2023年成都七中嘉祥小升初数学试卷及答案

合集下载

【小升初】2024-2025学年四川省成都市下学期新七年级分班真题数学试题(含答案)

【小升初】2024-2025学年四川省成都市下学期新七年级分班真题数学试题(含答案)

【小升初】2024-2025学年四川省成都市下学期新七年级分班真题试卷数学试题一、选择题(每小题3分,共30分)1、(比例尺)如图是甲、乙两位同学画的同一幢房子。

甲用的比例尺是1:a ,乙用的比例尺是( )。

A.B. 1:aC.D. 1:32a1:23a32:a2.(抽屉原理)红、黄、蓝三种颜色的糖果各10颗混合装在袋子里,一次至少拿( )颗,才能保证一定有2颗是同颜色的糖果。

A .2B .3C .4D .53.(比的意义)甲数的等于乙数的(甲、乙两数均不为0),甲数和乙数的比是()。

2335A .2:3 B .2:5 C .3:5D .9:104.(长方体的展开图)如图是一个长方体的表面展开图,根据展开图中线段的长度,这个长方体的体积是( )cm 。

A .96B .120C .160D .9605.(工程问题)一项工程,甲单独做12天完成,乙单独做用的天数是甲的,丙的工作效率34是甲、乙工作效率之和的,三个人中,()的工作效率最高。

914A .甲 B . 乙C .丙D .无法确定6.(分数的应用)冰化成水后,体积比原来减少,水结成冰后,体积比原来增加( )112A .B .C.D . 110111112167.(逻辑推理)小林、小强、小芳、小兵和小东5人进行象棋比赛,每两人之间都要下一盘。

小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘,则小东一共下了()盘。

A .0B .1·C. 2D .38.(商品问题)一种商品按原价的八折销售,然后再提价20%,现价与原价相比,( )。

A .提高20%B .下降20%C .提高4%D .下降4%9.(数的运算)有三个正整数,如果其中两个数的平方的和等于第三个数的平方,那么这三个数就是勾股数,例如:3,4.5这三个数,因为=9, =16, =25,可以计算得出+=,324252324252所以3,4,5是勾股数。

运用上述信息进行判断,下列选项中是勾股数的是( )。

成都七中(高新校区)小升初数学期末试卷(提升篇)(Word版 含解析)

成都七中(高新校区)小升初数学期末试卷(提升篇)(Word版 含解析)

成都七中(高新校区)小升初数学期末试卷(提升篇)(Word版含解析)一、选择题1.小红坐在教室的第3列第5行,用数对(3,5)表示。

小明坐在小红的前一个位置上,小明的位置用数对表示是()。

A.(3,4)B.(4,3)C.(3,6)2.李叔叔去年使用支付宝消费支出1.5万元,使用微信消费支出比支付宝少15,使用微信支出多少万元?正确的算式是()。

A.11.5(1)5÷-B.11.5(1)5⨯-C.11.5(1)5÷+D.11.5(1)5⨯+3.等腰三角形的一个顶角和一个底角的比是2∶1,这个三角形也是()三角形。

A.锐角B.直角C.钝角D.无法确定4.有红色、黄色两条彩带,红色彩带剪去35,黄色彩带剪去35米,两条彩带都剩下35米。

比较原来两根彩带的长短,结果是()。

A.红色彩带长B.黄色彩带长C.一样长D.无法比较5.一个立体图形从上面看是,右面看是,前面看是,这个立体图形是由()个小正方体搭成的.A.6 B.7 C.8 D.96.下列有关圆的说法错误的是()。

A.周长相等的两个圆形,面积也一定相等B.在一个圆中画两条互相垂直的半径,可以得到一个圆心角是90°的扇形C.圆形是轴对称图形,一个圆有4条对称轴D.在同一个圆中,周长是直径的π倍7.井盖平面轮廓采用圆形的一个原因是圆形井盖怎么放都不会掉到井里,并且能恰好盖住井口。

这是应用了圆特征中()。

A.圆心角决定圆的位置B.半径决定圆的大小C.同一圆内所有直径都相等D.圆是曲边图形8.一件商品提价15%后,又降价15%,现价()原价.A.等于B.低于C.高于9.如图,摆第1个图形要6根小棒,摆第2个图形要11根小棒。

按这样的规律,摆第20个图形要()根小棒。

A .100B .101C .119D .120二、填空题10.910千米=(________)米 712时=(________)分11.12∶(________)=(________)÷20=65=(________)%=(________)(填小数)。

四川省成都市成都市第七中学初中学校2023-2024学年八年级下学期期中数学试题(解析版)

四川省成都市成都市第七中学初中学校2023-2024学年八年级下学期期中数学试题(解析版)

