新教材高中数学第二章一元二次函数方程和不等式

合集下载

新教材高中数学人教版精品 第二章 一元二次函数、方程和不等式 专题3 一元二次不等式恒成立问题

新教材高中数学人教版精品  第二章 一元二次函数、方程和不等式  专题3 一元二次不等式恒成立问题

第二章 一元二次函数、方程和不等式专题3 一元二次不等式恒成立问题一元二次不等式恒成立问题是数学中常见的问题,在高考中频频出现,是高考的一个难点问题。

含参一元二次不等式恒成立问题设计二次函数的性质和图象,渗透着换元、划归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力。

【题型导图】类型一 实数集R 上的不等式恒成立问题例1:若一元二次不等式23208kx kx +-<对一切实数 x 恒成立,则 k 的取值范围是( ) A .3,0 B .(]3,0- C .(,3]-∞- D .(0,)+∞【变式1】“0a >”是“一元二次不等式20ax bx c ++>恒成立”的A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件【变式2】设a 为实数,若关于x 的一元二次不等式20x x a ++>恒成立,则a 的取值范围是_____.【变式3】若不等式()270x mx m -++>在实数集R 上恒成立,求m 的取值范围. 类型二 在给定区间上一元二次不等式恒成立问题例2.(]1,3x ∀∈,一元二次不等式2-(2)20x m x m +++≥恒成立...,则m 的取值范围是( ) A .()2,2- B .52⎛⎤-∞ ⎥⎝⎦,C .[]22-,D .(]2-∞, 【变式1】(2021·全国高一课时练习)当[]13x ∈,时,一元二次不等式2280x x a -+-≤恒成立,求实数a 的取值范围.【变式2】(2021·吉林白城市·白城一中高一月考)已知二次函数222y x ax =++. 若15x ≤≤时,不等式3y ax >恒成立,求实数a 的取值范围.【变式3】若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.类型三 已知参数范围的一元二次不等式恒成立问题例3.(2021·全国高一课时练习)关于x 的函数y =x 2-(a +1)x +2a 对于任意a ∈[-1,1]的值都有y >0,求实数x 的取值范围.【变式1】(2021·全国)已知不等式2210mx mx --<.(1)若对于所有的实数x 不等式恒成立,求m 的取值范围;(2)设不等式对于满足||1m ≤的一切m 的值都成立,求x 的取值范围.【变式2】当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.【变式3】设函数2()(1)2f x ax a x a =+-+-.(1)若关于x 的不等式()2f x ≥-有实数解,求实数a 的取值范围;(2)若不等式()2f x ≥-对于实数[]1,1a ∈-时恒成立,求实数x 的取值范围;【限时训练】1.若关于x 的不等式210ax ax ++>的解集为R ,则实数a 的取值范围是_________; 2.若2(1)(1)30m x m x +-++>对任意实数x 恒成立,则实数m 的取值范围是__________. 3.(2021·全国)命题“对任意实数x ,ax 2-2ax -3≤0”是真命题,则实数a 的取值范围是________.4.(2021·江苏高一单元测试)设命题p :对任意[]0,1x ∈,不等式2234x m m -≥-恒成立.若p 为真命题,则实数m 的取值范围是___________.5.(2021·江苏)设命题p :对任意[]0,1x ∈,不等式2234x m m -≥-恒成立,命题q :存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立,若p q ∧为假命题,p q ∨为真命题,则实数m 的取值范围是___________.6.(2021·全国高一)已知y =x 2+ax +3-a ,若-2≤x ≤2,x 2+ax +3-a ≥0恒成立,求a 的取值范围.7.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围.8.(2021·全国高一课时练习)设函数2y x mx n =++,已知不等式0y <的解集为{}|14x x <<.(1)求m 和n 的值;(2)若y ax ≥对任意0x >恒成立,求a 的取值范围.9.(2021·全国高一课时练习)已知函数2(1)2f x x x =++. (1)求关于x 的不等式2()(0)f x b b ≥≥的解集;(2)若不等式22[()]2()10f x mf x m -+-≥对于任意[32]x ∈-,都成立,求m 的取值范围.10.(2021·全国高一专题练习)已知函数()211f x x a x a ⎛⎫=-++ ⎪⎝⎭. (1)若不等式()0f x <解集为1{2}2x x <<时,求实数a 的值; (2)[]1,2a ∀∈时,()0f x ≥恒成立,求实数x 的取值范围.。

高中数学新教材必修一第二章《一元二次函数、方程和不等式》全套课件PPT

高中数学新教材必修一第二章《一元二次函数、方程和不等式》全套课件PPT

例题讲评 例3.比较(x+2)(x+3)和(x+1)(x+4)的大小.
练习:
已知x 0,比较 x2 1 2与x4 x2 1的大小.
想一想 : 在上题中,如果没有x 0这个条件, 那么两式的大小关系如何 ?
练习巩固
练习已知 a,b, m都是正数,且a<b,求证:a m a .
bm b
变式1:若a>b,结果会怎样?
变式2:若没有a<b这个条件呢?zxxk
完成课本第40页第2题
课堂小结
1.不等关系是普遍存在的
2.用不等式(组)来表示不等关系
3.不等式基本原理 a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b
4.作差比较法 步骤:作差,变形,定号
500x 600y 4000
x3x0y
完成课本第39页第1题
y 0 x,y∈N
考虑到实际问题
的意义,还应有
x,y∈N
学习新知
不等式
a-b>0
<=> a > b
基本原 a - b = 0 <=> a = b
理 a - b < 0 <=> a < b
比较两数(式)的大小的最基本和首选的方法:
归纳逻辑过程: 作差 变形 判断符号
b
G
F
A
aHE
探究1:
1、正方形ABCD的
面积S=_a_2___b 2
C 2、四个直角三角形的
面积和S’ =_2a_b
3、S与S’有什么

