宽输入变频开关电源设计
[全]变频空调外机板开关电源电路原理分析,维修技巧
![[全]变频空调外机板开关电源电路原理分析,维修技巧](https://img.taocdn.com/s3/m/543cc61733d4b14e8424687c.png)
变频空调外机板开关电源电路原理分析,维修技巧这个是空调外机电路板的电源部分电路图,在实际维修中,开关电源损坏的还是比较多,我们在维修中还是要要掌握它的基本工作原理,这样才能够进行快速的维修。
电路工作流程:220V电压从保险FU101进入,经过共模L1、L2和安规电容后到达继电器K1,当K1有12V直流电后,继电器闭合,交流电进入整流桥,整流后为310V的直流电压,经L3、L4储能后,经二级管D12、D11给电容充电,同时给后面的负载供电,当开关管Q1、Q2关断后,电感L3、L4储存的能量释放,同时电容C143、C141、C142电容的储存的电荷释放,两者电压叠加大的380Ⅴ左右,此时直流母线电压P大约为380左右各个元件的作用:•K1:继电器,其主要作用:控制交流电的导通•D22:续流二级管,其主要作用:当继电器关断后,为继电器内部的线圈能量释放提供一个通路•BR:整流桥,其主要作用:将交流电变成脉动的直流电•L3、L4:PFC升压电感,其主要作用:能量的储存与释放•D12、D11:升压二级管,其主要作用:将整流桥整流后的脉动直流与滤波电容进行分割,控制其电流方向•C138、R7、R6、R25、R11、R39、R98:RC尖峰吸收电路,其主要作用:抑制反向峰值电压对二极管的损坏,避免二极管因反向电压过高而损坏•C139、R5、R9、R13、R120、R38、R8:RC尖峰吸收电路,其主要作用:抑制反向峰值电压对二极管的损坏,避免二极管因反向电压过高而损坏各个元件的作用:•FU101:延时保险,主要作用:保护电路避免因为电流过大而损坏•C1、C2、C3、C4、C5、C6、C12:安规电容,其中C1、C2、C12为安规X电容,C5、C6、C4、C3为安规Y电容,其主要作用:抑制信号干扰,滤出共模、差模干扰信号•L1、L2:共模电感,其主要作用:滤出共模干扰信号•Tvs1:瞬态抑制二级管,其主要作用:与压敏电阻作用差不多,避免因为PE上的电压过高而损坏后面的电路•RV1、RV2:压敏电阻,其主要作用:当电压过高时阻值迅速变小,保护后面电路因为电压过高而损坏•R141、R133、R92、R93:泄放电阻,当电路断电后,迅速将储存在电容内部的电荷放掉总结:空调的这部分电路在实际维修中损坏的还是很多,继电器、压敏电阻、保险、滤波电容、二极管是易损原件,在维修中要仔细测量。
300w开关电源方案

300W开关电源方案简介本文档介绍了一个300W的开关电源方案,用于提供稳定可靠的电源供应。
开关电源是一种将交流电转换为直流电的电源,通过开关管的开关动作来实现电压和电流的转换。
本方案采用了先进的电路设计和高效的开关管,以提高电源效率和稳定性。
方案设计输入电路300W开关电源的输入电压范围通常为220VAC或110VAC,本方案针对220VAC设计。
输入电路主要由滤波器、整流器和变压器组成。
滤波器用于滤除输入电压中的高频噪声,以保证输出电压的稳定性。
常见的滤波器电路包括Pi型滤波器和L型滤波器。
整流器将交流电转换为直流电,常见的整流器电路有全波整流和半波整流。
全波整流器可以实现较高的转换效率。
变压器用于将输入电压变换为适合开关电源工作的低压电压。
变压器一般由高频变压器和输出电感器组成,以提供高效的功率转换。
控制电路开关电源的控制电路主要包括开关管驱动电路和反馈控制电路。
开关管驱动电路负责控制开关管的开关动作,并控制输出电压。
常见的开关电源控制电路有固定频率PWM控制和变频控制。
反馈控制电路用于监测输出电压并调整开关管的开关动作,以稳定输出电压。
反馈控制电路一般由比较器、误差放大器和反馈元件组成。
输出电路输出电路主要由输出电感器、输出电容和负载组成。
输出电感器用于平滑输出电流,防止电流突变。
输出电容则用于平滑输出电压,提供稳定的负载。
负载是指连接在开关电源输出端的设备或电路,可以是各种电子设备、通信设备或其他电子装置。
负载的功率需小于或等于300W。
优点与特点高效率300W开关电源采用了高效率的开关管和控制电路,以减少功耗并提高转换效率。
高效率意味着更少的能量损耗,更低的温度和更长的使用寿命。
稳定性本方案采用了反馈控制电路来稳定输出电压,同时使用优质的电子元件和合理的电路布局,以提供稳定可靠的电源供应。
稳定的输出电压对各种设备和电路的正常运行至关重要。
可靠性300W开关电源采用了与国际标准相符的设计和制造工艺,确保产品的质量和可靠性。
开关电源设计

