性指标最优.它广泛应用于工、商、农、军事、交通运输、经济管理以及计划等各个领域.具有应用广泛、适应性强、计算技术比较简单等特点,线性规划在理论上已经也来越成熟,其应用也越来越广泛和深入[1].线性规划的发展是运筹学史上几代人智慧的结晶.1939年,原苏联数学家康托洛维奇发表了《生产组织与计划中的数学方法》学术报告,首次提出了线性规划问题,但是他没有找到一个统一的求解这类问题的方法,1941年美国学者希奇柯克独立的提出了运输问题这样一类特殊的线性规划问题,1947年,美国学者丹捷格提出求解线性规划的单纯形法和许多相关的理论,为线性规划奠定了理论基础,推动了线性规划的发展.自此以后线性规划在计算上趋向成熟,应用也更加广泛深入[2].1.2 灵敏度分析的概念灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析.在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.如果市场条件发生了变动,价值系数的值就会发生变化,技术系数会随着工艺技术条件的变化而变化,同样,在资源投入量发生变化时,资源系数也会随之发生变化,它的值会根据资源投入后能产出多大经济效果来决定的一种决策选择.因此,当这些数据发生变化时,线性规划的最优目标值或者最优解会发生怎样的变化?或者是不是这些参数在一定的范围内其线性规划问题的最优解不会发生变化?这就是本文我们研究线性规划问题的灵敏度分析所要解决的问题.1.3线性规划模型线性规划模型的标准形式如下:max z CX(0)0AX b b X =≥⎧⎨≥⎩我们在求解线性规划问题时首先就应该把数学模型转化成标准形式.1.4灵敏度分析的方法及步骤要进行灵敏度分析,首先要弄明白的就是上述问题:①当系数发生变化时,最优解或者最优目标值发生变化,我们如何简便地求出新的最优目标值和最优解;②当系数在什么一定范围内,线性规划的最优解是不变的.我们可以将灵敏度度分析归纳为:(1)将参数的改变计算反映到最终单纯形表上来,具体的计算方法是按下列公式计算出由技术参数、资源参数和价值参数的变化引起的最终单纯形表上有关数字的变化,即*1b B b -∆=∆*1j j P B P -∆=∆()()*1mj j j j ij i i c z c z a y =∆-=∆--∑(2)检查原问题是否仍为可行解; (3)检查对偶问题是否仍为可行解.(4)我们可以按照下表1-1所列出的情况得出结论或者得出继续计算的步骤[3].表1-1原问题 对偶问题 结论或者继续计算的步骤 可行解 可行解 表中的解仍为最优解 可行解 非可行解 用单纯法继续迭代求最优解 非可行解 可行解 用对偶单纯形法继续迭代求最优解 非可行解非可行解引入人工变量,编制新的的单纯形表,求最优解1.5 符号说明①ij a 技术数据; ②i b 资源数据; ③j c 价值数据; ④B 最优基; ⑤s .t . 约束条件.第二章 技术系数ij a 的变化分析2.1 非基变量系数列向量发生变化如果我们用最优基B 来说,当非基变量j x 的系数列向量j A 改变为'j j jA A A =+∆就会有变化后的检验数为()'1j j B j j j j c C B A A Y A σσ-=-++∆=+∆ ()1,2,,j n =[4]在这里,对偶可行解为1B Y C B -=,我们要使原来的线性规划最优基B 仍然保持不变的话,必须有'0j σ≥,即j j Y A σ∆≥- ()1,2,,j n =而当()0,,,,0Tj ij P a ∆=∆时,则由上式可得()10,,0im i ij j ij y y y y a a σ⎡⎤⎢⎥⎢⎥⎢⎥=∆≥-∆⎢⎥⎢⎥⎢⎥⎣⎦我们可以导出 当0i y >时,有jij ja y σ∆≥-;当0i y <时,有jij ja y σ∆≤-.例1已知线性规划问题12345max 2300Z x x x x x =---++s .t .()12341234347901,2,3,4,5j x x x x x x x x x j ⎧+++=⎪⎪+++=⎨⎪≥=⎪⎩ 23a 怎样变化时最优解保持不变?解:最终单纯形表如下表2-1j c2- 3- 1-0 0bB C B X 1x2x3x 4x5x2-1x 1 0 1-43 13- 1 3-2x0 1 2 13- 13 2j σ353138Z =-由此表可得[]133323234113312,311331233B cC B p a a σ-⎡⎤-⎢⎥⎡⎤=-=----⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦=+ 32323120233a a σ=+≥⇒≥-所以[232,)a ∈-+∞原最优解保持不变.2.2 基变量系数列向量发生变化仍然对于最优基B 来说,当基变量j x 的系数列向量j A 发生变化的时候,对于基向量B 和它的逆矩阵1B -都会有一定的影响,则线性规划的解的可行性、最优性以及它的最优目标值都会随之发生变化.