新教材人教版高中数学必修第一册 第二章 知识点总结

新教材人教版高中数学必修第一册 第二章 知识点总结

必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<。

2.恒成立的不等式:一般地,∀R b a ∈,,有ab b a 222≥+,当且仅当b a =时等号成立。

说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。

3.等式的性质:性质1:若a =b ,则b =a ;性质2:若a=b,b=c,则a=c;性质3:若a=b ,则a±c=b±c;性质4:若a=b ,则ac=bc;性质5:若a=b ,c≠0,则cb c a = 4.不等式的性质:性质1:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。

说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。

性质2:若a b >,b c >,则a c >。

不等式的传递性。

性质3:若a b >,则a c b c +>+。

性质4:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <。

性质5:若,,a b c d a c b d >>+>+且则。

性质6:如果0>>b a 且0>>d c ,那么bd ac >。

性质7:如果0>>b a , 那么n n b a > )1(>∈n N n 且。

2.2 基本不等式1. 如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 说明:(1)这个定理适用的范围:,a b R +∈;(2)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数。

新教材2023年高中数学 第2章 一元二次函数、方程和不等式 2

新教材2023年高中数学 第2章 一元二次函数、方程和不等式 2

x≥5}.
题型三
解含有参数的一元二次不等式(对判别式的讨论)
典例3 解关于x的不等式2x2+ax+2>0. [分析] 二次项系数为2,Δ=a2-16不是一个完全平方式,故不能 确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.
[解析] 对于方程 2x2+ax+2=0,其判别式 Δ=a2-16=(a+4)(a-
[归纳提升] 注意已知条件的含义和根与系数关系的应用: (1)一元二次不等式解集的两个端点值是一元二次方程的两个根. (2)由一元二次方程根与系数的关系列方程组求参数.
【 对 点 练 习 】 ❷ 若 不 等 式 ax2 + bx + c≤0 的 解 集 为 {x|x≤ - 3 或
x≥4},求不等式bx2+2ax-c-3b≥0的解集.
y=ax2+bx+ c(a>0)的图象
ax2+bx+c= 0(a>0)的根
ax2+bx+ c>0(a>0)的解集
ax2+bx+ c<0(a>0)的解集
有两个不相等的实 数根 x1,x2(x1<x2) {x|x>x2 或 x<x1}
{x|x1<x<x2}
有两个相等的实数 根 x1=x2=-2ba x|x≠-2ba
(3)令x2+6x+10=0,则方程无解,又由y=x2+6x+10图象的开口 方向朝上,故无论x为何值,函数值均大于0.
(4)令-3x2+12x-12=0,则x=2,又由y=-3x2+12x-12图象的开 口方向朝下,故x=2时,函数的值等于0,当x≠2时,函数值小于0.
核心素养 数学抽象 直观想象 数学抽象 数学运算 逻辑推理 数学运算
第1课时 二次函数与一元二次方程、不等式

高中数学第二章一元二次函数方程和不等式知识点梳理(带答案)

高中数学第二章一元二次函数方程和不等式知识点梳理(带答案)

