开关电源工程化实用设计指南
开关电源的设计步骤

【开篇】针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进行解答。
设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。
希望大家喜欢大家一起努力!!【第一步】开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮助分析。
我只带大家设计一款宽范围输入的,12V2A 的常规隔离开关电源1. 首先确定功率,根据具体要求来选择相应的拓扑结构;这样的一个开关电源多项选择择反激式(flyback) 基本上可以满足要求备注一个,在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论【第二步】2.当我们确定用flyback 拓扑进行设计以后,我们需要选择相应的PWM IC 和MOS 来进行初步的电路原理图设计(sch)无论是选择采用分立式的还是集成的都可以自己考虑。
对里面的计算我还会进行分解分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长〔仅从设计角度来说〕集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境集成式,多是指PWM controller 和power switch 集成在一起的芯片不限定于是PSR 还是SSR【第三步】3. 确定所选择的芯片以后,开始做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进行设计,原因为何(因为我们是销售这一颗芯片的)?设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据【第四步】4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算一般有芯片厂家提供相关资料【第五步】5. 确定开关频率,选择磁芯确定变压器芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。
开关电源设计指南

开关电源设计指南开关电源是将电能转换为特定电压或电流输出的电子设备,广泛应用于各种电子设备中。
本篇文章将为读者提供一份开关电源设计指南,帮助读者了解开关电源的基本原理以及设计过程中的关键要点。
一、开关电源的基本原理开关电源的基本原理是通过开关管的开关动作,实现电能的高效转换。
开关电源由输入端、开关管、变压器、输出滤波电路等组成。
输入端将交流电转换为直流电,经过开关管的开关动作,通过变压器进行电能转换,最终通过输出滤波电路得到稳定的输出电压或电流。
其中,开关管的开关频率决定了开关电源的工作方式,常见的有固定频率PWM调制和变频调制。
二、开关电源设计的关键要点1. 输入电压范围:根据实际应用需求确定开关电源的输入电压范围。
通常情况下,开关电源的输入电压范围为AC 100V-240V。
2. 输出电压和电流:根据实际应用需求确定开关电源的输出电压和电流。
输出电压可以通过变压器的变比来调整,输出电流则通过开关管的控制实现。
3. 效率和功率因数:开关电源的效率和功率因数是评估其性能的重要指标。
高效率可以减少能量损耗,提高系统的整体效能;高功率因数可以减少对电网的污染。
4. 过压保护和过流保护:在开关电源设计中,应考虑过压和过流等异常情况的保护措施,以确保系统的安全运行。
5. EMI滤波:开关电源在工作时会产生电磁干扰,为了避免对其他设备造成干扰,需要在设计中加入EMI滤波电路。
6. 温度管理:开关电源在工作时会产生一定的热量,为了确保系统的稳定运行,需要考虑散热设计和温度管理措施。
三、开关电源设计的步骤1. 确定输入输出参数:根据实际应用需求确定开关电源的输入输出电压和电流参数。
2. 选择开关管和变压器:根据确定的输入输出参数,选择合适的开关管和变压器。
3. 设计控制电路:设计开关电源的控制电路,包括开关管的驱动电路和PWM调制电路。
4. 设计滤波电路:根据需要设计输出滤波电路和EMI滤波电路。
5. 设计保护电路:设计过压保护和过流保护电路,确保系统的安全运行。
ti 开关电源的原理和设计手册

开关电源指的是利用开关管进行开关控制的电源,相较于传统的线性电源,开关电源具有体积小、效率高、可靠性强等优点,因此得到了广泛的应用。
开关电源的原理和设计手册是开发和应用工程师们必备的基础知识,本文将围绕开关电源的原理和设计手册展开详细的介绍。
一、开关电源的工作原理1. 开关电源的基本结构开关电源一般由整流器、滤波器、开关管、变压器、控制电路、稳压电路等部分组成。