成都七中初中学校2024-2024学年下2025届期中质量检测数 学(满分150分,120分钟完成)A 卷(满分100分)一、选择题(每小题4分,共32分)1. 以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A 、不是中心对称图形,不符合题意;B 、是中心对称图形,符合题意;C 、不是中心对称图形,不符合题意;D 、不是中心对称图形,不符合题意;故选:B .【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.2. 下列等式从左边到右边的变形,属于因式分解的是( )A. B. C. D. 【答案】C【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】A 、,原结果有误,故此选项不符合题意;B 、是整式的乘法,不是因式分解,故此选项不符合题意;C 、把一个多项式化为几个整式的积的形式,故此选项符合题意;()ax ay a a x y ++=+()()2224x x x -+=-()22693m m m -+=-()()2211x y x y x y -+=+-+()1ax ay a a x y ++=++()()2224x x x -+=-()22693m m m -+=-D 、没把一个多项式化为几个整式积的形式,不是因式分解,故此选项不符合题意;故选:C .【点睛】此题考查因式分解的意义,解题关键在于因式分解是把一个多项式转化成几个整式积的形式.3. 若,则下列结论不正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据不等式的性质逐项判断即得答案.【详解】解:A 、若,则,所以本选项变形正确,不符合题意;B 、若,则,所以本选项变形正确,不符合题意;C 、若,则,所以本选项变形正确,不符合题意;D 、若,则,所以本选项变形错误,符合题意.故选:D .【点睛】本题考查了不等式的性质,属于基础题型,熟记不等式的性质是解题的关键.4. 在数轴上表示不等式组的解集,正确的是( )A.B.C.D.【答案】B【解析】【分析】根据一元一次不等式解集在数轴上的表示方法进行判断即可.【详解】解:x ≥﹣2在数轴上表示时用实心点,而x <3则用空心点,的()()2211x y x y x y -+=+-+x y <22x y<22x y -<-22x y <22x y -<-x y <22x y <x y <22x y -<-x y <22x y <x y <22x y ->-23x x ≥-⎧⎨<⎩因此选项B 中的表示方法符合题意,故选B .【点睛】本题主要考查了在数轴上表示不等式的解集,解题的关键在于能够熟练掌握在数轴上表示等式的解集.5. 在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了求关于原点对称的点的坐标,关于原点对称的两点,其横、纵坐标均互为相反数,据此即可求解.【详解】解:∵关于原点对称的两点,其横、纵坐标均互为相反数,∴关于原点对称的点的坐标是 故选:D .6. 三条公路将A ,B ,C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A. 三条高线的交点B. 三条中线的交点C. 三条角平分线的交点D. 三边垂直平分线的交点【答案】C【解析】【分析】本题主要考查了角平分线上的点到角的两边的距离相等的性质.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在、、的角平分线的交点处.故选:C .7. 若二次三项式可分解为,则的值为( )A. 1B. 2C. -2D. -1()3,2()2,3--()3,2()3,2-()3,2--()3,2()3,2--A ∠B ∠C ∠26x mx +-()()32x x -+m【答案】D【解析】【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件得出答案即可.【详解】解:(x ﹣3)(x +2)=x 2+2x ﹣3x ﹣6=x 2﹣x ﹣6,∵二次三项式x 2+mx ﹣6可分解为(x ﹣3)(x +2),∴m =﹣1,故选:D .【点睛】本题考查了多项式乘以多项式法则和分解因式,注意:分解因式的方法有:提取公因式法,公式法,十字相乘法,分组分解法等.8. 直线与直线在同一平面直角坐标系中的位置关系如图所示,则关于的不等式的解集为()A. B. C. D. 【答案】A【解析】【分析】结合函数图象,写出直线在直线上方所对应的自变量的范围即可.【详解】解∶直线与直线的交点的横坐标为2,当时,,关于的不等式的解集为.故选:A .【点睛】本题考查了一次函数与一元一次不等式,熟练掌握图象法解不等式,是解题的关键.二、填空题(每小题4分,共20分)111:l y k x =222:l y k x b =+x 12k x k x b >+2x >2x <3x >3x <1l 2l 111:l y k x =222:l y k x b =+∴2x >12y y >∴x 12k x k x b >+2x >9. 分解因式: _______________.【答案】【解析】【分析】先提取公因数m ,然后再运用平方差公式因式分解即可;灵活运用提取公因式法和公式法因式分解成为解答本题的关键.【详解】解:.故答案为.10. 次知识竞赛中共20道题,对于每一道题,答对了得10分,答错了或不答扣5分,选手至少要答对________道题,其得分才不低于95分.【答案】13【解析】【分析】可设答对x 道题,则答错或不答的题目就有(20-x )道,再根据得分才会不少于95分,列出不等式,解出x 的取值即可.【详解】解:设答对x 道,则答错或不答的题目就有(20-x )道.即10x -5(20-x )≥95去括号:10x -100+5x ≥95∴15x ≥195x ≥13因此选手至少要答对13道.故答案为:13.【点睛】本题考查的是一元一次不等式的运用,解此类题目时常常要设出未知数再根据题意列出不等式解题即可.11. 如图,一块长方形草坪的长为5米,宽为3米,在草坪中间,有一条处处为宽的弯曲小路,则这块草地的面积为_____.【答案】【解析】【分析】本题考查了平移的实际应用,有理数的运算,根据草地的面积长方形草坪的面积弯曲小路的面积即可求解.34m m -=()()22m m m +-()()()324422m m m m m m m -=-=+-()()22m m m +-1m 2m 12=-【详解】解:这块草地的面积为:,故答案为:.12. 如图,在△中,,的平分线交于,若,,则为_____.【答案】【解析】【分析】本题考查了角平分线性质定理:角平分线上的点到角两边的距离相等,作,根据求出,然后根据角平分线的性质定理即可求解.【详解】解:作,如图所示:则,∵,,∴∴∵平分,∴故答案为:.的533112⨯-⨯=2m 12ABC 90C ∠=︒A ∠BC D 222cm ABD S = 10cm AB =CD cm 225DE AB ⊥12ABD S AB DE =⨯⨯ DE DE AB ⊥12ABD S AB DE =⨯⨯ 222cm ABD S = 10cm AB =122102DE =⨯⨯22cm 5DE =AD CAB ∠90ACD AED ∠=∠=︒22cm 5CD DE ==22513. 如图,在中,,分别以点A 和点C为圆心,大于的长为半径画弧,两弧相交于点M ,N ,作直线,交于点D ,连接,则的度数为________.【答案】##度【解析】【分析】本题主要考查了三角形内角和定理,等边对等角,线段垂直平分线的性质和尺规作图,先由三角形内角和为180度求出,由作图方法可知垂直平分,则,可得,则.【详解】解:∵在中,,∴,由作图方法可知垂直平分,∴,∴,∴,故答案为:.三、解答题(共48分)14. 因式分解:(1)(2)【答案】(1)(2)【解析】【分析】本题考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.(1)先提取公因式y ,再利用完全平方公式因式分解即可;(2)利用平方差公式和完全平方公式进行因式分解即可.ABC 7030B C ∠=︒∠=︒,12AC MN BC AD BAD ∠50︒5080BAC ∠=︒MN AC AD CD =30DAC C ∠=∠=︒50BAD BAC DAC =-=︒∠∠∠ABC 7030B C ∠=︒∠=︒,18080BAC C B ∠=︒-∠-∠=︒MN AC AD CD =30DAC C ∠=∠=︒50BAD BAC DAC =-=︒∠∠∠50︒2232x y xy y -+()22214y y +-()2-y x y ()()2211y y +-【小问1详解】解:==;【小问2详解】解:==.15. 解不等式(组)(1)(2)【答案】(1)(2)【解析】【分析】本题考查的是解一元一次不等式(组),正确的计算是解题关键.(1)去括号、移项、合并同类项即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【小问1详解】解:,,【小问2详解】解:解①得:;解②得:;∴原不等式组的解集为:16. 如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,的顶点均在格点上,2232x y xy y -+()222y x xy y-+()2-y x y ()22214y y +-()()221221y y y y ++-+()()2211y y +-()()51332x x -≤--()512125131x x x x +⎧-≤⎪⎨⎪-<+⎩①②2x ≥-32x -≤<55336x x -≤-+24x -≤2x ≥-3x ≥-2x <32x -≤<ABC ∆点B 的坐标为(1,0).(1)画出向左平移4个单位所得的;(2)画出将绕点B 按顺时针旋转90°所得的(点A 、C 分别对应点A 2、C 2);(3)线段 的长度为 .【答案】(1)见解析(2)见解析(3【解析】【分析】(1)根据平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)根据旋转变换的性质分别作出A ,C 的对应点A 2,C 2即可.(3)利用勾股定理求解即可.【小问1详解】ABC ∆111A B C ∆ABC ∆222A B C ∆12B C如图,即为所求.【小问2详解】如图,即为所求.小问3详解】线段,.【点睛】本题考查旋转变换,解题的关键是熟练掌握旋转变换的性质,正确作出图形.17. 