高中数学第二章一元二次函数方程和不等式知识点梳理单选题1、已知x >0,则下列说法正确的是( )A .x +1x −2有最大值0B .x +1x −2有最小值为0C .x +1x −2有最大值为-4D .x +1x −2有最小值为-4 答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解由题意,x >0,由均值不等式x +1x ≥2√x ×1x =2,当且仅当x =1x ,即x =1时等号成立 故x +1x −2≥0,有最小值0故选:B2、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( )A .4×x 0.5≥100B .4×x 0.5≤100 C .4×x 0.5>100D .4×x 0.5<100答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x 0.5m .由题意可得4×x 0.5>100.故选:C.3、若不等式(ax −2)(|x |−b )≥0对任意的x ∈(0,+∞)恒成立,则( )A .a >0,ab =12B . a >0,ab =2C .a >0,a =2bD .a >0,b =2a答案:B分析:由选项可知a >0,故原不等式等价于(x −2a)(|x |−b )≥0,当b ≤0时,不满足题意,故b >0,再由二次函数的性质即可求解 由选项可知a >0,故原不等式等价于(x −2a )(|x |−b )≥0,当b ≤0时,显然不满足题意,故b >0,由二次函数的性质可知,此时必有2a =b ,即ab =2,故选:B4、已知正数x ,y 满足2x+3y +13x+y =1,则x +y 的最小值( )A .3+2√24B .3+√24C .3+2√28D .3+√28答案:A分析:利用换元法和基本不等式即可求解.令x +3y =m ,3x +y =n ,则2m +1n =1,即m +n =(x +3y )+(3x +y )=4(x +y ),∴x +y =m+n 4=(m 4+n 4)(2m +1n )=12+m 4n +2n 4m +14≥2√m 4n ⋅2n 4m +34=2×2√2+34=2√2+34,当且仅当m 4n =2n4m ,即m =2+√2,n =√2+1时,等号成立,故选:A.5、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为()A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可.不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−b a(−12)⋅13=2a,解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A6、已知2<a <3,−2<b <−1,则2a −b 的范围是( )A .(6,7)B .(5,8)C .(2,5)D .(6,8)答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8故选:B7、要使关于x 的方程x 2+(a 2−1)x +a −2=0的一根比1大且另一根比1小,则实数a 的取值范围是()A .{a |−1<a <2}B .{a |−2<a <1}C .{a |a <−2}D .{a |a >1}答案:B分析:根据二次方程根的分布可得出关于实数a 的不等式,由此可解得实数a 的取值范围.由题意可得1+(a 2−1)+a −2=a 2+a −2<0,解得−2<a <1.故选:B.8、不等式1+x 1−x ≥0的解集为( )A .{x|x ≥1或x ≤−1}B .{x ∣−1≤x ≤1}C .{x|x ≥1或x <−1}D .{x|−1≤x <1}答案:D分析:不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,解得−1≤x <1,故不等式的解集为{x|−1≤x <1}, 23,21<<-<<-a b故选:D .多选题9、已知a >b ⩾2,则( )A .b 2<3b −aB .a 3+b 3>a 2b +ab 2C .ab >a +bD .12+2ab >1a +1b 答案:BC解析:根据不等式的性质,逐一判断即可.解:a >b ⩾2,A 错误,比如a =3,b =2,4>3不成立;B ,a 3+b 3−(a 2b +ab 2)=a 2(a −b)−b 2(a −b)=(a −b)2(a +b)>0成立;C ,由ab −a −b =a(b −1)−b =(b −1)(a −b b−1)=(b −1)[a −(1+1b−1)]>0,故C 成立, D ,12+2ab −1a −1b =(a−2)(b−2)2ab ⩾0,故D 不成立,故选:BC . 小提示:本题考查不等式比较大小,常利用了作差法,因式分解法等.10、若a ,b ,c ∈R ,则下列命题正确的是( )A .若且a <b ,则1a >1bB .若0<a <1,则a 2<aC .若a >b >0且c >0,则b+c a+c >b aD .a 2+b 2+1≥2(a −2b −2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A ,当a <0<b 时,结论不成立,故A 错误;对于B ,a 2<a 等价于a (a −1)<0,又0<a <1,故成立,故B 正确;对于C ,因为a >b >0且c >0,所以b+c a+c >b a 等价于ab +ac >ab +bc ,即(a −b )c >0,成立,故C 正确; 对于D ,a 2+b 2+1≥2(a −2b −2)等价于(a −1)2+(b +2)2≥0,成立,故D 正确.故选:BCD. 0ab11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.12、已知不等式ax2+bx+c>0的解集为{x|−12<x<2},则下列结论正确的是()A.a>0B.b>0C.c>0D.a+b+c>0答案:BCD分析:对A,根据一元二次方程与一元二次函数的关系即可判断;对B,C,利用韦达定理即可判断;对D,根据韦达定理以及b>0,即可求解.解:对A,∵不等式ax2+bx+c>0的解集为{x|−12<x<2},故相应的二次函数y=ax2+bx+c的图象开口向下,即a<0,故A错误;对B,C,由题意知:2和−12是关于x的方程ax2+bx+c=0的两个根,则有ca =2×(−12)=−1<0,−ba=2+(−12)=32>0,又∵a<0,故b>0,c>0,故B,C正确;对D,∵ca=−1,∴a+c=0,又∵b>0,∴a+b+c>0,故D正确.故选:BCD.13、某辆汽车以xkm/ℎ的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为15(x −k +4500x )L ,其中k 为常数.若汽车以120km/h 的速度行驶时,每小时的油耗为11.5L ,欲使每小时的油耗不超过...9L ,则速度x 的值可为( ) A .60B .80C .100D .120答案:ABC解析:先利用120km/h 时的油耗,计算出k 的值,然后根据题意“油耗不超过9L ”列不等式,解不等式求得x 的取值范围.由汽车以120km/h 的速度行驶时,每小时的油耗为11.5L ,∴15(120−k +4500120)=11.5,解得:k =100,故每小时油耗为15(x +4500x )−20, 由题意得15(x +4500x )−20≤9,解得:45≤x ≤100,又60≤x ≤120,故60≤x ≤100,所以速度x 的取值范围为[60,100].故选:ABC小提示:关键点点睛:本题考查利用待定系数法求解析式,考查一元二次不等式的解法,解题的关键是先利用120km/h 时的油耗,计算出k 的值,然后代入根据题意解不等式,考查实际应用问题,属于中档题. 填空题14、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示) 答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论.2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3解得{m =−12n =52,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3,−2≤−12(x +y )≤12,5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8,所以答案是:[3,8].15、已知实数x 、y 满足−2≤x +2y ≤3,−2≤2x −y ≤0,则3x −4y 的取值范围为______.答案:[−7,2]分析:设3x −4y =m(x +2y)+n(2x −y),利用待定系数法求出m,n 的值,然后根据不等式的性质即可求解.解:设3x −4y =m(x +2y)+n(2x −y),则{m +2n =32m −n =−4,解得{m =−1n =2, 所以3x −4y =−(x +2y)+2(2x −y),因为−2≤x +2y ≤3,−2≤2x −y ≤0,所以−3≤−(x +2y)≤2,−4≤2(2x −y)≤0,所以−7≤3x −4y ≤2,所以答案是:[−7,2].16、已知三个不等式:①ab >0,②c a >d b ,③bc >ad ,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ; {c a >d b bc >ad ⇒{bc−ad ab >0bc >ad ⇒ab >0.故可组成3个真命题.所以答案是:3.解答题17、销售甲种商品所得利润是P 万元,它与投入资金t 万元的关系有经验公式P =at t+1;销售乙种商品所得利润是Q 万元,它与投入资金t 万元的关系有经验公式Q =bt .其中a ,b 为常数.现将3万元资金全部投入甲,乙两种商品的销售,若全部投入甲种商品,所得利润为94万元;若全部投入乙种商品.所得利润为1万元.若将3万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售.则所得利润总和为y 万元(1)求利润总和y 关于x 的表达式:(2)怎样将3万元资金分配给甲、乙两种商品,才能使所得利润总和最大,并求最大值.答案:(1)y =3x x+1+13(3−x),0≤x ≤3;(2)对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.分析:(1)由题意得y =ax x+1+b(3−x),代入数值计算即可求出结果;(2)转化成可以利用基本不等式的形式,最后利用基本不等式即可求出结果.(1)因为对甲种商品投资x 万元,所以对乙种商品投资为3−x 万元,由题意知:y =P +Q =ax x+1+b(3−x),当x =3时,f(x)=94,当x =0时,f(x)=1, 则{3a 4=94,3b =1,解得a =3,b =13, 则y =3x x+1+13(3−x),0≤x ≤3. (2)由(1)可得f(x)=3x x+1+13(3−x)=3(x+1)−3x+1+1−13x =133−[3x+1+13(x +1)]≤133−2√3x+1⋅x+13=73,当且仅当x =2时取等号,故对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.18、已知函数f (x )=x 2+ax −2,f (x )>0的解集为{x |x <−1或x >b }.(1)求实数a 、b 的值;(2)若x ∈(0,+∞)时,求函数g (x )=f (x )+4x 的最小值.答案:(1)a =−1,b =2(2)2√2−1分析:(1)分析可知−1、b 是方程x 2+ax −2=0的两个根,利用一元二次方程根与系数的关系可求得a 、b 的值;(2)求得g (x )=x +2x −1,利用基本不等式可求得g (x )在(0,+∞)上的最小值.(1)解:因为关于x 的不等式x 2+ax −2>0的解集为{x |x <−1或x >b },所以,−1、b 是方程x 2+ax −2=0的两个根,所以,{1−a −2=0−1⋅b =−2,解得{a =−1b =2.(2)解:由题意知g(x)=f(x)+4x =x2−x+2x=x+2x−1,因为x>0,由基本不等式可得g(x)=x+2x −1≥2√x⋅2x−1=2√2−1,当且仅当x=2x时,即x=√2时,等号成立故函数g(x)的最小值为2√2−1.。