一个比较好的解决方案是:以轻巧的高频变压器取代笨重的工频变压器,采用脉冲调制技术的直流--直流变换器型稳压电源,即我们马上就要讲到的开关电源。
开关电源具有管耗小、效率高、稳压范围宽及体积小、重量轻等优点,目前已在各种电子仪器和设备、航空和宇宙飞行器、发射机、电子计算机、通讯设备和电视机、录放像机等中得到了广泛应用。
开关电源按变换方式可分为以下四大类:1、AC/DC 开关电源2、DC/DC 开关电源3、DC/AC 逆变器4、AC/AC 变频器目前只将前面两类称为开关电源,将后面两类分别称为逆变器和变频器。
开关电源按应用方式可分为以下三大类:1、外置电源与设备分开放置的电源模块或电源系统,如:---通信用一次电源模块和系统---电力操作电源模块和系统---手机电池充电器---笔记本电脑的Adapter---各类手提设备、便携设备的电池充电器等等2、内置电源放在设备内部的电源模块或电源系统,如:---计算机内部的SilverBox和VRM---家电(如:普通电视机、等离子电视机、液晶电视机)内部的供电电源---工业控制设备内部的电源---仪器中使用的电源---通信设备内部的电源模块和系统---复印机、传真机、打印机等的内部电源等等3、板上电源放在设备内单板上的电源模块,如:---标准砖类电源(全砖、半砖、1/4砖、1/8砖)---非隔离POL(Point of Load 负载点)变换器---VRM(V oltage regulator module电压调节模块)和VRD(V oltage regulator down)---小功率SMD电源---SIP和DIP电源等等开发一个开关电源产品所需要的基本技能:1、认识组成开关电源的所有元器件2、掌握各种元器件的电气性能和电路符号3、会自己制作各种磁芯元件4、会正确装配电源中的各个部分5、了解电源各项指标的意义并掌握如何测试的方法6、会使用仪器对装配后的电源进行正确的调试,优化和折中7、会对获得的实验结果进行分析,并进行总结8、会从不同渠道不断地学习电源知识并能够和别人交流开发一个开关电源产品所需要的专业理论知识:1、有源PFC的拓扑分析,控制与设计2、DC/DC功率变换器的拓扑与稳态分析3、开关电源的功率级参数设计4、开关电源的控制与动态分析5、开关电源的小信号分析与设计6、开关电源的大信号分析与设计7、开关电源的EMI分析与设计8、开关电源的热分析与设计9、开关电源的容差分析与设计10、开关电源的各种保护技术11、开关电源的同步整流技术12、开关电源的模块均流控制技术有些技术很成熟了,只要查表或者使用现成电路或专用芯片就可以做好。
基于TL3842的开关电源设计

磁 电感、 减小磁路中的功率损耗 , 使之能以最小的 损耗和相位失真传输具有宽频带的脉冲能量 。
1 . 1 最大 占空 比
出要求精度高 、 直流输 出路数多等。本设计 主要
针对 以上两 个 问题 进行设计 。
收稿 日期 :2 0 1 2—1 1—1 0 修 订 日期 :2 0 1 2一I 2—1 O
Ab s t r a c t :i n t h e l i g h t o f mu l t i p l e o u t p u t s a nd hi g h d e ma n d o f p r e c i s i o n,t h e a r t i c l e i n t r o d u c e s a s e t o f s wi t c h i n g p o we r s u p p l y wi t h hi g h p r e c i s i o n a n d mu l t i p l e o u t p u t s .A hi g h  ̄e q u e n e y t r a n s f o r me r i s d e s i g n e d,wo r k i n g p r i n c i pl e a n d wo r ki n g p r o c e s s i s de t a i l e d a na l y z e d; t he r e l i a b i l i t y a nd h i g h p e r f o m a r n c e a r e v e r i ic f a t i o n e d b y he t o r y c a l c u l a t i o n a n d e x pe r i me n t a l s t u d y .Th e d e s i g n c a n me e t t h e r e q u i r e me n t s u n d e r he t s p e c i a l c o n d i t i o n a nd h a v e p o mi r n e n t p r a c t i c a b i l i t y.