其中开关管作为关键部件,通过不断地打开和关闭来控制电压的变化,从而实现电源的输出。
2. 开关电源的工作原理开关电源的工作原理是通过开关管控制输入电压的断断续续,将高压直流电转换成低压直流电,再通过稳压电路保证输出电压的稳定性。
在开关管导通时,电压源充电,并将能量储存在电感中;在开关管关断时,电感释放能量,输出电压使负载得到供电。
二、开关电源的设计手册1. 开关电源设计的基本流程(1)确定设计需求和规格要求在设计开关电源之前,需要明确所需的电压、电流、功率等参数,以及工作环境、安全标准等规格要求。
(2)选择合适的开关元件和辅助元件根据设计需求,选择合适的开关管、变压器、电感、电容等元件,保证电源的性能和可靠性。
(3)设计控制电路和稳压电路通过合理的控制电路和稳压电路设计,实现对输入电压的精确控制和输出电压的稳定性。
(4)进行系统仿真和调试利用仿真软件对设计的开关电源进行系统仿真,验证电源的性能和稳定性,并在实际电路中进行调试和优化。
2. 开关电源的设计要点(1)电源的高效率高效率是开关电源设计的重要目标,可通过合理选择元件和优化电路结构来提高电源的效率。
(2)电源的稳定性稳定的输出电压是电源设计的关键,需要通过稳压电路和反馈控制来保证电源输出的稳定性。
(3)电源的过流、过压、过温保护为了保护电源和负载安全,需要在设计中考虑过流、过压、过温保护功能,避免出现意外故障和损坏。
(4)电源的EMI设计开关电源在工作时会产生电磁干扰,需要在设计中考虑电源的EMI设计,减小对周围电路的干扰。
开关电源设计报告

1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264V交流电,输出为24V直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。
前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck电路构成。
总体要求是先将AC176-264V整流滤波,然后再经过BUCK电路稳压到24V。
考虑到变换器最大负输出功率为1000W,因此需采用功率级较高的Buck电路类型,且必须保证工作在CCM工作状态下,因此综合考虑,本文采用全桥隔离型Buck变换器。
其主电路拓扑结构如下图所示:下面将对全桥隔离型BUCK变换器进行稳态分析,主要是推导前级输出电压V与后级输g 出电压V之间的关系,为主电路参数的设计提供参考。
将前级输出电压V代替前级电路,作g 为后级电路的输入,且后级BUCK变换器工作在CCM模式,BUCK电路中的变压器可以用等效电路代替。
由于全桥隔离型BUCK变换器中变压器二次侧存在两个引出端,使得后级BUCK电路的工作频率等同于前级二倍的工作频率,如图1-1所示。
在2T的工作时间内,总共可分为四种S 开关阶段,其具体分析过程如下:1)当0<t<DT时,此时Q、Q和D导通,其等效电路图如图1-2所示。
S145/?1-1) 1-2) 1-3)3) du.•川L i (t )m 严+仃(t )c 二二v (t )R图1-3在DT<t<T 时等效电路SSv=0sv=-v Li=i -v /R C当TS <t<a+D )TS 时,此时Q2、1-4) 1-5)1-6)Q 和D 导通,其等效电路图如图1-2所示。
36图1-2在0<t<DT 时等效电路Sv=nvs gv=nv -vL gi=i -v /RC2)当DT<t<T 时,此时Q ~Q 全部关断,D 和D 导通,其等效电路图如图1-3SS 1465所示。
开关电源设计手册

开关电源设计手册目录1 隔离式电源设计1.1 有源功率因数校正1.2 反激式电源设计1.3 正激式电源设计2 非隔离式电源设计2.1 非隔离式降压型电源设计1.1 有源功率因数校正APFC: Active Power Factor Correction一, 功率因数校正的基本原理理论上: P.F.= P/S=(REAL POWER)/(TOTAL APPARENT POWER)=Watts/V.A.=有功功率/视在功率对于输入电压和电流都是理想的正弦波的情况, 如果把输入电压和输入电流的相位差定义为φ, 那么, P.F.=P/S=Cosφ. 相应的功率相量图如下:对于非理想的正弦波, 假设输入电压为正弦波, 输入电流为周期性的非正弦波, 比如在实际的AC-DC线路中广泛应用的全波整流, 只有当输入电压大于电容的电压时, 才有市电电流给电容充电.在这种情况下, 电压有效值Vrms=Vpeak/√2周期性的非正弦波电流经过傅里叶变换为:(Io: 电流直流分量; I1RMS: 电流基波分量, 頻率与V相同; I2RMS….I nRMS: 电流谐波分量, 频率为基波的2….n 倍. )对于纯净的交流信号, Io=0; I1RMS基波分量有一个同向成份I1RMSP和一个求积成份I1RMSQ.