_新教材高中数学第二章一元二次函数方程和不等式

_新教材高中数学第二章一元二次函数方程和不等式
解析:x<0,-x>0,-x+−1x≥2,∴x+1x≤-2, 当且仅当-x=−1x,即x=-1时取得最大值-2.
题型 3 利用基本不等式证明不等式
例3
已知a、b、c为正数,求证b+ac−a
+
c+a−b b
+
a+bc −c≥3.
证明:∵b
a
+
ba≥2
b a
·
ba=2同理可证,ac
+
ac≥2,bc
+
bc≥2,
助学批注
批注❶ “当且仅当”的含义: (1)当a=b时,a+2b ≥ ab的等号成立,即a=b⇒a+2b= ab; (2)仅当a=b时,a+2b ≥ ab的等号成立,即a+2b= ab⇒a=b. 批注❷ 牢记三个关键词:一正、二定、三相等. (1)一正:各项必须为正. (2)二定:各项之和或各项之积为定值. (3)三相等:必须验证取等号时条件是否具备.
4.下列条件中能使ba + ba≥2成立的条件是__①_③__④___ ①ab>0 ②ab<0 ③a>0,b>0 ④a<0,b<0
解析:要使ba + ba≥2成立,只需ba>0,ba>0即可,此时ba + ba≥2
b a
·
ba=2,当且
仅当ba=ba等号成立,若ba<0,则不等式不成立+ ba≥2
b a
·
ba=2(当且仅当ba=ba时取等号,即a=b>0或a
=b<0时取等号),所以本选项符合题意.
方法归纳 利用基本不等式判断命题真假的一般步骤
巩固训练1 [2022·湖南岳阳高一期末]若a,b∈R,且ab>0,则下