如图,在平面直角坐标系中,,直线交轴于,过点A 作交轴于点D .(1)求直线和直线的关系式;(2)点M 在直线上,且与的面积相等,求点M 的坐标.【答案】(1)直线的解析式为:;直线的解析式为: 【111A B C ∆222A B C ∆12B C =(3,0),(1,4)A B -BC x ()4,0AD BC ∥y BC AD AD ABM ABO AD 443y x =--BC 41633y x =-+(2)或【解析】【分析】本题考查了一次函数的解析式求解、平行线间的距离处处相等等知识点,掌握待定系数法是解题关键.(1)设直线的解析式为:,将两点代入即可求解;设直线的解析式为:,将点代入即可求解;(2)求出直线的解析式,过点作的平行线,则点M 是直线与直线的交点,据此即可求解;【小问1详解】解:设直线的解析式为:,则,解得:,∴直线的解析式为:,∵∴设直线的解析式为:,则,解得:∴直线的解析式为:,【小问2详解】解:如图所示:过点作的平行线,1212,77⎛⎫-- ⎪⎝⎭3012,77⎛⎫- ⎪⎝⎭BC y kx b =+,B C AD 43y x b '=-+A AB O AB l AD l BC y kx b =+440k b k b +=⎧⎨+=⎩16343b k ⎧=⎪⎪⎨⎪=-⎪⎩BC 41633y x =-+AD BC∥AD 43y x b '=-+()4033b =-⨯+'-4b '=-AD 443y x =--O AB l设直线的解析式为:,则,解得:,∴直线的解析式为:,则直线的解析式为:,∵点M 在直线上,且与的面积相等,∴点M 是直线与直线的交点则,解得:∴点关于点的对称点为:综上所述:点M 的坐标为或18. (1)如图1,在四边形中,,,连接,探究线段,,之间的数量关系.小芳同学探究此问题的思路是:过点D 作,交延长线于点E ,从而得出结论:,请用上述方法证明:;(2)如图2,在四边形中,,,若,,求AB y mx n =+304m n m n -+=⎧⎨+=⎩13m n =⎧⎨=⎩AB 3y x =+l y x =AD ABM ABO AD l 443y x y x =⎧⎪⎨=--⎪⎩127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩1212,77M ⎛⎫-- ⎪⎝⎭1212,77M ⎛⎫-- ⎪⎝⎭()3,0A -3012,77M ⎛'⎫- ⎪⎝⎭1212,77⎛⎫-- ⎪⎝⎭3012,77⎛⎫- ⎪⎝⎭ACBD 90ACB ADB ∠=∠=︒AD BD =CD AC BC CD DE CD ⊥CA AC BC +=AC BC +=ACDB 90ACB ADB ∠=∠=︒AD BD =3AC =5BC =CD的长;(3)如图3,在中,,,点D 为外一点,且,点P ,Q 分别为的中点,连接,求的长.【答案】(1)见解析;(2;(3)【解析】【分析】(1)证得是等腰直角三角形即可求证;(2)作,证即可求解;(3)连接作,结合(1)得证明过程可得,推出,即可求解;【详解】(1)证明:由题意得:∴∵∴∵∴∴∴是等腰直角三角形∴(2)解:作,如图所示:ABC 90ACB ∠=︒6AC BC ==ABC 63CD AD ==,AB AD ,PQ PQ PQ =AED BCD ≌△△CDE DF CD ⊥DAC DBF ≌CP CQ 、,PM PQ ⊥AQP CMP V V ≌AQ CQ +=90,90CDE ADC ADE ADB ADC BDC ∠=∠+∠=︒∠=∠+∠=︒ADE BDC∠=∠90AED DCE BCD DCE ∠+∠=∠+∠=︒AED BCD∠=∠AD BD=AED BCD≌△△,DE CD AE BC==CDE AC BC AC AE CE +=+==DF CD ⊥由题意得:∴∵,∴∵∴∴∴是等腰直角三角形∵,,∴,∴(3)解:连接作,如图所示:∵,,点P 为的中点,∴∵点Q 为的中点,∴由(1)可得:∴∴是等腰直角三角形∴90,90CDF ADC ADF ADB ADF BDF ∠=∠+∠=︒∠=∠+∠=︒ADC BDF∠=∠90DAC AOC DBF BOD ∠+∠=∠+∠=︒AOC BOD∠=∠DAC DBF∠=∠AD BD=DAC DBF≌,FD CD AC BF==CDF 3AC =5BC =3BF AC ==2CF BC BF =-=CD ==CP CQ 、,PM PQ ⊥90ACB ∠=︒AC BC =AB ,90PA PC APC =∠=︒6AC CD ==,AD 90AQC ∠=︒AQP CMPV V ≌,AQ CM QP MP==QPMAQ CQ CM CQ QM +=+==∵∴∴解得:【点睛】本题考查了全等三角形的常见模型—旋转模型,涉及了等腰直角三角形的判定与性质、勾股定理等知识点,正确作出辅助线,学会举一反三是解题关键.B 卷(共50分)一、选择题(每小题4分,共20分)19. 已知,,那么_______.【答案】【解析】【分析】本题考查了求代数式的值,将变形为,再代入值进行计算即可,采用整体代入的思想是解此题的关键.【详解】解:,,,故答案为:.20. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D .若BD =BC ,则∠A =________度.【答案】36【解析】【详解】分析:题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.13,622AQ AD CD ===CQ ==32=PQ =3m n +=2mn =22m n mn +=622m n mn +()mn m n +3m n += 2mn =()22236m n mn mn m n ∴+=+=⨯=6详解:∵BD=BC , ∴∠C=∠BDC ,∵AB=AC , ∴∠ABC=∠C ,∵BD 平分∠ABC , ∴∠ABD=∠CBD , 又∵∠BDC=∠A+∠ABD ,∴∠C=∠BDC=2∠A , 又∵∠A+∠ABC+∠C=180°, ∴∠A+2∠C=180°把∠C=2∠A 代入等式,得∠A+2×2∠A=180°,解得∠A=36°.点睛:本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.21. 关于x 的不等式组恰好有3个整数解,则a 的取值范围是______.【答案】【解析】【分析】先求出不等式组的解集,根据不等式组恰好有3个整数解,列式求解即可.【详解】解:,由①,得:,由②,得:,∵不等式组恰好有3个整数解,∴不等式组的解集为:,整数解为:,∴,∴;故答案为:.【点睛】本题考查根据不等式组的解集求参数的取值范围.正确的求出不等式组的解集,是解题的关键.22. 已知点位于第二象限,并且,,均为整数,则满足条件的点的个数有_________个.【答案】110【解析】【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得不等式,根据解不等式,即可得出答案.【详解】解:由点在第二象限,得,,6302x x a -<⎧⎨≤⎩1012a ≤<6302x x a -<⎧⎨≤⎩①②2x >2a x ≤22a x <≤3,4,5562a ≤<1012a ≤<1012a ≤<(),P ab 223a b >-a b P (,)P a b a<00b >又因为,,解得:,,,,均为整数,;当时,,则取不到整数,有0种情况;当时,,则,有2种情况;当时,,则,有4种情况;当时,,则,有6种情况;当时,,则,有8种情况;当时,,则,有10种情况;当时,,则,有12种情况;当时,,则,有14种情况;当时,,则,有16种情况;当时,,则,有18种情况;当时,,则,有20种情况;故共有:,则满足条件的点的个数有110,故答案为:110.223a b >-2230b ∴-<1112b <0b > 10112b <<a b 1,2,3,4,5,6,7,8,9,10,11b ∴=11b =10a -<<10b =30a -<<2,1a =--9b =50a -<<4,3,2,1a =----8b =70a -<<6,5,4,3,2,1a =------7b =90a -<<8,7,6,5,4,3,2,1a =--------6b =110a -<<10,98,7,6,5,4,3,2,1a =----------5b =130a -<<12,11,10,98,7,6,5,4,3,2,1a =------------4b =150a -<<14,13,12,11,10,98,7,6,5,4,3,2,1a =--------------3b =170a -<<16,15,14,13,12,11,10,98,7,6,5,4,3,2,1a =----------------2b =190a -<<18,17,16,15,14,13,12,11,10,98,7,6,5,4,3,2,1a =------------------1b =210a -<<20,19,18,17,16,15,14,13,12,11,10,98,7,6,5,4,3,2,1a =--------------------02468101214161820110++++++++++=P【点睛】此题考查了解一元一次不等式,以及点的坐标,解题的关键是熟练掌握不等式的解法.23. 如图,在矩形中,,点E 为上一点,且,点F 为边上一动点,连接,过点A 作于点G ,连接,则最小值为______,连接,将绕点E 顺时针旋转,得到,在点F 运动的过程中,的最小值为_______.【答案】①. ## ②. ##【解析】【分析】如图所示,取中点O ,连接,则由直角三角形的性质可得,再由矩形的性质和勾股定理得到,再由,可得当三点共线,且点G 在线段上时,有最小值,最小值为;如图所示,将线段绕点E 顺时针旋转得到,连接,证明,得到;求出,,进而推出,则H 在上时,有最小值,最小值为.【详解】解:如图所示,取中点O ,连接,∵,∴,∵点O 为中点,∴,∵四边形是矩形,∴,∴,∵,的ABCD 46AB BC ==,BC 2BE =AD BF AG BF ⊥CG CG EG EG 45︒EHCH 2-2-+2-2-+AB OG OC ,122OG OB AB ===OC ==CG OC OG ≤-O C G 、、OC CG 2-OE 45︒ME MH MC ,()SAS OEG MEH ≌2MH OG ==45OEB ∠=︒ME OE ==90MEC ∠=︒CM ==CM CH 2-AB OG OC ,AG BF ⊥90AGB ∠=︒AB 122OG OB AB ===ABCD 90ABC ∠=︒OC ==CG OC OG ≤-∴当三点共线,且点G 在线段上时,有最小值,最小值为;如图所示,将线段绕点E 顺时针旋转得到,连接,由旋转的性质可得,∴,∴,∴;∵,∴,,∴,∴,∵,∴同理可得当M 、H 、C 三点共线,且点H 在上时,有最小值,最小值为,故答案为:;.