开关电源的安规要求

安规要求在生产和质量控制中的应用
建立完善的生产和质量控 制体系,确保产品符合安 规要求。
确保生产过程中使用的材 料和零部件符合相关标准 和要求。
ABCD
在生产过程中,应进行严 格的品质检查,如电气参 数测试、外观检查等。
在生产和质量控制过程中, 应保持记录和可追溯性, 以便在出现问题时进行追 溯和调查。
测量开关电源在正常工作状态下通过 电源线传导的电磁干扰。
辐射测试
检测开关电源在工作时产生的电磁辐 射。
安规测试的方法和设备
耐压测试
检验开关电源对过电压的承受能力。
功能安全测试
评估开关电源在异常工作状态下的安全性能。
安规测试的方法和设备
电磁干扰测量仪
用于测量传导和辐射的电磁干扰。
高压测试台
用于模拟过电压环境。
异常工作和故障条件
过载保护
开关电源应具备过载保护功能,以防止过电流对电源和连接的设备造成损坏。
短路保护
开关电源应能在发生短路时自动切断电源或降低输出电压,以防止火灾和电击 等危险。
机械强度和结构要求
机械稳定性
开关电源的结构应稳固,能够承受正常工作条件下的机械应 力。
外壳防护等级
根据使用环境和安全要求,开关电源的外壳防护等级应符合 相关标准。
安规认证的流程和要求
认证要求 符合相关国家和地区的安规标准,如EN55032、EN61000等。
确保产品在设计、生产和包装等环节符合相关标准和规定。
安规测试和认证的费用和时间
费用
安规测试和认证的费用因地区、认证机 构、产品复杂度等因素而异,通常包括 测试费用、证书费用、年审费用等。
VS
时间
安规测试和认证的时间取决于多个因素, 如产品复杂度、测试项目数量、认证机构 的工作效率等。一般来说,从准备申请资 料到获得证书需要数周到数月不等的时间 。
开关电源的设计与仿真

开关电源的设计与仿真开关电源是一种常用的电源设计方案,它能够将输入电压转换成稳定的输出电压,并具有高效率、小体积和轻负载能力强等特点。
下面将介绍开关电源的设计原理和仿真方法。
首先,选择合适的拓扑结构对于开关电源的设计至关重要。
常见的拓扑结构有:Boost、Buck、Buck-Boost、Cuk等。
不同的拓扑结构适用于不同的输入输出电压范围和应用场景。
例如,Buck拓扑适用于输出电压小于输入电压的场合,Boost拓扑适用于输出电压大于输入电压的场合,Buck-Boost拓扑适用于输出电压可大可小的场合。
其次,控制策略对于开关电源的性能也起到了至关重要的作用。
常见的控制策略有:固定频率PWM(脉宽调制)控制、变频PWM控制和电流模式控制等。
不同的控制策略对于输出电压的稳定性、负载能力和效率等方面的影响不同。
因此,在设计开关电源时需要根据具体的要求选择合适的控制策略。
电路仿真是对开关电源的基本电路进行模拟和分析。
在电路仿真中,可以使用专业的电路仿真软件如SPICE进行建模和仿真。
通过调整参数和信号输入,可以模拟不同负载、不同工况下开关电源的工作情况,并获取电路的输出特性、电压波形等信息。
这样可以及时发现设计缺陷和改进方向。
系统仿真是对整个开关电源系统进行建模和仿真。
开关电源系统包括开关电源核心电路、控制电路以及反馈电路等。
系统仿真能够模拟复杂的工作环境和系统交互,并综合考虑开关电源的输入输出特性、稳定性和效率等。
通过系统仿真,可以评估和优化整个开关电源系统的性能。
综上所述,开关电源的设计与仿真是一个相互依赖、相辅相成的过程。
设计者需要根据实际需求选择合适的拓扑结构和控制策略,并进行电路仿真和系统仿真来验证设计方案的正确性和性能指标。
通过不断的调整和优化,最终可以得到稳定高效的开关电源设计方案。
开关电源设计步骤

开关电源设计步骤
1.需求分析(100字)
在设计开关电源之前,首先需要明确设计的目标和需求。
这包括输出电压、输出电流、输入电压范围、效率要求、输出电流稳定性等。
根据不同的需求,确定开关电源的拓扑和参数。
2.电路设计(300字)
在进行电路设计之前,需要选择开关电源的拓扑结构。
常见的拓扑结构有Buck、Boost、Buck-Boost、Sepic等。
根据需求和所选拓扑结构,设计主要电路模块包括开关管、滤波电感、修正电容、输出滤波电容等。
3.电路实现(300字)
根据电路设计确定的电路参数,在电路板上布线,连接各个器件和元件。
布线时需考虑到电路的稳定性和抗干扰能力。
注意分离高压和低压区域,减少互相干扰。
4.性能评估(200字)