第2章一元二次函数方程和不等式知识点清单-高一上学期数学湘教版

第2章一元二次函数方程和不等式知识点清单-高一上学期数学湘教版

新教材湘教版2019版数学必修第一册第2章知识点清单目录第2章一元二次函数、方程和不等式2. 1 相等关系与不等关系2. 1. 1 等式与不等式2. 1. 2 基本不等式2. 1. 3 基本不等式的应用2. 2 从函数观点看一元二次方程2. 3 一元二次不等式第2章 一元二次函数、方程和不等式 2. 1 相等关系与不等关系 2. 1. 1 等式与不等式一、不等式的性质及其推论 1. 不等式的性质性质1:如果a>b ,那么b<a ;如果b<a ,那么a>b. 即a>b ⇔b<a. 性质2:如果a>b ,b>c ,那么a>c. 即a>b ,b>c ⇒a>c. 性质3:如果a>b ,那么a+c>b+c.性质4:如果a>b ,c>0,那么ac>bc. 如果a>b ,c<0,那么ac<bc. 性质5:如果a>b>0,那么√a n> √b n(n∈N +).性质6:如果a>b ,且ab>0,那么1a< 1b. 如果a>b ,且ab<0,那么1a >1b .2. 不等式性质的推论推论1:如果a+b>c ,那么a>c-b. 推论2:如果a>b ,c>d ,那么a+c>b+d. 推论3:如果a>b>0,c>d>0,那么ac>bd. 推论4:如果a>b>0,那么a n >b n (n∈N +).(1)在应用不等式的性质及其推论时,一定要弄清它们成立的前提条件. (2)要注意各性质和推论是否具有可逆性. 二、比较实数(代数式)的大小 1. 作差比较法(1)依据:a-b>0⇔a>b ;a-b<0⇔a<b ;a-b=0⇔a=b.(2)应用范围:数(式)的大小不明显,作差后可化为积或商的形式. (3)步骤:①作差;②变形;③判断符号;④下结论.(4)变形技巧:①分解因式;②平方后再作差;③配方法;④分子(分母)有理化.2. 作商比较法(1)依据:a>0,b>0且ab >1⇒a>b;a>0,b>0且ab<1⇒a<b.(2)应用范围:同号两数比较大小.(3)步骤:①作商;②变形;③判断商与1的大小关系;④下结论.三、利用不等式的性质求代数式的取值范围 1. 解决此类问题,一般先建立待求范围的整体与已知范围的关系,然后利用不等式的性质进行运算,求得待求式的范围.2. 同向(异向)不等式的两边可以相加(相减),但这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.2. 1. 2 基本不等式 2. 1. 3 基本不等式的应用一、基本不等式一般地,对于正数a,b,我们把2称为a,b的算术平均数, √ab称为a,b的几何平均数.二、基本不等式与最值已知x,y都为正数,则(1)如果积xy是定值p,那么当且仅当x=y时,和x+y有最小值2√p;(2)如果和x+y是定值s,那么当且仅当x=y时,积xy有最大值s 24. 上述结论可归纳为“和定积最大,积定和最小”.三、利用基本不等式求最值的注意事项 1. 利用基本不等式求最值必须满足三个条件才可以进行,即“一正,二定,三相等”. (1)“一正”:各项必须都是正值.例如:代数式x+1x,当x<0时,绝不能认为x+1x≥2,即x+1x的最小值为2. 事实上,当x<0时,x+1x=-[(−x)+1−x]≤-2,当且仅当-x=1−x,即x=-1时,等号成立,此时x+1x取得最大值-2.(2)“二定”:各项之和或各项之积为定值.例如:已知0<x<52,求(5-2x)x 的最大值,需变形为(5-2x)·2x·12,这时2x+(5-2x)=5为定值,且2x>0,5-2x>0. 当2x=5-2x ,即x=54时,[(5-2x)x]max =258.(3)“三相等”:必须验证等号是否成立. 特别是在连续使用基本不等式求最值时,要求必须同时满足任何一步等号成立的字母取值存在且一致. 四、利用基本不等式求最值 1. 利用基本不等式求最值有关问题的关键是凑出“和”或“积”为定值,并保证等号成立,常见的方法技巧如下:(1)拆(裂项拆项):对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定值创造条件.(2)并(分组并项):目的是分组后各组可以单独应用基本不等式,或分组后先对一组应用基本不等式,再在组与组之间应用基本不等式得出最值.(3)配(配式、配系数,凑出定值):有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配出的式子与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值.(4)换(常值代换、变量代换):对条件变形,以进行“1”的代换,从而构造利用基本不等式求最值的形式. 常用于“已知ax+by=m(a ,b ,x ,y 均为正数),求1x +1y 的最小值”和“已知a x +by=m(a ,b ,x ,y 均为正数),求x+y 的最小值”两种类型.2. 2 从函数观点看一元二次方程 2. 3 一元二次不等式一、二次函数的零点1. 一般地,我们把使得ax2+bx+c=0(a≠0)成立的实数x叫作二次函数y=ax2+bx+c的零点. 这样,一元二次方程ax2+bx+c=0的实数根就是二次函数y=ax2+bx+c的零点,也就是函数y=ax2+bx+c的图象与x轴交点的横坐标.二、一元二次不等式及其解法1. 一元二次不等式的概念我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2. 解形如ax2+bx+c>0或ax2+bx+c<0(其中a>0)的一元二次不等式的一般步骤:(1)确定对应一元二次方程ax2+bx+c=0的根;(2)画出对应二次函数y=ax2+bx+c的大致图象;(3)由图象得出不等式的解集.对于二次项系数是负数(即a<0)的一元二次不等式,可以先把二次项系数化为正数,再按上述步骤求解.三、三个“二次”之间的关系二次函数、一元二次方程、一元二次不等式(即三个“二次”)之间的关系如下(其中a,b,c为常数,a>0):四、一元二次不等式的应用1. 利用一元二次不等式解决实际问题的一般步骤 (1)理解题意,分清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为一元二次不等式问题; (3)解这个一元二次不等式,结合实际检验,得到实际问题的解. 五、含参数的一元二次不等式的解法 解含参数的一元二次不等式的基本方法——分类讨论1. 解含参数的一元二次不等式时,为了做到分类不重不漏,讨论一般需从如下几个方面考虑:(1)关于二次项系数符号的讨论:分a>0,a<0. (注意,在未说明不等式为一元二次不 等式的情况下,还要考虑a=0的情况)(2)关于不等式对应方程的根的个数的讨论:分两根(Δ>0),一根(Δ=0),无根(Δ<0). (3)关于不等式对应方程的根x 1,x 2的大小的讨论:分x 1>x 2,x 1=x 2,x 1<x 2. 六、简单的分式不等式的解法 1. 解分式不等式的思路:先转化为整式不等式,再求解.2. 化分式不等式为“标准形式”的方法:移项,通分,右边化为0,左边化为f(x)g(x)的形式(f(x),g(x)为关于x 的整式). (1)形如f(x)g(x)>a(a ≠0)的分式不等式可同解变形为f(x)−ag(x)g(x)>0,进而转化为g(x)[f(x)-ag(x)]>0. (2)解f(x)g(x)≥0(≤0)型的分式不等式,转化为整式不等式后,应注意分子可取0,而分母不能取0.七、一元二次不等式恒成立问题 1. 不等式ax2+bx+c>0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,且c>0;当a≠0时,a>0,且Δ<0.2. 不等式ax2+bx+c<0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,且c<0;当a≠0时,a<0,且Δ<0.3. 解决恒成立问题一定要分清谁是自变量,谁是参数. 一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.4. 若f(x)有最大值f(x)max,则a>f(x)恒成立⇔a>f(x)max;若f(x)有最小值f(x)min,则a<f(x)恒成立⇔a<f(x)min. (f(x)是关于x的函数)。

高中数学第二章一元二次函数方程和不等式必考知识点归纳(带答案)

高中数学第二章一元二次函数方程和不等式必考知识点归纳(带答案)