【点睛】本题主要考查了矩形的性质,全等三角形的性质与判定,旋转的性质,勾股定理,直角三角形的性质,等腰直角三角形的性质等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.二、解答题(共30分)24. 为保护环境,我市某公交公司计划购买型和型两种环保节能公交车共10辆.若购买型公交车1辆,型公交车2辆,共需400万元;若购买型公交车3辆,型公交车2辆,共需600万元.(1)求购买型和型公交车每辆各需多少万元.(2)经测算,在两种公交车均购买的前提下,该公司购买公交车的总费用不得超过1150万元,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?【答案】(1)购买型公交车每辆需100万元,购买型公交车每辆需150万元O C G 、、OC CG 2OE 45︒ME MH MC ,45EO EM EG EH OEM GEH ====︒,,∠∠OEG MEH =∠∠()SAS OEG MEH ≌2MH OG ==290OB BE OBE ===︒,∠45OEB ∠=︒ME OE ===BEM 90∠=︒90MEC ∠=︒4CE BC BE =-=CM ==CM CH 2-22-A B A B A B A B A B(2)三种购车方案:购买型公交车7辆,购买型公交车3辆;购买型公交车8辆,购买型公交车2辆;购买型公交车9辆,购买型公交车1辆(3)购买型公交车9辆,购买型公交车1辆总费用最少,最少总费用是1050万元【解析】【分析】(1)设购买型公交车每辆需万元,购买型公交车每辆需万元,根据题意列二元一次方程组并求解即可;(2)设购买型公交车辆,则购买型公交车辆,根据题意“总费用不得超过1150万元”可得,求解并讨论即可;(3)分别求出各种购车方案总费用,即可作出判断.【小问1详解】解:设购买型公交车每辆需万元,购买型公交车每辆需万元,根据题意,可得,解得,所以,购买型公交车每辆需100万元,购买型公交车每辆需150万元;【小问2详解】在两种公交车均购买的前提下,可设购买型公交车辆,则购买型公交车辆,则有,解得,又且m 为整数,所以,8,9,则,2,1,所以,可有三种方案:购买型公交车7辆,购买型公交车3辆;购买型公交车8辆,购买型公交车2辆;购买型公交车9辆,购买型公交车1辆;【小问3详解】方案①:购买型公交车7辆,购买型公交车3辆,总费用万元;方案②:购买型公交车8辆,购买型公交车2辆,A B A B A B A B A x B y A m B (10)m -100150(10)1150m m +-≤A x B y 240032600x y x y +=⎧⎨+=⎩100150x y =⎧⎨=⎩A B A m B (10)m -100150(10)1150m m +-≤7m ≥10m <7m =(10)3m -=A B A B A B A B 100715031150⨯+⨯=A B总费用万元;方案③:购买型公交车9辆,购买型公交车1辆,总费用万元.所以,购买型公交车9辆,购买型公交车1辆总费用最少,最少总费用是1050万元.【点睛】本题主要考查了二元一次方程组以及一元一次不等式的应用,理解题意,弄清数量关系是解题关键.25. 如图,点P 为正方形的边上的一个动点,连接,点D 与点E 关于直线对称,连接,射线与射线交于点,连接.(1)当时,求的度数;(2)i )点P 在运动过程中,的度数是否发生变化?如果不变,请求出它的度数,如果改变,请说明理由;ii )求证:;(3)若P 从点C 运动到点B 时,求点F 运动路径的长度.【答案】(1)(2)i )不变化,且为;ii )证明见详解(3)【解析】【分析】(1)先根据正方形的性质得到,再根据等腰三角形的性质及三角形内角和定理求得,即可求解;(2)i :设,则,再根据等腰三角形的性质及三角形内角和定理求得,最后由三角形内角和得;ii :过点A 作于点M ,过点C 作于点N ,先证明“一线三等角”,100815021100⨯+⨯=A B 100915011050⨯+⨯=A B ABCD BC AP AP AE EB AP F CF 65DAF ∠=︒AFE ∠AFE ∠BE =AB =45︒45︒32π25PAB ∠=︒70E ABE ∠=∠=︒BAP x ∠=902BAE x ∠=︒-45E ABE x ∠=∠=︒+45AFE ∠=︒AM BF ⊥CN BF ⊥AMB BNC ≌△△再根据全等三角形的性质及勾股定理即可求证;(3)连接,取中点为点O ,连接,,证明出,继而可得点F 在以点O 为圆心,为半径的弧上运动,即路径为,再由弧长公式即可求解.【小问1详解】解:点D 与点E 关于直线对称,,,∵四边形为正方形,∴,,∴,,,,;【小问2详解】i 解:不变化,,设,,线段与关于直线对称,,,,,;ii 证明:如图2,过点A 作于点M ,过点C 作于点N ,∴,AC AC OF OB 90AFC ∠=︒OF BCAP 65DAP EAP ∴∠=∠=︒AD AE =ABCD 90DAB ∠=︒AB AD =906525PAB ∠=︒-︒=︒652540BAE ∴∠=︒-︒=︒AB AE =18040702E ABE ︒-︒∴∠=∠==︒180706545AFE ∴∠=︒-︒-︒=︒45AFE ∠=︒BAP x ∠=90DAP x ∴∠=︒- AE AD AP 90DAP EAP x ∴∠=∠=︒-902BAE x ∴∠=︒-AB AE = ()180902452x E ABE x ︒-︒-∴∠=∠==︒+180(90)(45)45AFE x x ∴∠=︒-︒--︒+=︒AM BF ⊥CN BF ⊥90AMB N ∠=∠=︒四边形是正方形,∴,∴,∴,∴,∴,∵,∴为等腰直角三角形,∴,∴,∴,∴,∵,∴同(1)可得,∵,∴,设,则,,∴;【小问3详解】ABCD ,90BC AB ABC =∠=︒139023∠+∠=︒=∠+∠12∠=∠AMB BNC ≌△△,AM BN BM CN ==45,90AFE AMF Ð=°Ð=°AMF AM MF =MF BN =BM NF =CN NF =90N ∠=︒CF =,AB AE AM BE =⊥BM M E =BM ME CN NF x ====CF =2BE x=BE =解:如图3,连接,取中点为点O ,连接,,由ii 得,而,∴,∵O 为中点,∴,∴点F 在以点O 为圆心,为半径的弧上运动,∵点P 从点C 运动到点B 时,∴点F 运动路径为,∵四边形为正方形,∴,,∵,∴同上可得,∴点P 从点C 运动到点B 时,点F运动路径长度为.【点睛】本题是四边形综合题,考查了正方形的性质,等腰三角形的性质,三角形内角和定理,轴对称的性质,全等三角形的判定和性质,弧长公式,正确添加辅助线,灵活运用这些性质解决问题是本题的关键.26. 如图,在平面直角坐标系中,直线与轴交于点,直线与轴交于AC AC OF OB 45CFN ∠=︒45AFE ∠=︒90AFC ∠=︒AC OF OA OC ==OF BCABCD OC OB =90COB ∠=︒AB =3OB BC ==90331802ππ⨯=17:424l y x =-+y A 23:64l y x =-y点,与直线交于点.(1)求点C 的坐标及的长;(2)直线分别交直线,于点,,直线与直线,交于点,,若,求的值;(3)在(2)的条件下,将△沿射线的方向以每秒个单位的长度匀速平移,设移动时间为秒.在△移动的过程中,点到直线,的距离相等,请求出此时点的坐标.【答案】(1), (2)(3)或【解析】【分析】(1)根据解析式分别求出两点的坐标即可;(2)由题意得,进一步可得,,即可求解;(3)由题意得,可知点在直线上运动;根据题意可推出点在的角平分线上,结合进而可得,据此即可求解;【小问1详解】解:,令,则;∴B 1l C AC ()0x m m =<1l 2l M N 4y =-MN 2l E F 98ME EF =m NEF BC 5t ()0t >NEF E 1l 2l E 486,55C ⎛⎫⎪⎝⎭10AC =6-26259125,A C 73,4,,6244M m m N m m ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(),4E m -8,43F ⎛⎫- ⎪⎝⎭()64,43E t t -+-+E 3142y x =+E ACB ∠2e l ∥DC DE =17:424l y x =-+0x =4y =()0,4A由得:∴【小问2详解】解:∵直线分别交直线,于点,,∴∵直线与直线,交于点,,∴令,解得:∴∴∵,∴,解得:【小问3详解】解:由(2)得: 由可知:当△沿射线的方向以每秒个单位的长度匀速平移,秒后,,7424364y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩48565x y ⎧=⎪⎪⎨⎪=⎪⎩486,55C ⎛⎫ ⎪⎝⎭10AC ==()0x m m =<1l 2l M N 73,4,,6244M m m N m m ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭4y =-MN 2l E F (),4E m -3644x -=-83x =8,43F ⎛⎫- ⎪⎝⎭()778448,24243ME m m EF m =-+--=-+=-98ME EF =88378924m m -+=-6m =-()6,4E --23:64l y x =-NEF BC 5t ()64,43E t t -+-+∵故点在直线:上运动易知:∵点到直线,的距离相等,∴点在角平分线上∴∵∴∴∴由得:∴解得:或的()31436442t t -+=⨯-++E e 3142y x =+2e l ∥E 1l 2l E ACB ∠ACE BCE∠=∠2e l ∥DCE BCE∠=∠DCE DEC∠=∠DC DE=31427424y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩842515150x y ⎧=⎪⎪⎨⎪=⎪⎩151,842550D ⎛⎫ ⎪⎝⎭=2625t =9125【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数的解析式求解、角平分线的判定定理、勾股定理等知识点,综合性较强.。