我们要求出一个一般公式是很难的,因此,我们会用单纯形法重新求解变化后的线性规划问题.对于重新的求解可以在原来的单纯形终表上变换数据后进行迭代[5].例2已知线性规划问题1234max 534Z x x x x =+++s .t .()123412341234232800543412003453100001,2,3,4jx x x x x x x x x x x x x j +++≤⎧⎪+++≤⎪⎨+++≤⎪⎪≥=⎩如果非基变量3x 的系数由135⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦变为141⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,那么原线性规划的最优解是否还是最优?如果不是求出最优.解:由3110431154A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则330115110,,114444Y A σ⎡⎤⎛⎫⎢⎥∆==-<-=- ⎪⎢⎥⎝⎭⎢⎥-⎣⎦因此不满足j j Y A σ∆≥-,那么原线性规划的最优解就不再是最优解了,根据灵敏度分析的步骤,求新的最优解我们应该先求出新的检验数'1'3330130,,111044B c C B A σ-⎡⎤⎛⎫⎢⎥=-+=-+=-< ⎪⎢⎥⎝⎭⎢⎥-⎣⎦所以可以取3x 为进基变量,然后计算1'311111401143312014B A -⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦-⎢⎥⎣⎦用它去替换原线性规划最优单纯形表表2-1的第3列,从而得到表2-2,继续迭代可以得到表2-3,如下表2-1 原线性规划最优单纯形表15341x2x3x4x5x6x7x5x 100 140 134- 0 1 141- 4x20022-111-2x100 34-1 114 0 0 34-1 1300134114141表2-2 改变后的单纯形表15341x2x3x4x5x6x7x5x 100 140 1 0 1 141- 4x 200 20 31 0 11-2x100 34-1 2- 0 0 34-1 13001341-141表2-3 迭代后的单形表15341x2x3x4x5x6x7x5x 1003 512- 0 0 13- 1 112-23- 4x 2003 23 0 1 13 0 13 13- 2x7003 712 1 0 23 0 112- 13 41003471213712 23我们由上表就可以看得出来,求得的最优解*7002001000,,,0,,0,0333X ⎛⎫= ⎪⎝⎭以及改变后的最优值*41003z =.第三章 资源系数i b 的变化分析我们知道,资源系数发生变化的问题关键就是怎样把i b 的变化直接的反映到原来线性规划问题的最终单纯形表,对于单纯形法的迭代过程,其实就是矩阵的初等变换过程,用所学的知识我们知道,对于分块矩阵[]BI我们进行初等变换时,把矩阵B 变成单位矩阵I ,会有单位矩阵I 变成矩阵1B -,即1IB -⎡⎤⎣⎦因此我们可以知道,若在已知的最终单纯形表中基可行解所对应的基“B ”(最终单纯形表中的基变量在初始单纯形表中的列向量所构成的矩阵),即可在最终单纯形表中找到“1B -”(初始单纯形表中的单位矩阵I 在最终单纯形表中所对应的矩阵),我们可以有'1b B b -=[6].例3对于线性规划问题12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 如果把第二个约束条件的右端项增大到32,那么分析一下最优解如何让变化.解:由最终单纯形表表3-1表3-1 最终单纯形表1x2x3x4x5x3x 152 0 0 1 54 152- 1x 72 1 0 0 14 12- 2x32114- 32i i z c -0 0 014 12因为003224880b ⎡⎤⎡⎤⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,由*1b B b -∆=∆,得*51514201011082420213042b ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦将其加到表3-1一列数字上的最终单纯形表的基变量解,得表3-2.表3-21x2x3x4x5x3x 352 0 0 1 54 152- 1x 112 1 0 0 14 12- 2x12- 0 1 0 14- 32 i i z c -1412又因为上表中原问题是非可行解,因此我们需继续计算,采用对偶单纯形法可以得到表3-3表3-31x2x3x4x5x3x 15 0 5 1 0 0 1x 5 1 10 0 12x20 4-0 1 6-i i z c -12从表中我们可以看出新的最优解15x =,*2510z =⨯=.