高中数学第二章一元二次函数方程和不等式必考知识点归纳单选题1、已知a>0,b>0且ab=1,不等式12a +12b+ma+b≥4恒成立,则正实数m的取值范围是()A.m≥2B.m≥4C.m≥6D.m≥8答案:D分析:由条件结合基本不等式可求a+b的范围,化简不等式可得m≥4(a+b)−(a+b)22,利用二次函数性质求4(a+b)−(a+b)22的最大值,由此可求m的取值范围.不等式12a +12b+ma+b≥4可化为a+b2ab+ma+b≥4,又a>0,b>0,ab=1,所以m≥4(a+b)−(a+b)22,令a+b=t,则m≥4t−t22,因为a>0,b>0,ab=1,所以t=a+b≥2√ab=2,当且仅当a=b=1时等号成立,又已知m≥4t−t22在[2,+∞)上恒成立,所以m≥(4t−t22)max因为4t−t22=12(8t−t2)=−12(t−4)2+8≤8,当且仅当t=4时等号成立,所以m≥8,当且仅当a=2−√3,b=2+√3或a=2−√3,b=2+√3时等号成立,所以m的取值范围是[8,+∞),故选:D.2、已知正数x,y满足x+y=4,则xy的最大值()A. 2B.4C. 6D.8答案:B分析:直接使用基本不等式进行求解即可.因为正数x,y满足x+y=4,所以有4=x+y≥2√xy⇒√xy≤2⇒xy≤4,当且仅当x=y=2时取等号,故选:B3、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B,若c=0,则ac=bc=0,此时a=b未必成立,B错误;对于C,当a>0>b时,1a >0>1b,C错误;对于D,当ac2>bc2时,由不等式性质知:a>b,D正确.故选:D.4、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D 错误, 故选:A5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞)答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合,故实数a 的取值范围为[−13,+∞). 故选:C.6、某公司准备对一项目进行投资,提出两个投资方案:方案A 为一次性投资300万;方案B 为第一年投资80万,以后每年投资20万.下列不等式表示“经过n 年之后,方案B 的投入不大于方案A 的投入”的是( ) A .80+20n ≥300B .80+20n ≤300C .80+20(n −1)≥300D .80+20(n −1)≤300 答案:D分析:由不等关系求解即可.经过n 年之后,方案B 的投入为80+20(n −1),故经过n 年之后,方案B 的投入不大于方案A 的投入,即80+20(n −1)≤300 故选:D7、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a <1b ,而c 的正负不确定,故A 错误; 对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误; 故选:C.8、若不等式ax 2+bx +c >0的解集为{x |−1<x <2},则不等式a (x 2+1)+b(x −1)+c >2ax 的解集是( )A .{x |0<x <3}B .{x |x <0或x >3}C .{x |1<x <3}D .{x |−1<x <3} 答案:A分析:由题知{ba =−1ca=−2,a <0,进而将不等式转化为x 2−3x <0,再解不等式即可. 解:由a (x 2+1)+b (x −1)+c >2ax ,整理得ax 2+(b −2a )x +(a +c −b )>0 ①. 又不等式ax 2+bx +c >0的解集为{x |−1<x <2},所以a <0,且{(−1)+2=−ba (−1)×2=c a,即{ba =−1ca=−2②. 将①两边同除以a 得:x 2+(b a −2)x +(1+ca −ba )<0③.将②代入③得:x 2−3x <0,解得0<x <3. 故选:A 多选题9、(多选题)下列命题为真命题的是( )A .若a >b >0,则ac 2≥bc 2B .若a <b <0,则a 2>ab >b 2C .若a >b >0且c >0,则ca 2>cb 2D .若a >b 且1a >1b ,则ab <0 答案:ABD解析:由不等式的性质结合作差法,逐项判断即可得解.对于A ,若a >b >0,则ac 2−bc 2=c 2(a −b )≥0,即ac 2≥bc 2,故A 正确; 对于B ,若a <b <0,则a 2−ab =a (a −b )>0,ab −b 2=b (a −b )>0, 所以a 2>ab >b 2,故B 正确;对于C ,若a >b >0且c >0,则ca 2−cb 2=c (b 2−a 2)a 2b 2=c (b−a )(b+a )a 2b 2<0,所以c a 2<c b 2,故C 错误;对于D ,若a >b 且1a >1b ,则b −a <0,1a −1b =b−a ab>0,所以ab <0,故D 正确. 故选:ABD.10、已知函数y =x 2+ax +b (a >0)有且只有一个零点,则( ) A .a 2−b 2≤4 B .a 2+1b ≥4C .若不等式x 2+ax −b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且,则c =4答案:ABD分析:由函数的零点的定义和二次方程有两个相等的实数解的条件可得a ,b 的关系式,由二次函数的最值求法,可判断A ;由基本不等式可判断B ;由二次方程的韦达定理可判断C ,D .124x x -=根据题意,函数y =x 2+ax +b(a >0)有且只有一个零点,必有a 2−4b =0,即a 2=4b ,(b >0), a 2−b 2−4=4b −b 2−4=−(b 2−4b +4)=−(b −2)2≤0,b =2时,等号成立,即有a 2−b 2≤4,故A 正确;a 2+1b =4b +1b ≥2√4b ⋅1b =4,当且仅当b =12时,取得等号,故B 正确; 由x 1,x 2为方程x 2+ax −b =0的两根,可得x 1x 2=−b <0,故C 错误; 由x 1,x 2为方程x 2+ax +b −c =0的两根,可得x 1+x 2=−a ,x 1x 2=b −c , 则|x 1−x 2|2=(x 1+x 2)2−4x 1x 2=a 2−4(b −c)=a 2−4b +4c =4c =16, 解得c =4,故D 正确. 故选:ABD .11、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确; 由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1aba b =b a ,即a =b =1时取等号,故D 正确.故选:ACD.12、已知a >0,b >0,a 2+b 2=1,则( ) A .ab 的最大值为12B .2ab+3a+b的最小值为2√2C .a 2(1+2b 2)的最大值为94D .1a 2+4b 2的最小值为9答案:ABD分析:利用基本不等式判断A 、B 、D 的正误,注意等号成立条件,将a 2(1+2b 2)化为关于a 2的二次函数形式求最值判断C.因为a >0,b >0,a 2+b 2=1, 所以1≥2ab ,即ab ≤12,2ab+3a+b=(a+b )2+2a+b=a +b +2a+b≥2√2,当且仅当a =b =√22时等号成立,则A ,B正确. a 2(1+2b2)=a 2[1+2(1−a2)]=3a 2−2a 4=−2(a 2−34)2+89,当a 2=34时取得最大值98,则C 错误.1a 2+4b 2=(a 2+b 2)(1a 2+4b 2)=5+b 2a 2+4a 2b 2≥5+2√4=9,当且仅当b 2=2a 2=23时等号成立,则D 正确.故选:ABD13、已知a,b ∈R +且a +b =1,那么下列不等式中,恒成立的有( ). A .ab ⩽14B .ab +1ab ⩾174C .√a +√b ⩽√2D .1a +12b ⩾2√2 答案:ABC分析:利用基本不等式,逐个进行验证,即可得到结论. ∵a,b ∈R +,a +b =1,∴ab ⩽(a+b 2)2=14(当且仅当a =b =12时取得等号).所以选项A 正确由选项A 有ab ≤14,设y =x +1x ,则y =x +1x 在(0,14]上单调递减. 所以ab +1ab ≥14+4=174,所以选项B 正确∵(√a +√b)2=a +b +2√ab ⩽a +b +a +b =2(当且仅当a =b =12时取得等号), ∴√a +√b ⩽√2.所以选项C 正确. ∵1a +12b=a+b a+a+b 2b=32+b a+a 2b⩾32+2√b a⋅a 2b=32+√2(当且仅当a 2=2b 2时等号成立),所以选项D 不正确.故A ,B ,C 正确 故选:ABC小提示:本题考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题填空题14、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______. 答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x+y的最小值为2.所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、已知x>0,则7−x−9x的最大值为________.答案:1分析:直接利用基本不等式求最大值.∵x>0,则7−x−9x =7−(x+9x)≤7−2√x⋅9x=1,当且仅当x=9x即x=3时取等号.所以答案是:116、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________.答案:2√6分析:由题知x1+x2=6a,x1x2=3a2,进而根据基本不等式求解即可.解:因为关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],所以x1,x2是方程−x2+6ax−3a2=0(a>0)的实数根,所以x1+x2=6a,x1x2=3a2,因为a>0,所以x1+x2+3ax1x2=6a+1a≥2√6,当且仅当6a=1a,即a=√66时等号成立,所以x1+x2+3ax1x2的最小值是2√6所以答案是:2√6解答题17、已知不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.(1)求常数a的值;(2)若关于x的不等式ax2+mx+4≥0的解集为R,求m的取值范围.答案:(1)a=1(2)[−4,4]分析:(1)由题意可得-1和3是方程(a+1)x2−4x−6=0的解,将x=−1代入方程中可求出a的值;(2)由x2+mx+4≥0的解集为R,可得Δ≤0,从而可求出m的取值范围(1)因为不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.所以-1和3是方程(a+1)x2−4x−6=0的解,把x=−1代入方程解得a=1.经验证满足题意(2)若关于x的不等式ax2+mx+4≥0的解集为R,即x2+mx+4≥0的解集为R,所以Δ=m2−16≤0,解得−4≤m≤4,所以m的取值范围是[−4,4].18、为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.答案:(1)最大值为16米;(2)最小值为(824+160√3)平方米.分析:(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示S=(2x+6)(y+4)=(2x+6)(400x+4),利用均值不等式,即得最小值.(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得y=400x.因为矩形草坪的长比宽至少大9米,所以400x⩾x+9,所以x2+9x−400⩽0,解得−25⩽x⩽16.又x>0,所以0<x⩽16.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得S=(2x+6)(y+4)=(2x+6)(400x +4)=824+8(x+300x)⩾(824+160√3)(平方米)当且仅当x=10√3米时,等号成立.所以整个绿化面积的最小值为(824+160√3)平方米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新教材高中数学第二章一元二次函数方程和不等式2.3 二次函数与一元二次方程、不等式最新课程标准要求学生从函数的角度来看待一元二次方程。