2023届小升初数学考试试卷附参考答案(完整版)

2023届小升初数学考试试卷附参考答案(完整版)

2023届小升初数学考试试卷一.(共8题,共16分)1.下列说法正确的是()。

A.两个不同素数的和一定是合数。

B.9℃与-1℃相差8℃。

C.假分数的倒数一定小于1。

D.一个三角形的三条边的长度都是整厘米数,其中两条边长度是3厘米和5厘米,那么第三条边的长度有5种可能。

2.某商品按原价出售每件利润为成本的50%,后来打八折出售,结果每天售出的件数比降价前增加了2.5倍,每天经营这种商品的总利润比降价前增加了百分之几?()A.40%B.70%C.120%D.140%3.下列说法正确的是()。

A.0是最小的数B.0既是正数又是负数C.负数比正数小D.数轴上-在-的左边4.我市2019年元月某一天的天气预报中,宁城县的最低气温是-22℃,克旗的最低气温是-26℃,这一天宁城县的最低气温比克旗的最低气温高()。

A.4℃B.-4℃C.8℃D.-8℃5.一种皮衣,原价1200元,现在85折出售.现在一件这样的皮衣()。

A.1002元B.1000元C.696元D.1020元6.某商品标价3000元,打八折出售后仍获利100元,则该产品的进价是()元。

A.2050B.2100C.2300D.24007.下列形体不论从哪个方向切,切面形状不可能是长方形的是()。

A.长方体B.圆锥C.圆柱D.正方体8.某商品按定价的80%(八折)出售,仍能获得20%的利润,定价时期望的利润百分数是()。

A.40%B.60%C.72%D.50%二.(共8题,共16分)1.任意两个比都可以组成比例。

()2.圆柱的底面直径是2厘米,高是6.28厘米,它的侧面积展开图是一个正方形。

()3.三角形的面积一定,底和高成正比例。

()4.淘气早上上学时面向太阳走,下午回家时应该背向太阳走。

()5.圆柱体的侧面积总比表面积小。

()6.天数一定,每天烧煤量和烧煤总量成正比例。

()7.某块土地今年的收成是去年的8成是说今年的收成是去年的80%。

()8.在一幅地图上,图上距离与实际距离成正比例。

2023年天府七中小升初数学真卷

2023年天府七中小升初数学真卷

天府七中真卷(一)一、(时间: 60分钟, 满分: 100分)选择题(每小题2分, 共20分)A. 1.10个百分之一是( )B. 十分之一 B.万分之一C.百分之一D.千分之一A. 将一个三角形的底增长25%, 高减少, 则现在三角形的面积是本来的( )B.61 B.65 C.121 D.127A. 在两个都装有a 公斤水(a >1)的杯中, 第一杯取出, 第二杯取出公斤, 剩下的水相比较( )B. 同样重 B.第一杯重C.第二杯重一种盐水的浓度是25%, 用2023克盐, 配制这种盐水需要多少克水, 列式为( )A.2023×(1-25%)B.2023÷25%-2023C.2023×(1+25%)A.女生人数的等于男生人数的, 那么男生人数()女生人数B.少于 B.多于C.等于小英把1000元按照年利率2.45%存入银行, 两年后计算她应当得到而本金和利息, 列式应当是()A.1000×2.45%×2B.(1000+1000×2.45%)×2C.1000+1000×2.45%×2D.1000×2.45%+1000如图所示的三角形ABC中, AD:DC=2:3, AE=EB, 甲乙两个图形的面积比是()A.1:3B.1:4C.2:5D.以上答案都不对。

将厚0.1毫米的一张纸对折, 再对折, 这样折4次之后, 这张纸厚()毫米A.0.4B.0.8C.1.6D.3.2有一个用正方体搭成的立体图形, 从前面和左面看到的形状如图所示, 那么搭成这样的立体图形, 至少要用()个正方体木块。

A.5B.6C.7D.8小明用一张梯形纸做折纸游戏, 先上下对折使得两底重合, 可以得到图1, 并测出未重叠部分两个三角形的面积和是20平方厘米, 然后在将图1中两个小三角形向内翻折得到图2。

通过测算, 图2的面积相称于图1的, 这张梯形纸的面积是( )平方厘米。

四川成都七中初中学校2024-2025学年七年级上学期入学分班考试数学试题(解析版)

四川成都七中初中学校2024-2025学年七年级上学期入学分班考试数学试题(解析版)