完成电路实现后,需要进行性能评估,检验设计是否满足预期需求。
主要评估指标包括输出电压稳定性、负载调整能力、效率、开关频率、静态功耗、温度等。
通过测试数据和实际情况进行比较,查找问题和优化空间。
5.优化(200字)
根据性能评估的结果和问题分析,进行电路的优化。
优化可以包括改进布线、更换元器件、调整控制策略等。
目的是提高电路的性能,使其更加稳定、高效和可靠。
总结:
开关电源设计步骤包括需求分析、电路设计、电路实现、性能评估和优化。
通过明确需求,选择合适的拓扑结构,并根据电路设计参数进行电路实现,然后进行性能评估和优化。
这些步骤相互关联,需要不断地调整和优化,以得到满足需求的高性能开关电源设计。
开关电源PWM的五种反馈控制模式

一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。
PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。
由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。
对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。
下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。
二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。
电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。
该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。
电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。
逐个脉冲的限流保护电路必须另外附加。
主要缺点是暂态响应慢。
当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。
这两个延时滞后作用是暂态响应慢的主要原因。
图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宽输入变频开关电源设计————————————————————————————————作者:————————————————————————————————日期:科信学院课程设计说明书(2017/2018学年第一学期)课程名称:《电力电子技术应用设计》课程设计题目:宽电压输入变频开关电源的设计专业班级:电气工程及其自动化1425学生姓名:学号:指导教师:刘增环、杜永、路巍等设计周数:两周设计成绩:2018年1月5日引言开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。
开关电源具有以下特征:①电源电压和负载在规定的范围内变化时,输出电压应保持在允许的范围内或按要求变化;②输出与输入之间有良好的电气隔离;③可以输出单路或多路电压,各路之间有电气隔离。
常用的开关电源多采用固定开关频率,当输入电压过高时,占空比过小,开通时间太短,可能引起开通脉冲丢失,造成电源工作不稳定。
常用的开关电源输入是市电经整流后的稳定电压,但一些供电不稳定的场合或因某些设备导致市电局部不稳定,输入电压会存在大范围的波动, 为了适应这种情况,本课程设计了一款50v-260v的交流输入,多路输出的具有自主改变开关频率的辅助电源。
根据输入电压大小改变开关频率,保证电源在宽输入电压范围内,可靠的为系统供电。
在本课题设计开发过程中,我们使用Matlab数学仿真及Altium Designer软件,并最终实现电路改造设计,并达到预期的效果。
关键字;宽输入变频开关电源目录一、开关电源现状和发展 (4)1.1 开关电源现状 (4)1.2 开关电源类型 (4)二、设计方案 (4)2.1 设计要求 (4)2.2 设计思路 (5)三、方案设计 (5)3.1 控制电路设计 (5)3.2 误差放大器设计 (9)3.3 过/欠电压保护 (9)3.4 过流/过载保护 (9)3.5反激变压器设计 (10)3.6反馈回路设计 (10)3.7 设计小结 (11)四课程设计总结 (12)参考文献 (13)一、开关电源现状和发展1.1 开关电源现状目前,开关电源正在向“四化”的方向发展:应用技术的高频化、硬件结构的模块化、软件控制的数字化和产品性能的绿色化。