学生需要结合一元二次函数的图像,判断一元二次方程实根的存在性及实根的个数,并了解函数的零点与方程根的关系。

此外,学生还需要从函数的角度来看待一元二次不等式。

他们需要通过从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。

他们需要掌握利用一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。

同时,通过一元二次函数的图像,学生还需要了解一元二次不等式与相应函数、方程的联系。

知识点:二次函数与一元二次方程、不等式的解的对应关系当Δ>0时,一元二次方程y=ax^2+bx+c(a>0)有两个不相等的实数根x1,x2(x1<x2);当Δ=0时,有两个相等的实数根x1=x2=-b/2a;当Δ<0时,没有实数根。

当a>0时,二次不等式ax^2+bx+c>0(a>0)的解集为{x|xx2};当ax^2+bx+c0)时,解集为{x|x10时相同。

状元随笔一元二次不等式的解法:1.图像法:当a>0时,解形如ax^2+bx+c>0(≥0)或ax^2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax^2+bx+c=0的解;②画出对应函数y=ax^2+bx+c 的图像简图;③由图像得出不等式的解集。

2.代数法:将所给不等式化为一般式后借助分解因式或配方求解。

当p0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q。

有口诀如下:“大于取两边,小于取中间”。

教材解难]教材P50思考:从函数的角度和方程的角度两个角度来看待一元二次不等式。

从函数的角度来看,一元二次不等式ax^2+bx+c>0表示二次函数y=ax^2+bx+c的函数值大于0,图像在x轴的上方;一元二次不等式ax^2+bx+c>0的解集即二次函数图像在x轴上方部分的自变量的取值范围。

从方程的角度来看,一元二次不等式ax^2+bx+c>0的解集的端点值是一元二次方程ax^2+bx+c=0的根。

基础自测]1.下列不等式中是一元二次不等式的是:A。

ax+2≥0 B。

2<x<31.解不等式,得到x3,因此不等式x-5x+6>0的解集为{x|x3}。

2.解不等式,得到x≤1/3或x≥1,因此不等式9x-6x+1>0的解集为{x|x≠1/3且x≠1}。

3.不等式可化为x-2x+3<0,但由于方程x-2x+3=0无实数根,因此原不等式的解集为∅。

反思:在解一元二次不等式时,需要先将其化为标准形式,然后求出方程的根,再结合函数图象得到不等式的解集。

同时,注意排除无实数解的情况。

4) -2x + 3x - 2 < 0.解析。

1) 因为Δ = 1.0,所以方程x^2 - 7x + 12有两个不等实根x1 = 3,x2 = 4.再根据函数y = x^2 - 7x + 12的图象开口向上,可得不等式x^2 - 7x + 12.0的解集是{x|x。

4}。

2) 不等式两边同乘-1,原不等式可化为x + 2x - 3 ≤ 0.因为Δ = 16.0,所以方程x^2 + 2x - 3有两个不等实根x1 = -3,x2 = 1.再根据函数y = x + 2x - 3的图象开口向上,可得不等式-x -2x + 3 ≥ 0的解集是{x|-3 ≤ x ≤ 1}。

3) 因为Δ = 0,所以方程x^2 - 2x + 1有两个相等的实根x1 = x2 = 1.再根据函数y = x^2 - 2x + 1的图象开口向上,可得不等式x^2 - 2x + 1 < 0的解集为∅。