2023~2024学年成都七中初中学校新初一入学分班考试数学试题(卷)(满分:100分时间:90分钟)一、选择题(将正确答案的番号填在括号里.每小题4分,共20分)1要使四位数104□能同时被3和4整除,□里应填()..A. 1B. 2C. 3D. 4【答案】D【解析】【分析】该题主要考查了数的整除,解答此题应结合题意,根据能被3和4整除的数的特征进行解答即可.根据能被4整除的数的特征:即后两位数能被4整除;能被3整除的数的特征:各个数位上数的和能被3整除,进行解答即可.+++=能被3整除,不【详解】解:A:后两位数是41,不能被4整除,各个数位上数的和是10416,6符合题意;+++=不能被3整除,不符合题意;B:后两位数是42,不能被4整除,各个数位上数的和是10427,7+++=不能被3整除,不符合题意;C:后两位数是43,不能被4整除,各个数位上数的和是10438,8+++=能被3整除,符合题意.D:后两位数是44,能被4整除,各个数位上数的和是10449,9故选:D.2. 用一只平底锅煎饼,每次只能放两只饼,煎熟一只饼需要2分钟(正反两面各需1分钟),那么煎熟3只饼至少需要_____分钟.()A. 4B. 3C. 5D. 6【答案】B【解析】【分析】本题考查了推理与论证,在解答此类题目时要根据实际情况进行推论,既要节省时间又不能造成浪费.若先把两只饼煎熟,则在煎第三张饼时,锅中只有一只饼而造成浪费,所以应把两只饼的两面错开煎,进而求解即可.【详解】∵若先把两只饼煎至熟,势必在煎第三只饼时,锅中只有一只饼而造成浪费,∴应先往锅中放入两只饼,先煎熟一面后拿出一只,再放入另一只,当再煎熟一面时把熟的一只拿出来,再放入早拿出的那只,使两只饼同时熟, ∴煎熟3只饼至少需要3分钟. 故选:B .3. 投掷3次硬币,有2次正面朝上,1次反面朝上,那么第4次投掷硬币正面朝上的可能性是( ) A.12B.14C.13D.23【答案】A 【解析】【分析】本题主要考查可能性的大小,熟练根据概率的知识得出可能性的大小是解题的关键.根据每次投掷硬币正面朝上的可能性都一样得出结论即可. 【详解】解:每次投掷硬币正面朝上的可能性都为12. 故选:A .4. 一串珠子按照8个红色2个黑色依次串成一圈共40粒.一只蟋蟀从第二个黑珠子开始其跳,每次跳过6个珠子落在下一个珠子上,这只蟋蟀至少要( )次,才能又落在黑珠子上. A. 7 B. 8 C. 9 D. 10【答案】A 【解析】【分析】本题关键是理解这只蟋蟀跳跃的规律,难点是得出跳过的珠子数与循环周期之间的关系. 这是一个周期性的问题,蟋蟀每次跳过6粒珠子,则隔7个珠子,把珠子编上号码,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色;蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,因为周期是40,再根据周期性的知识解决即可. 【详解】解:观察可知,每次跳过6粒珠子,则隔7个珠子,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色.蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,即7的倍数; 周期应是40,4940−9=,就相当于一圈后落在“9”号黑珠子上; 即这只蟋蟀至少要7次,才能又落在黑珠子上;故选:A.5. 仓库里的水泥要全部运走,第一次运走了全部的12,第二次运走了余下的13,第三次运走了第二次余下的14,第四次运走了第三次余下的15,第五次运走了最后剩下的19吨.这个仓库原来共有水泥_____吨.()A. 78B. 56C. 95D. 135【答案】C【解析】【分析】本题考查分数除法的应用,此题应从后向前推算,分别求出第三,二,一次运过之后,还剩下的数量,即可求解.【详解】∵第五次只剩下19吨,∴第三次运过之后,还剩下195 19154÷−=吨,那么第二次运过之后,还剩下951951443÷−=吨,那么第一次运过之后,还剩951951332÷−=吨那么没经过运输之前,仓库中有9519522÷=吨,故选:C .二、填空题(每小题3分,共30分)6.132吨=()吨()千克.70分=()小时.【答案】①. 3 ②. 500 ③. 7 6【解析】【分析】根据1吨=1000千克、1小时=60分计算即可.【详解】解:∵11000=5002×千克,∴132吨=(3)吨(500)千克.∵70÷60=76小时,∴70分=(76)小时. 故答案为:3,500;76.【点睛】本题考查了单位换算,熟练掌握1吨=1000千克、1小时=60分是解答本题的关键. 7. 把0.45:0.9化成最简整数比是_____∶_____;11:812的比值是_____. 【答案】 ①. 1 ②. 2 ③. 1.5 【解析】【分析】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.用比的前项除以后项即可.详解】解:0.45:0.91:2=,11111:12 1.58128128=÷=×= 故答案为∶1,2,1.5. 8. 111112123123100+++++++++++ . 【答案】200101【解析】【分析】先确定,分数的变化规律,后整理计算即可. 【详解】∵12112()123n (1)1n n n n ==−++++++ ,∴111112123123100+++++++++++ =1111112()1223100101−+−++−=12(1)101−=200101. 【点睛】本题考查了分数中的规律问题,熟练掌握拆项法找规律计算是解题的关键. 9. 定义运算:35a b a ab kb =++ ,其中a 、b 为任意两个数, k 为常数.比如:27325277k =×+××+ ,若5273= ,则85= _____.【答案】244 【解析】【分析】此题考查了有理数的四则混合运算和解一元一次方程,根据5273= 得到方程,解方程得到4k =,【再计算85 即可.【详解】解:由5235552273k =×+××+= , 解得4k =,∴853*********=×+××+×= , 故答案为:24410. 某年的10月份有四个星期四、五个星期三,这年的10月8日是星期_____. 【答案】一 【解析】【分析】本题主要考查数字规律,有理数混合运算,根据题意,找出循环规律,是解题的关键. 【详解】解:10月有31天,四个星期四,五个星期三,∴31号是星期三,31823−=(天),2373÷=(周) 2(天),把星期三往前推2天,是星期一, ∴10月8号是星期一, 故答案为:一.11. 某小学举行数学、语文、科学三科竞赛,学生中至少参加一科的:数学203人,语文179人, 科学165人,参加两科的:数学、语文143人, 数学、科学116人,语文、科学97人.三科都参加的:89人,这个小学参加竞赛的总人数为_____人. 【答案】280 【解析】【分析】根据题意,至少参加一科的:数学203人,语文179人,常识165人.参加两科的:数学,语文143人,数学、常识116人,语文、常识97人,三科都参加的有89人.根据容斥问题,参加三科的人数为:(20317916514311697)++−−−人,由于三科都参加的有89人,所以这个小学参加竞赛的总人数为:(2031791651431169789)++−−−+.据此解答.本题考查了容斥问题的灵活运用,关键是明确它们之间的包含关系.【详解】解:2031791651431169789280++−−−+=(人) 答:这个小学参加竞赛的总人数有280人. 故答案为:280.12. 一个长方体的长、宽、高之比为3:2:1,若长方体的棱长总和等于正方体的棱长总和,则长方体的表面积与正方体的表面积之比为_____,长方体的体积与正方体的体积之比为_____. 【答案】 ①. 11:12 ②. 3:4【解析】【分析】此题主要考查了长方体和正方体的棱长总和、表面积、体积的计算,直接把数据代入公式解答即可.设长方体的长宽高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.根据长方体和正方体的表面积公式计算求得长方体表面积与正方体的表面积比;根据长方体和正方体的体积公式计算求得长方体体积与正方体的体积之比【详解】设长方体的长、宽、高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.长方体表面积为()22323222a a a a a a a ××+×+×=, 正方体表面积为()226224a a ×=,其比为2222:2411:12a a =.长方体体积为 3326a a a a ××=,正方体体积为()3328a a =,其比为336:83:4a a =. 故答案为:11:12; 3:4.13. 甲、乙两地相距300千米,客车和货车同时从两地相向开出,行驶2小时后,余下的路程与已行的路程之比是3:2,两车还需要经过_____小时才能相遇. 【答案】3 【解析】由于客车和货车的速度和一定,行驶的时间和路程成正比例,所以根据“余下的路程与已行的路程之比是3:2”可得:余下的路程需要的时间与已行的时间之比也是3:2,据此求解即可. 【详解】由题意得:2233÷=(小时) 故答案:3.14. 如图,长方形ABCD 中,12AB =厘米,8BC =厘米,平行四边形BCEF 的一边BF 交CD 于G ,若梯形CEFG 的面积为64平方厘米,则DG 长为_____.【答案】4厘米 【解析】为【分析】本题考查了梯形的面积公式,一元一次方程的实际运用,解题的关键是设未知数,找准等量关系,建立方程求解.根据图形可得=64ABGD CEFG S S =梯形梯形,设DG 的长度为x 厘米, 则有()1128642x +××=,解出方程即可. 【详解】解:由图可知:长方形ABCD 和平行四边形BCEF 底边和高相同,故它们面积相同,GCB ABCD ABGD S S S =− 矩形梯形,64BCEF GCB CEFG S S S =−= 梯形平方厘米,, =64ABGD CEFG S S ∴=梯形梯形,设DG 的长度为x 厘米, 则()1128642x +××= ()128642x +××896128x +=832x =4x =,即DG 长为4 厘米, 故答案为:4厘米.15. 自然数按一定的规律排列如下:从排列规律可知,99排第_____行第_____列. 【答案】 ①. 2 ②. 10 【解析】【分析】本题考查了规律问题的探究.通过观察知第1行中的每列中的数依次是1、2、3、4、5…的平方;在第2行中的每列中的数从第2列开始依次比相应的第1行每列中的数少1;据此规律第1行中的10列的数是10的平方,第2行中的10列的数是100199−=.【详解】解:由图表可得规律:每列的第1个数就是列的平方; 10的平方是100,99在100的下方, 所以99排在第2行第10列, 故答案为:2;10.三、计算题(能用简便方法计算的请用简便方法计算.共20分)16. (1) 计算:2255977979 +÷+ ;(2) 计算:121513563+++×; (3) 计算:47911131531220304256−+−+−; (4) 计算:11111155991313171721++++×××××. 【答案】(1)13;(2)136;(3)78;(4)521【解析】(1)将229779 + 变形为551379+,可进行简便运算;(2)利用乘法分配律,将原式变形为11525136353++×+×进行简便运算; (3)利用裂项相消法进行简便运算; (4)利用裂项相消法进行简便运算; 【详解】解 :(1)2255977979 +÷+6565557979+÷+5555137979=+÷+13=;(2)121513563+++× 11525136353=++×+× 35252353=×+× 5223=+ 136=;(3)47911131531220304256−+−+− 4111111111133445566778 =−+++−+++−+4111111111133445566778=−−++−−++−− 118=-78=; (4)11111155991313171721++++××××× 11111111111455991313171721 =×−+−+−+−+−111421 =×−120421=× 521=. 四、解答题(请写出必要的解题过程.每小题6分,共30分)17. 如图所示是两个正方形,大正方形边长为8,小正方形边长为4,求图中阴影部分的面积.(单位:厘米,π取3.14)【答案】20.56平方厘米 【解析】【分析】本题考查计算不规则图形的面积,BEF △的面积减去小正方形与扇形GAF 面积之差,即可求出阴影部分的面积. 【详解】解:()21184444π424 ×+×−×−××24164π=−+ 84 3.14=+×20.56=(平方厘米)答:阴影部分面积为20.56平方厘米.18. 学校计划用一批资金购置一批电脑,按原价可购置60台,现在这种电脑打折优惠,现价只是原价的75%,用这批资金现在可购买这种电脑多少台?【答案】用这批资金现在可购买这种电脑80台. 【解析】1,用1乘上60台,就是总钱数,然后用1乘上75%求出现在的单价,再用总钱数除以现在的单价即可. 【详解】设原来每台的单价是1(160)(175%)80×÷×=台答:用这批资金现在可购买这种电脑80台19. 在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%、62.5%和23.已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达56%.那么,丙缸中纯酒精的量是多少千克?【答案】丙缸中纯酒精的量是12千克 【解析】【分析】本题考查了百分数的应用,一元一次方程的应用;根据题意易得甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量50=千克,从而可设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,然后根据题意可得:()25048%62.5%5010056%3x x ×+−+×,最后进行计算即可解答. 【详解】解: 三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量,∴甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量1100502=×=(千克), 设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,由题意得:()25048%62.5%5010056%3x x ×+−+×, 解得:18x =, ∴丙缸中纯酒精量218123=×=(千克), ∴丙缸中纯酒精的量是12千克. 20. 一家工厂里2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件.如果把单独让男工加工和单独让女工加工进行比较,要在一天内完成任务,女工要比男工多多少人?【答案】女工要比男工多18人.【解析】【分析】本题主要考查了二元一次方程组的应用——工程问题.解题的关键是熟练掌握工作量与工作效率和工作时间关系,列方程计算.设男工的工作效率为x ,女工的工作效率为y ,根据2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件,列出方程组,解方程组即可.【详解】设男工的工作效率为x ,女工的工作效率为y , 根据题意得,324108101x y x y += +=, 解得,112130x y = =, 如果单独让男工加工或单独让女工加工, 需要女工113030÷=(人), 需要男工111212÷=(人), 女工比男工多181230=−(人). 的故女工比男工要多18人.21. 如图,有一条三角形的环路,A 至B 段是上坡路,B 至C 段是下坡路,A 至C 段是平路,A 至B 、B 至C 、C 至A 三段距离的比是345::,小琼和小芳同时从A 出发,小琼按顺时针方向行走,小芳按逆时针方向行走,2个半小时后在BC 上的D 点相遇,已知两人上坡速度是4千米/小时,下坡速度是6千米/小时,在平路上的速度是5千米/小时.问C 至D 段是多少千米?【答案】2千米【解析】【分析】本题主要考查了二元一次方程组的实际应用,设3km 4km 5km km AB a BC a AC a CD x ====,,,,根据时间=路程÷速度,结合2个半小时后在BC 上的D 点相遇,列出方程组求解即可.【详解】解:设3km 4km 5km km AB a BC a AC a CD x ====,,,, 由题意得,34 2.5465 2.554a a x a x − += += 解得2x a ==,答:CD 的实际距离为2千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023成都七中嘉祥外国语学校小升初数学综合素质测试卷
(满分140,考试时间:90分钟)
一、专心思索 对旳填写:(每题2分,共40分)
1. 5.23吨=( )吨( )公斤ﻩﻩ0.75平方米=( )平方厘米。