于是电流有效值可以表达为:有功功率P=V RMS*I1RMSP=V RMS*I1RMS*Cosφ1(φ1: 输入电压和输入电流基波分量I1RMS的相位差)S=V RMS*IRMS total于使功率因数Power Factor 可以表达为:P.F.=P/S= (I1RMS/I RMS total)* Cos φ1;定义电流失真系数K= I1RMS/I RMS total = Cosθ; θ为失真角(Distortion angle); K 为与电流谐波(Harmonic) 分量有关的系数. 如果总的谐波分量为零, K 就为1.最后, 可以表达为: P.F.=Cos φ1*Cos θ ; 功率向量图如下:φ1 是电压V与电流基波I1RMS之间的相量差;θ是电流失真角;可见功率因数 (PF) 由电流失真系数 ( K ) 和基波电压、基波电流相移因数( Cos φ1) 决定。
RM6203开关电源工程设计指导

5V_2A 应用方案一、 应用电路NL二、 外围元器件参数计算:1、 输入端滤波电容C2的选择:对此电容我们认识到他起的是滤波的作用,但是考虑到电路的启动时间,所以他的值不能太大,一般根据输入功率的大小来决定其值,按照每瓦特1-2uF 的规则,所以)(12uF P P C OUTIN η=⨯=这里OUT P 为变压器的输出功率,2.1⨯⨯=OUT OUT OUT I V P ;1.2为设计变压器时考虑的功率余量。
IN P 为电源的输入功率;η为工作效率,取值为0.7,所以:uF C MIN 1717.02.125)(2=⨯⨯⨯=uFC MAX 3427.02.125)(2=⨯⨯⨯=所以在这里我们选择容量为22uF 的电容做为滤波电容,但是电容还要考虑其耐压值,所以在选择耐压值时,最小要选择大于最大输入电压的2倍,所以就有:VV C 37522652=⨯=所以我们推荐选用容量为22uF ,耐压值为400V 的电容作为滤波电容;2、 C5的计算:在计算C4之前我们先要确定工作频率的范围:因为:ηOUTIN P P =;RF P M IN K F I L P ⨯⨯⨯⨯=221这里:RF K 为纹波系数,取值根据IC 的工作模式而定,CCM 下,RF K 范围为0.6-0.8;DCM 下,RF K =1;P I 为流过IC 的最大工作峰值电流,这里我们定义为0.65A;于是我们可以推导出:η⨯⨯⨯⨯=⨯⨯⨯=RF P M OUTRF P M IN K I L P K I L P F 2222; 所以就有:KhzF 677.06.065.01022.125223=⨯⨯⨯⨯⨯⨯⨯≤-Khz F 407.0165.01022.125223=⨯⨯⨯⨯⨯⨯⨯≥-因为:)(24000S C T T ⨯=;TF 1=;所以:;62024000106713)(5PF C MIN =⨯⨯=PF C MAX 104024000401)(5=⨯=;建议选用680PF 的电容,3、 变压器漏感的计算(M L ):M L 为变压器变压器漏感,他作为变压器设计参数之一,在变压器设计阶段就已经知道,一般都是毫亨级,,他也可以通过下面的公式计算出来:();22RFIN MAXMIN DCM K F P D L V⨯⨯⨯⨯=而LDC ch IN MINAC MIN DCF C D P V V⨯-⨯-⨯=)1()(22;这里:VMIN AC为IC 启动时最小的输入电压;这里我们取90V ;MAX D 为最大占空比,我们取0.55ch D 为C2电容充放电率,我们取0.2;下图为电容充放电波形图:L F 为输入电压的频率,;110V V MIN AC <L F =60Hz; ;110V V MINAC ≥L F =50Hz;于是就有:V VMIN DC807.0601022)2.01(2.12590262=⨯⨯⨯-⨯⨯⨯-⨯=-;所以:mH L M 2.26.02.12522400010680)55.080(122=⨯⨯⨯⨯⨯⨯⨯⨯≤-我们在这里取值为2mH4、 R3的计算:因为:2.1⨯⨯=OUT OUT OUT I V P ;212RF P M OUTIN K F I L P P ⨯⨯⨯⨯==η所以:RFM OUT OUT P K F L I V I ⨯⨯⨯⨯⨯⨯=η2.12所以:mA I P 6846.010611027.02.125233=⨯⨯⨯⨯⨯⨯⨯⨯=-;因为;PISI V R =R 为IS pin 接地电阻的阻值,是由IC 内部5欧姆的电阻与外置电阻并联所得,IS V 是IC 内部比较器决定的,最大为0.6V 。
电源工程师必备!开关电源设计方案汇总(附电路图,通俗易懂!)