第四章 价值系数i c 的变化分析4.1 非基变量价值系数变化假设()12n A p p p =.若j j j c c c =+∆,j N ∈,则1T j j B j j j c c B p c σσ-=-=+∆如果使最优基不变,则必须有0j σ≤,因此非基变量价值系数j c ,j N ∈的变动范围应该满足j j c σ∆≤-例4已知线性规划问题123max 234Z x x x =---s .t .123412341234523234,,,,0x x x x x x x x x x x x x ---+=-⎧⎪-+-+=-⎨⎪≥⎩求解价值系数在什么范围变化时,最优解不变.解:表4-1是最终单纯形表表4-1j c →2-3- 4- 0 0b cB X b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x1151 0 75 15- 25- j σ95- 85- 15- 由单纯形法计算可得表4-2表4-2j c →2-3-34c -+∆0 0b cb x b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x115175 15- 25- j σ0 0395c -+∆85- 15- 从表4-2中我们可以看出当395c ∆≤时,最优解不变. 4.2基变量价值系数变化如果B B B c c c =+∆,则对于j N ∀∈,11TT B j j j j B j c c B p c B p σσ--=-=-∆这时,若保持最优基不变,一定要使得0j σ≥,j N ∀∈.所以基变量价值系数Bc 满足不等式组的取值范围为1T B j jc B p j N σ-∆≤∀∈例5已知线性规划问题123max 2z x x x =-++s .t .1231241234624,,,0x x x x x x x x x x ++=⎧⎪-+=⎨⎪≥⎩当1c 变为4时,求新问题的最优解.解:这个线性规划模型的最终单纯形表为表4-3 .表4-31x2x3x4x2x 6 1 1 1 0 4x1030 11 i i 1c 是非基变量的系数,则()1133,132c c ∆≤--=≤-+=所以,1c 在12c ≤的范围内变化时,最优解不变.当1c 变为4时,超出范围,则重新计算()()1'1241144,42,003TB j c B p c c p σ-⎛⎫=-=-=-> ⎪⎝⎭把表4-3中13σ=-变为2,选择1x 为入基变量,4x 为出基变量,进行迭代,得到的最终单纯形表,表4-4表4-41x2x3x 4x2x83 0123 13- 4x 1031 013 13 i i c z - 0 053- 23- 新的最优解为:1234108,,033x x x x ====;最优值:*563z =.第五章 增加新的变量的变化分析增加一个新的变量实际上就是在单纯形表中增加一列,假如增加一个新的变量1n x +,1n c +是它所对应的价值系数,()111211,,,Tn n n mn A a a a ++++=是它在约束矩阵中的对应系数列向量,则增加一列'11'''2111'1n n n n mn a a A B A a +++++⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其检验数1111n n B n c C B A σ-+++=-+那么就得到了新问题的单纯形表,如果10n σ+≥,则原线性规划问题的最优解不变.我们通过具体例题来讨论增加新的约束条件.例6某生产加工厂计划用两种不同的原料生产四种商品,四种商品的收益和消耗的原料数以及消耗的原料定量如表5-1表5-1产品(万件)/原料(kg )甲 乙 丙 丁 提供量 第一种原料3 2 104 18 第二种原料 0 0 2 1/2 3 求:如果增加第一种原料,增加多少原最优基不变?解:设生产甲、乙、丙、丁四种产品各1x ,2x ,3x ,4x 万件,则线性规划模型为1234max 985019Z x x x x =+++s .t .()1234343210418123201,2,3,4j x x x x x x x j ⎧+++≤⎪⎪+≤⎨⎪⎪≥=⎩增加第一种原料时,1b 就会发生变化,设1118b b =+∆,1(18,3)b b =+∆,则1111210221833314311636b b B b b -⎡⎤⎡⎤-+∆⎢⎥⎢⎥+∆⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--∆⎢⎥⎢⎥⎣⎦⎣⎦则需满足12203b +∆≥,11106b -∆≥原最优基不变,得136b -≤∆≤,即11524b ≤≤.