2. 将图中旳纸片沿虚线折起来,可做成一种正方体,则这个正方体旳A 面对面
是字母( )。

3. 某校六年级旳男生比女生多31,则女生比男生少( )%。

4. 若518
a 是分母为18旳最简真分数,则a 可取整数旳个数为( )个。

5. 一种三位数,十位数上旳数字是“1”,这个数既能被2、5整除,又是3旳倍数,这个数最
小是( )。

6. 一种三位小数,精确到0.01,所取近似值是8.00这个数最大是( ),最小是( )。

7. 一种圆柱体和一种圆锥体,底面半径之比为1∶2,高之比为2∶3,它们旳体积比为
( )。

8. 一种数旳小数点,先后右移动一位,再向左移动三位,所得到旳新数比原数少35.64,原数是
( )。

9. 把20米长旳钢筋,锯成每段同样长旳小段,共锯9次,每段长( )米,假如锯成两段
需1分钟,锯成9段共需( )分钟。

10. 小铃准备炒一种西红柿鸡蛋旳菜,她洗切西红柿用了1.5分,洗葱切葱用了2.5分,敲蛋
打蛋用了2分,洗锅2分,把锅烧热1分,将油烧热用3分,炒4分,小玲烧好这道菜花了16分,请你配妙安排,设计出一种次序,使烧好这道菜旳时间最短为( )分。