电源工程师必备!开关电源设计方案汇总(附电路图,通俗易懂!)一、单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
二、单端正激式开关电源单端正激式开关电源的典型电路如图四所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
三、自激式开关稳压电源自激式开关稳压电源的典型电路如图五所示。
这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。
1、电路工作原理:当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。
开关电源设计规范及要求

开关电源电路设计要求一、主要指标要求:1、输入电压范围(或输入条件)。
2、输出电压及纹波要求。
3、负载调整度。
空载(<Imax*5%),轻负载(Imax*50%),重负载(Imax*98%)。
4、纹波频谱。
重点查看干扰频率分布与对应频谱幅度。
(10Hz ~ 10MHz)。
5、高低温性能。
以Imax*80%进行测试。
6、常温状态,以Imax*80%连续工作24小时。
7、转化效率η(只作为参考数据,其意义不大):在固定输出某一电压时,分别用不同的输入电压,分别测量出输出输入输出电流,进而计算出电源转化效率。
具体可以参照器件手册的测试方法。
二、测试方法和要求1、以电阻丝作为标准负载。
以保证后级的开电源不会影响前级输出电压的纹波(有时后级的开关电源没处理好会影响前的开关电源)。
2、如果是双路输出,应同时接负载测试。
至少测试5片,结果应基本一致。
3、测试输入电压纹波时,示波器的地应直接接在输入端的地。
4、测试输出电压纹波时,示波器的地应直接接在输出端的地。
三、电路设计规则1、输入端先串一个感10uH,再并入无极性电容101P、102P、103P、104P、105P以及铝电解220uF或470uF。
注意电容的耐压值。
2、输出端需要并入无极性电容101P、102P、103P、104P、105P以及铝电解220uF(或470uF或更大,具体由负载电流决定)。
2、电感选择原则:a.纹波要求b.成本限制c.体积空间限制d.屏蔽或非屏蔽e.电感指标:最大电流、等效电阻。
3、设计PCB文件时,应把输入端的地与输出端的地分开,单点联接。
检验方法(两个指标):常温时,接已校对好的标准负载(由电流决定)。
1、输出是否正常2、纹波小于规定范围(小批量无异常,在大批量时可以省去该步骤)。
注:测试纹波的基准地应规定好,根据近期测试发现同样的都是地,但是纹波都有不一样。
还有示波器对地的校对方法。
文本仅供参考,感谢下载!文本仅供参考,感谢下载!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源工程化实用设计指南
开关电源是一种非常重要的电力转换设备,它可以将输入的直流电压转换为输出的交流电压,从而满足各种电子设备的供电需求。
开关电源的工程化实用设计是一项涉及到多个领域的技术工作,包括电路设计、磁性元件设计、功率转换器设计、控制器设计和可靠性设计等。
下面将介绍开关电源的工程化实用设计指南。
一、电路设计
开关电源的电路设计是整个设计的核心,也是最关键的一步。
在电路设计中,需要考虑以下几个方面的因素:
输入和输出电压:开关电源的输入和输出电压需要根据电子设备的实际需求来确定。