函数1112(0,0,1,2)63t X b b =-∆+∆,113883Z b =+∆是1b ∆最优值和最优解,当16b ∆>,13b ∆<-时,原来的最优基就会改变,原问题的最优基如下表表5-2.表5-2j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-2 503x12- 13- 1 0 16- 43 1j σ4- 23- 0133- 103- 88Z =当16b ∆>时,情形如下,常数项用111223116b B b b -⎡⎤+∆⎢⎥=⎢⎥⎢⎥-∆⎢⎥⎣⎦代替,用对偶单纯法得表5-3.表5-3j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-1223b +∆503x12- 13- 116- 43 1116b -∆j σ4-23- 0 0133- 103-113883Z b =+∆用对偶单纯形法求解,第二行需乘以3-,第一行加上第二行乘以43-,可以得到单纯形表表5-4.表5-4j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 00 41 02683x321 3-0 124-1132b ∆- j σ3- 02- 04-6-1904Z b =+∆当11302b ∆-≥,即16b ∆>,新的最优基42(,)B P P =,最优解为11(0,3,0,6)2b ∆-,最大收益为1904b +∆万元.第六章 增加新约束条件的变化分析我们在处理实际问题时,往往会遇到在其问题的基础上增加新的约束条件,如果新添加的约束条件能够使原来的最优解得到满足,那么它的最优解一定不变,反之,则需对问题继续进行分析.例7对于线性规划问题 12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩增加一个新的约束条件123212x x +≤,分析最优解的变化.解:把原来线性规划问题最优解带入新的约束条件中,因为 73273212222⨯+⨯=> 则约束条件可以写成1263212x x x ++=,6x 为基变量,反映到表3-1中得表6-1.表6-11x2x 3x 4x5x6x 0 3x 152 0 0 1 54 152- 0 2 1x 72 1 0 0 14 12- 0 1 2x 320 1 0 14- 320 06x12 3 2 0 01 i i c z -14121将1x ,2x 列系数变为单位向量,用对偶单纯法进行迭代,得最终单纯形表,表6-2.表6-21x2x 3x 4x5x 6x0 3x 15 0 0 1 52 0 5-2 1x 4 1 0 0 13 0 13-1 2x 0 0 1 0 12- 0 16x13 2 0 16 1 23- i i c z -16- 013-则新的最优解为*124,0,8x x z ===.总结从本文中讨论我们可以看出,在线性规划问题中,一些数据发生变化时,特别是当数据变化的幅度较小时,用灵敏度分析新的问题要比从头求解新问题简便的多,因此我们要学会掌握线性规划问题的灵敏度分析并加以推广.[参考文献][1] 李小光.线性规划中的灵敏度分析[J].2000,20(3),15-20.[2] 张伯声.运筹学[M].北京:科学出版社,2008,65-75.[3] 党耀国,李邦义.运筹学[M].北京:科学出版社,2009,61-73.[4] 施泉生.运筹学[M].北京:中国电力出版社,2004,44-50.[5] 孙麟平.运筹学[M].北京:科学出版社,2005,32-38.[6] 吕蓬,潘志.运筹学数学规划篇[M].北京:清华大学出版社,2011,32-40.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B( 1) 12.00000 0.000000
B( 2) 16.00000 0.000000
B( 3) 12.00000 0.000000
C( 1) 2.000000 0.000000
C( 2) 3.000000 0.000000
C( 3) 0.000000 0.000000
C( 4) 0.000000 0.000000
三 实验容(包括数学模型、上机程序、实验结果、结果分析与问题解答等)
例题2-10
MODEL:
[_1]MAX= 2 * X_1 + 3 * X_2 ;
[_2] X_1 + 2 * X_2 + X_3 = 8 ;
[_3] 4 * X_1 + X_4= 16 ;
[_4] 4 * X_2 + X_5 = 12 ;
END
编程
sets:
is/1..3/:b;
js/1..5/:c,x;
links(is,js):a;
endsets
max=sum(js(J):c(J)*x(J));
for(is(I):sum(js(J):a(I,J)*x(J))=b(I));
data:
c=2 3 0 0 0;
b=8 16 12;
a=1 2 1 0 0
A( 3, 1) 0.000000 0.000000