4) 原不等式可化为2x - 3x + 2.0,因此Δ = 9 - 4×2×2 = -7< 0,所以方程2x - 3x + 2 = 无实根,又二次函数y = 2x - 3x +2的图象开口向上,所以原不等式的解集为R。

状元随笔结果题型二三个“二次”之间的关系[经典例题]例2已知关于x的不等式ax + bx + c。

0的解集为{x|2 < x < 3},求关于x的不等式cx + bx + a < 0的解集。

解析】方法一:由不等式ax^2 + bx + c。

0的解集为{x|2.0,x1 = (5 - √Δ)/2a,x2 = (5 + √Δ)/2a。

函数图象开口朝上,因此不等式cx + bx + a < 0,即x^2 + (b/c)x + (a/c) < 0,即x^2 - (5a/c)x + 6a/c < 0.根据判别式的正负性,得5a/c < x < 3或x < 2,即x < 2或2 < x < 5a/3.因为a < 0,所以5a/3 < 2,故解集为{x| -∞ < x < 2}∪{x|5a/3 < x < 3},即{x| -∞ < x < 2}∪{x|2.5 < x < 3},即{x| -∞ < x < 2}∪{x|2.5 < x < 3}。

方法二:由不等式ax + bx + c。

0的解集为{x|2.a/(-5a +6a),即x。

3/5.因为a < 0,所以解集为{x| -∞ < x < 2}∪{x|3/5 < x < ∞},即{x| -∞ < x < 2}∪{x|0.6 < x < ∞},即{x| -∞ < x < 2}∪{x|0.6 < x}。

状元随笔:解一元二次不等式的方法归纳一元二次不等式和对应的函数、方程之间有密切联系。

在解决数学问题时,需要注意它们之间的相互转换。

如果一元二次不等式的解集是区间形式,那么区间的端点值就是对应一元二次方程的根。

需要注意解集形式和二次项系数的联系。

如果一元二次不等式的解集是实数集或空集,那么问题可以转化为恒成立问题。

可以利用二次函数图像和x轴的交点情况来确定判别式的符号,并求出参数的范围。

例如,已知一元二次不等式$x+px+q0$的解集。

因为$x+px+q<0$的解集是$\left\{x\left|\frac{1}{2}<x<2\right.\right\}$,所以$x_1=-\frac{1}{2}$,$x_2=2$是方程$x^2+px+q=0$的两个实数根。

由根与系数的关系,得到$p=-\frac{5}{3}$,$q=-\frac{1}{6}$。

将$p$和$q$代入不等式$qx+px+1>0$,整理得$x-\frac{1}{x}0$的解集为$\left\{x\left|-2<x<3\right.\right\}$。

另外,对于含参数的一元二次不等式$2x+ax+2>0$,可以通过计算判别式来确定参数$a$的取值范围,从而求出不等式的解集。

例如,当$a>4$或$a\frac{a+4}{2}\right.\right\}$。

当$a=4$时,不等式的解集是$\left\{x\left|x\neq-1\right.\right\}$。

当$a=-4$时,不等式的解集是$\left\{x\left|x\neq1\right.\right\}$。

原不等式为x-(a+a)x+a>0.根据一元二次方程的求解步骤,首先讨论二次项系数的符号,即相应二次函数图象的开口方向。

然后讨论判别式的符号,即相应二次函数图象与x轴交点的个数。

当Δ>0时,讨论相应一元二次方程两根的大小。

最后按照系数中的参数取值范围,写出一元二次不等式的解集。

对于原不等式,可以将其变形为(x-a)·(x-a)>0,从而得到方程(x-a)(x-a)=0的两个根为x1=a和x2=a。

1)当aa。

此时原不等式的解集为{x|xa}。

2)当0a,即xa。

此时原不等式的解集为{x|xa}。

3)当a>1时,有a>a,即xa。

此时原不等式的解集为{x|xa}。

4)当a=0时,有x≠0,因此原不等式的解集为{x|x∈R且x≠0}。

5)当a=1时,有x≠1,因此原不等式的解集为{x|x∈R且x≠1}。

综上可知:当a1时,原不等式的解集为{x|xa};当0a};当a=0时,原不等式的解集为{x|x∈R且x≠0};当a=1时,原不等式的解集为{x|x∈R且x≠1}。

下面考虑一个实际应用的例题。

某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收入r(x)满足:r(x) =0.5x+7x-10.5,0≤x≤7。

13.5,x>7.假定该产品产销平衡,根据上述统计规律求:1)要使工厂有盈利,产品数量x应控制在什么范围?2)工厂生产多少台产品时盈利最大?对于(1),设利润函数为f(x),则有f(x) = r(x) - g(x) = (-0.5x+7x-10.5) - (x+3) = 6.5x-13.5.要使工厂有盈利,即f(x)>0,解得x>13/13=1.因此产品数量x应控制在x>1百台的范围内。

对于(2),利润函数f(x)是一个关于x的一元一次函数,其斜率为6.5.因此,当x取最大值时,即x=7时,盈利最大。

此时盈利为f(7)=31.5万元。

一家工厂生产某种产品,其成本函数为$f(x)=-0.5x+6x-13.5$,其中$x$为生产的产品数量,$0\leq x\leq 7$;当$x>7$时,$f(x)=10.5-x$。

该工厂要盈利,因此需要满足$f(x)>0$。

由此得到不等式$-0.5x+6x-13.5>0$,解得$37$时,$f(x)<3.5$,所以产品数量应该控制在大于300台小于1050台的范围内,即$3<x<10.5$。

因此,该工厂生产300到1050台产品时才能盈利。

当$37$时,$f(x)<3.5$。

因此,当工厂生产600台产品时,盈利最大。

解不等式应用题的四个步骤为:(1)审题,找到关键量和不等关系;(2)设变量,用不等式表示问题;(3)解不等式;(4)回答实际问题。

在确定答案时,要注意变量的实际含义。

某农贸公司按每担200元收购某种农产品,每100元纳税10元,即征税率为10\%。

该公司计划收购$a$万担,政府为了鼓励收购,决定将征税率降低$x$($x\neq 0$)个百分点,预测收购量可增加$2x$个百分点。

相关文档
最新文档