在输入电压方面,需要考虑到电网电压的波动和噪声等因素,确保开关电源能够稳定工作。
在输出电压方面,需要根据电子设备的功率和负载特性来进行设计,确保输出的电压能够满足电子设备的供电需求。
功率容量:开关电源的功率容量需要根据电子设备的功率需求来确定。
在确定功率容量时,需要考虑到开关电源的最大负载和可能出现的峰值负载等因素,确保开关电源的功率容量足够且不会出现过载或损坏的情况。
电路拓扑:开关电源的电路拓扑是指其基本电路结构。
根据不同的需求,可以选择不同的电路拓扑来进行设计。
常用的电路拓扑包括
BUCK型、BOOST型、BUCK-BOOST型等,需要根据实际情况来选择合适的电路拓扑。
控制方式:开关电源的控制方式是指如何控制开关管的导通和关断,以达到稳定输出电压的目的。
常用的控制方式包括脉冲宽度调制(PWM)、脉冲频率调制(PFM)和电流模式控制等,需要根据实际情况来选择合适的控制方式。
二、磁性元件设计
开关电源中的磁性元件主要包括电感和变压器,它们在功率转换器中起到重要的作用。
在磁性元件设计中,需要考虑以下几个方面的因素:
磁芯材料:磁芯材料的选择是磁性元件设计的关键。
常用的磁芯材料包括铁氧体、坡莫合金和非晶合金等,需要根据实际情况来选择合适的磁芯材料。
线圈设计:线圈设计是磁性元件设计的另一个关键因素。
在电感设计中,需要考虑到线圈的匝数、线径和绕制方式等因素,以确保电感能够满足开关电源的负载需求。
在变压器设计中,需要考虑到线圈的匝数、线径和绕制方式以及磁芯的尺寸和结构等因素,以确保变压器能够实现所需的电压变换和能量传递功能。
热设计:磁性元件在工作中会产生热量,因此需要进行热设计以确保其能够正常工作。
热设计的目的是将磁性元件的温度控制在允许的工作范围内,避免出现磁芯饱和、线圈过热等不良情况。
三、功率转换器设计
功率转换器是开关电源的核心部分,它将输入电压转换为输出电压。
在功率转换器设计中,需要考虑以下几个方面的因素:拓扑结构:功率转换器的拓扑结构是指其电路结构和磁性元件的组合形式。
常用的拓扑结构包括半桥、全桥、推挽等,需要根据实际情况来选择合适的拓扑结构。
元器件选择:功率转换器中的元器件包括开关管、二极管、电容等,需要根据实际情况来选择合适的元器件类型和规格。
控制策略:功率转换器的控制策略是指如何控制开关管的导通和关断以及输出电压的稳定。
常用的控制策略包括脉冲宽度调制(PWM)、脉冲频率调制(PFM)等,需要根据实际情况来选择合适的控制策略。
热设计:功率转换器在工作中会产生大量热量,因此需要进行热设计以确保其能够正常工作。
热设计的目的是将功率转换器的温度控制在允许的工作范围内,避免出现元器件过热等不良情况。
四、控制器设计和可靠性设计
控制器是开关电源的控制系统,它负责控制开关管的导通和关断以及输出电压的稳定。
在控制器设计中,需要考虑以下几个方面的因素:
控制芯片:控制器需要选择合适的控制芯片来实现控制功能。
常用的控制芯片包括UC3842、TL494等,需要根据实际情况来选择合适
的控制芯片。
控制电路:控制器需要设计合适控制电路来实现对开关管的精确控制。
常用的控制电路包括误差放大器、比较器等,需要根据实际情况来选择合适的控制电路方案。
保护功能:控制器需要具备一定的保护功能以确保开关电源的安全运行。
常用的保护功能包括过流保护、过压保护等,需要根据实际情况来选择合适的保护方案。
可靠性设计:可靠性设计是保证开关电源能够长期稳定运行的重要手段。
可靠性设计包括冗余设计、容错设计、故障检测与诊断等方面,需要根据实际情况来选择合适的可靠性设计方案。