11. 小明新买一瓶净量54立方厘米旳牙膏,牙膏旳圆形出口旳直径是6
毫米。

他早晚各刷一次牙,每次挤出旳牙膏长约20毫米。

这瓶牙膏估计能用()天。

12.如图,有三个同心半圆,它们直径分别为2,6,10,用线段分割成9块,假如每块字母代
表这一块旳面积并且相似旳字母代表相似旳面积,那么(2A+B):C= 。

(π取
3)
13.某工厂,三月比二月产量高30%,二月比一月产量高20%,则三月比一月高()%。

14.快慢两列火车旳长分别是200米、300米,它们相似而行,坐在慢车上旳人见快车通过此
人窗口旳时间是8秒,则坐在快车上旳人见慢车通过此人窗口所用旳时间是( )秒。

15.不一样中文表达不一样数字,用数字0—9构成了下面一种加法算式,已经填出了数字
6,4,0,请补充完算式,那么这个算式旳和是( )。

16.一商品随季节变化降价发售,假如按现定价降价10%,仍可盈利12元,假如降价后再九折发
售,就要亏损24元,这件商品旳进价是( )元。

17.船从甲地到乙地要行驶2小时,从乙地到甲地要行驶3小时,既有一条木筏从甲地漂流到
乙地要()小时。

18.一件工作,甲每天做8小时30天能完毕,乙每天做10小时22天就能
完毕。

甲每做6天要休息一天,乙每做5天要休息一天,现两队合做,
每天都做8小时,做了13天(包括休息日在内)后,由甲独做,每天做6
小时,那么完毕这项工作共用了( )天。

19.在很小旳时候,我们就用手指练习过数数,一种小朋友按如图如示旳规则练习数数,数到
2023时对应旳指头是(填出指头旳名称,各指头旳名称依次为大拇指、食指、中指、无名指、小指)。

二、反复比较,谨慎选择:(每题3分共15分)
1. 图像组合想像:ﻩ答:( )
2. 通过破译者敌人旳密码,已经懂得了“香蕉苹果大鸭梨”
旳意思是“星期三秘密攻打”,“苹果甘蔗水蜜桃”旳意思是“执行秘密计划”,“广柑香蕉西红柿”旳意思是“星期三旳胜利属于我们”,那么“大鸭梨”旳意思是:
(A )秘密ﻩﻩ(B)星期三ﻩ (C)攻打 ﻩ(D )执行ﻩﻩ(E)计划
3. 一种三角形三个内角旳比是3∶3∶6,且最短边长为10厘米,则它旳面积是( )
A )100平方厘米ﻩ B)50平方厘米ﻩﻩ C )25平方厘米
4. 在比例尺是1∶30000000旳地图上,量得甲地到乙地旳距离是5.6厘米,一辆汽车按3∶2旳比例分
两天行完全程,两天行旳旅程差是( )千米。

(A)672 ﻩﻩ(B)1008 ﻩ (C )336ﻩ (D )1680
5. 下面四个数都是六位数,N 是比10小旳自然数,S 是0,一定能被3和5整除旳数是( )
(A)NNNSNN ﻩ(B )N SNSN Sﻩﻩ(C)N SSNSS ﻩﻩ(D )NSSN SN
三、看清题目,巧思妙算:(共40分)
1.速算:(每题1分共10分)
((3)23..9846 (4) (5)4.646÷4.6= ﻩ
(6)16×0.25×0.5=
(9)2.004×730+2023×0.27= ﻩ(10)=-+-8
54)2973835(29715
2.用简便措施计算下列各题:(每题4分共20分)
(1)1997×19961996-1996×19971997
(2)111111.2 2..3 3..498..9999..100
(5)11212312341259()()()....(.....)2334445555606060
3.解方程(每题5分,共10分)
(1)10(75)2(53)x x x ﻩ
(2)121146x x
四、走进生活,处理问题:(每题5分,共10分) 生活中有许多问题和数学有关,你能处理这些问题吗?相信你一定能行! 4.一批同学参与飞镖比赛,每人发三镖,镖钯上旳数字4和1表达射中该靶区旳得分数(如图),没射中旳得0分。

右图是这次比赛旳得分记录图,看图填空: (1)参与飞镖比赛旳全体同学旳平均分是( )分;
(2)三镖都没中靶旳有( )人;
(3)只有一镖中靶旳有( )人;
(4)只有两镖中靶旳有( )人;
(5)三镖都中靶旳有( )人。

0 1 3 2 4 5 6 8 12 9 分 人 3
0 1
2
5 10
11
5.把底面半径是2厘米,高4厘米旳圆柱体切割成若干等分,拼成一种近似旳长方体。

在这个切拼过程中,体积与表面积有无发生变化?假如没有发生变化,请阐明理由。

假如发生变化,请计算增长或减少旳数量。

(π取3)
五、应用题:(每题5分,共35分)
1. 某工厂有一批煤,原计划每天烧0.25吨,可烧100天,实际每天燃煤比原计划节省20%,实际可以
烧多少天?
2. 从A城到B 城,甲汽车用6小时,从B 城到A 城,乙汽车用4小时。

目前甲乙两车分别从A 、B 两城同
步出发相对而行,相遇时甲汽车行驶了96千米,A、B两城相距多远?
3. 有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天。

目前让三个队合修,但中间
甲队撤离到此外工地,成果一共用了6天把这条公路修完。

当甲队撤出后,乙、丙两队又共同合修了几天才完毕?
4. 一箱桃子分给甲、乙、丙,甲分得了所有旳
41加7个,乙分得了所有旳51加5个,丙分得其他旳二分之一,最终乘下旳是所有旳
8
1,这箱桃子有几种?
5.超市推出如下优惠
(1)一次性购物不超过100元,不享优惠。

(2)一次性购物超过100元,但不超过300元一律9折。

(3)一次性购物超过300元,一律8折。

两次购物分别付款80元,252元,若一次性购置应付多少元?
6.如图ABCD是平行四边形,AD=8cm,AB=10cm,角DAB=30度,高CH=4cm,弧BE、DF
分别以AB、CD为半径,弧DM、BN分别以AD、CB为半径,阴
影部分面积为多少?(π取3)
7.某海关得一种情报,跨国贩毒集团将毒品藏在一批货品旳几种箱子中运入境内,毒品箱子上标有一种
x yz xyz,经查看发现,这批货品每个箱子均有一种编号,编号都是四位数字,并且神秘旳号码是09
数字旳百位都是“0”,则毒品藏在标有什么号码旳箱子里?
参照答案:
一:专心思索
1、5230 7500 2、D3、254、5 5、210 6、(一种三位小数)最大是8.004,最小是7.995。

7、1:68、36 9、2 810、1211、用进一法48 12、35:24 13、56ﻩ14、1215、4942 16、1503 17、708 18、1219、17 20、无名指
二:反复比较,谨慎选择
1、A2、C3、B 4、C5、B
三:看清题目,巧思妙算
1:速算
(1)8(2)28.26 (3)2300 (4)1 (5)1.01
(6)2 (7)49 (8)50
5150 (9)2023 (10)2 2:简算
(1)0 (2)10099 (3)415.25 (4)19
1 (5)885 3:解方程:
(1)3
1 (2)7 四:4:1、3分 2、8人 3、16人 4、10 5、11
5:答:体积没有发生变化,表面积增长了16平方厘米
五:应用题:
1、125天 2、240米 3、9天 4、40个 5、有两种答案有也许是:316也也许是288 6、2平方厘米 7、4050 2025 6075这三个号码旳箱子。

相关文档
最新文档