开关电源最突出的优点是体积小,重量轻。
这一优点是和系统的高频工作状态相关的。
进一步提高工作频率,电源的体积和重量将更加小,从而实现更高的功率密度。
使开关电源进入更广泛的领域。
开关电源的控制已经由模拟控制,模数混合控制,进入到全数字控制阶段。
全数字控制作为开关电源的发展趋势,已经在许多功率变换设备中得到应用。
近两年来,高性能全数字控制芯片相继开发,费用也降到比较合理的水平,欧美已有很多公司开发并且制造出开关变换器的数字控制芯片及软件。
1.2 开关电源类型开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。
前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。
另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。
同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。
根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。
其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。
二、设计方案2.1 设计要求设计一个宽电压输入变频开关电源(1)认真查阅选用器件的技术资料,参考教材中相关内容,选择合适的构成方案,绘制总体结构框图。
(2)设计并绘制完整的电路原理图(3)按照计算电路参数和仿真波形的需要绘制仿真电路图或建立仿真模型并进行电路的计算机仿真(4)通过计算和仿真,选择电路图中所有元件,列出器件清单,包括器件名称,型号和规格,封装形式,数量等;对变压器要说明原副边绕组的构成以及每个绕组的电压和电流。
(5)在选择电路参数下通过仿真获取至少9个主要点的波形,建议如下:核心控制芯片振荡器的波形和控制输出的波形,主开关管承受电压和流过电流的波形,变压器原边绕组电压和电流的波形,变压器各副边绕组中电流的波形。
(6)通过仿真验证控制电路器件参数的合理性,说明在选定的参数下输入电压低至多少时电源仍能正常工作。
(7)总结设计工作,撰写设计说明书。
2.2 设计思路开关电源大致由主电路操控电路、检测电路、辅助电源四大部份组成1.主电路冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。
输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。
整流与滤波:将电网交流电源直接整流为较平滑的直流电。
逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。
传出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
2.控制电路一方面从传出端取样,与设定值进行比较,然后去操控逆变器,改变其脉宽或脉频,使传出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供操控电路对电源进行各种保护措施。
3.检测电路提供保护电路中正在运行中各种参数和各种仪表数据。
4.辅助电源实现电源的软件(远程)启动,为保护电路和操控电路(PWM等芯片)工作供电。
三、方案设计3.1 控制电路设计UC3845是高性能固定频率电流模式控制器,为离线和直流至直流变换器应用而设计,为设计人员提供只需最少外部元件就能获得成本效益高的解决方案。
该集成电路的特点是:具有振荡器、温度补偿的参考、高增益误差放大器,电流取样比较器和大电流图腾柱输出,是驱动功率MOSFET 的理想器件。
其它的保护特性包括带滞后的输入和带滞后的参考欠压锁定逐周电流限制单个脉冲测量锁存,以及每隔一个振荡周期将输出消隐的触发器。
允许将输出静区定为50%至70%。
这些器件可提供8 管脚双列直插塑料封装和14管脚塑料表面贴装SO-14封装SO-14 封装的图腾柱式输出级有分离的电源和接地管脚。
UC3845是电流控制集成芯片,其工作原理见图1,是在电压控制型电路的基础上增加了一个电流反馈环节,当采样电压Vs与Ve相同时,PWM比较器的状态翻转,锁存器置零,VT截止。