A( 3, 2) 4.000000
A( 3, 4) 0.000000 0.000000
A( 3, 5) 1.000000 0.000000
Row Slack or Surplus Dual Price
《运筹学/线性规划》实验报告
实验室: 实验日期:
实验项目
线性规划的灵敏度分析
系 别
数学系
姓 名
学 号
班 级
指导教师
成 绩
一 实验目的
掌握用Lingo/Lindo对线性规划问题进行灵敏度分析的方法,理解解报告的容。初步掌握对实际的线性规划问题建立数学模型,并利用计算机求解分析的一般方法。
二 实验环境
Lingo软件
最优解
Global optimal solution found at iteration: 0
Objective value: 14.00000
Variable Value Reduced Cost
B( 1) 8.000000 0.000000
B( 2) 16.00000 0.000000
B( 3) 12.00000 0.000000
C( 1) 2.000000 0.000000
C( 2) 3.000000 0.000000
C( 3) 0.000000 0.000000
C( 4) 0.000000 0.000000
C( 5) 0.000000 0.000000
X( 1) 4.000000 0.000000
X( 2) 2.000000 0.000000
A( 1, 5) 0.000000 0.000000
A( 2, 1) 4.000000 0.000000
A( 2, 2) 0.000000 0.000000
A( 2, 3) 0.000000 0.000000
A( 2, 4) 1.000000 0.000000
A( 2, 5) 0.000000 0.000000
4 0 0 1 0
0 4 0 0 1;
enddata
end
灵敏度分析
Ranges in which the basis is unchanged:
Objective Coefficient Ranges
Current Allowable Allowable
Variable Coefficient Increase Decrease
Row Current Allowable Allowable
RHS Increase Decrease
2 8.000000 2.000000 4.000000
3 16.00000 16.00000 8.000000
4 12.00000 INFINITY 4.000000
当b2在[8,32]之间变化时最优基不变
4] 4 X( 2) + X( 5) = 12
END
编程
sets:
is/1..3/:b;
js/1..5/:c,x;
links(is,js):a;
endsets
max=sum(js(J):c(J)*x(J));
for(is(I):sum(js(J):a(I,J)*x(J))=b(I));
data:
c=2 3 0 0 0;
b=12 16 12;
a=1 2 1 0 0
4 0 0 1 0
0 4 0 0 1;
enddata
end
最优解
Global optimal solution found at iteration: 2
Objective value: 17.00000
Variable Value Reduced Cost
C( 5) 0.000000 0.000000
X( 1) 4.000000 0.000000
X( 2) 3.000000 0.000000
X( 3) 2.000000 0.000000
X( 1) 2.000000 INFINITY 0.5000000
X( 2) 3.000000 1.000000 3.000000
X( 3) 0.0 1.500000 INFINITY
X( 4) 0.0 0.1250000 INFINITY
X( 5) 0.0 0.7500000 0.2500000
Righthand Side Ranges
X( 3) 0.000000 1.500000
X( 4) 0.000000 0.1250000
X( 5) 4.000000 0.000000
A( 1, 1) 1.000000 0.000000
A( 1, 2) 2.000000 0.000000
A( 1, 3) 1.000000 0.000000
A( 1, 4) 0.000000 0.000000
1 14.00000 1.000000
2 0.000000 1.500000
3 0.000000 0.1250000
4 0.000000 0.000000
例题2-11
模型
MAX 2 X( 1) + 3 X( 2)
SUBJECT TO
2] X( 1) + 2 X( 2) + X( 3) = 12
3] 4 X( 1) + X( 4) = 16
相关文档
最新文档