因而误差信号Ve实际上控制的是电感峰值电流。
其它的保护特性包括输入和参考欠压锁定,各有滞后、逐周电流限制、可编程输出静区时间和单个脉冲测量锁存。
这些器件可提供8脚双列直插塑料封装和14脚塑料表面贴装封装(SO-14)。
SO-14封装的图腾柱式输出级有单独的电源和接地管脚。
图1 电流控制型电路原理图电流控制型特点:电流控制型较之电压控制型的优点主要有如下几点:1)对输入电压的响应快。
当输入电压发生变化时,控制电路无需经过误差放大器即能进行调节,因而电路线性调节好。
误差放大器即能进行调节,因而电路线性调节好。
误差放大器被设计成专用来进行负载变化的调节2)对负载变化响应快,回路稳定性好。
变换器中电感电流是连续的,控制峰值电流就相当于控制平均电流。
在电流控制型电路中,可把电感器当作一个误差电压控制的电流源,误差放大器构成的闭环控制的响应频带比电压控制型3)电流控制型电路中由误差放大器构成的调节器可以简化。
图4(a)为电压控制型电路的调节器,由于电感电路滞后因素,电感电流已达预定值,而Ci在调节过程中充的电压却要过一段时间才能放完;(b)为电流控制型电路的调节器。
因电流控制型电路本身具有一个电流反馈,调节器就无需RiCi,电路得以简化。
4)限流电路简单。
只要限制误差放大器的输出电压即可达到限制峰值电流。
电压控制型电路常会因输入电压的浪涌而产生很大的尖峰电流损坏晶体管。
电流控制型电路则可避免这类故障的发生5)对模块结构并联工作系统具有自动电流分配和均流功能。
图2 UC3845内部电路框图及引脚图带滞后的输入欠压锁定。
封装引脚图:其特点为(1)电流模式工作,输出开关频率为500 kHz。
(2)输出占空比可从50%~70%调节。
(3)自动前馈补偿。
(4)逐个周期的限流保护,锁定式脉冲宽度调制(PWM)。
(5)有欠压锁定的内部调整参考源。
(6)高电流图腾柱式输出。
3.2 误差放大器设计这种拓扑结构不仅外接元器件较少,而且在电压采样电路中采用了三端可调稳压管,使得输出电压在负载发生较大的变化时,输出电压基本上没有变化。
实验证明与上述三种反馈电路相比,该电路具有很好的稳压效果图3误差放大器构成的调节回路3.3 过/欠电压保护当系统输入电压过压或者欠压时(过/欠压判断电路略),可使图5中的过/欠压输入端为低电平,光耦OP1输出高电平,因此,就会通过加速电容C6和二极管D6对UC3845的脚16施加正脉冲,从而使图3所示的UC3845芯片内部晶闸管导通,通过内部电路使脚1电平被拉至接近地电平,电路进入保护状态,UC3845芯片输出脉冲封锁。
另外,光耦OP1输出的高电平使三极管Q407饱和导通接地。
由于电容C6的加速作用,三极管Q407比前述晶闸管导通稍微迟后。
由于三极管的导通压降小于晶闸管的导通压降,晶闸管不能维持导通即晶闸管恢复关断。
当过/欠压故障消除后,三极管Q407截止,系统重新输出脉冲。
图4 过/欠电压保护电路3.4 过流/过载保护当过流或者过载时,比较器LM393输出7加在脚16,同样会封锁脉冲输出。
由于晶闸管维持导通,所以系统当不过流不过载时,必须重新启动才能有脉冲输图5 过流/过载保护电路3.5反激变压器设计变压器技术规格:1 开关频率180kHZ,最大占空比50%2 N2功率:15V,3A3 N3功率,-15V, 1A变压器参数的设计对电源装置的性能有至关重要的影响,变压器设计得当,电路才能够稳定运行。
其设计要求有:①一、二次绕组电压的变比应满足要求值。
当输入电压降至规范允许的最低电压时,输出电压仍能满足规定的额定值。
②当输入电压及占空比最大时,变压器磁芯不允许出现饱和。
③当输出功率最大时,变压器温升应在规范要求之内。
④应满足一、二次侧铜耗相等、铜损耗与铁损耗相等的原则,以使总损耗最低,获得较高效率。
⑤一、二次侧漏感、分布电容应限制在最小值。
3.6反馈回路设计图3.5 电路原理图3.7 设计小结可以根据具体要求选取不同的反馈方式。
但对于多路输出的反馈电路,由于对于每个输出应用场合的不同,要求输出精度不同,所以在反馈中各个正极性输出端占反馈量的比例也不同。
要根据具体要求具体设计以满足应用要求。
四课程设计总结两周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。