01第一章土的物理性质与工程分类

合集下载

第一章土的物理性质和工程分类

第一章土的物理性质和工程分类

土土是指覆盖在地表的没有胶结或弱胶结的颗粒堆积物风化作用土是岩石风化的产物,风化包括物理风化和化学风化物理风化:是指由于温度的变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解、碎裂成岩块、岩屑的过程,岩石发生了量的变化。

化学风化:是指岩体(或岩块、岩屑)与空气、水和各种水溶液相接触,经氧化、碳化和水化作用分解为极细颗粒的过程,岩石发生质的变化。

名称土的三相体系土的气相土中的气体土的液相土中的水土的固相土的固相部分主要是土粒,有时还有粒间胶结物和有机质,他们构成了土的骨架、成土矿物原生矿物、次生矿物原生矿物物理风化的产物,颗粒较粗,矿物成分同风化前的母岩,如石英、长石和云母等。

吸附水的能力弱,性质较稳定,无塑性次生矿物是经化学风化后生成的新矿物,它的成分与母岩完全不同,次生矿物主要是粘土矿物,即高岭石、伊利石和蒙脱石。

次生矿物颗粒极细,吸附水的能力比较强,有可塑性。

土粒大小在一定程度上反映了土性质的差异,土粒大小通常用粒径表示。

粒组通常把工程性质相近的土粒合并为一组土的级配土中某粒组的土粒含量定义为该粒组中土粒质量与干土质量之比,常以百分数表示土中各粒组的分配。

土的级配的好坏将直接影响到土的性质。

级配良好的土,压实时能达到较高的密实度,因而透水性小,强度高,压缩性低。

反之,级配不良的土,往往压实密度低,或者渗透稳定性差。

粘土矿物的性质与晶片及其组合方式,即晶体结构有关,晶片分为硅片和铝片两种硅片的基本单元铝片的基本单元高岭石和伊利石晶体结构蒙脱石的晶体结构颗粒分析试验筛析法比重计法粒径分布曲线粒组频率曲线不均Array匀系数系数数含义两个有用的指标不均匀系数:曲率系数:式中 d10、d30 和d60代表粒径分布曲线上小于某粒径的土粒含量分别为10%、30%和60%时所对应的粒径,通常把d10称为有效粒径;d60称为限制粒径。

我国《土的分类标准》(GBJ 145-90)规定:对于纯净的砾、砂,当Cu大于或等于5,且Cc等于1~3时,它的级配是良好的;不能同时满足上述条件时,它的级配是不良的。

第1章 土的物理性质及分类

第1章 土的物理性质及分类

筛分法
200g 10 5.0 2.0 1.0 0.5 0.25 0.1 P % 95 87 78 66 55 36
筛分法就是用一套标准筛子如孔 直径(mm):20、10、5.0、2.0、 l.0、0.5、0.25、0.1、0.075, 将烘干且分散了的200g有代表性 的试样倒入标准筛内摇振,然后 分别称出留在各筛子上的土重, 并计算出各粒组的相对含量,即 得土的颗粒级配。 沉降分析法:具体有密度计法(也 称比重计法)或移液管法(也称吸管 法)。该两法的理论基础都是依据 Stokes(司笃克斯)定律,即球状的 细颗粒在水中的下沉速度与颗粒 直径的平方成正比
第1章 土的物理性质及工程分类
§1.1 §1.2 §1.3 §1.4 §1.5 土的形成与三相组成 土的三相比例指标 无粘性土的密实度 粘性土的物理特征 土的工程分类
土的形成过程
土的三相组成 土的物理状态 土的结构
决定
渗透特性 变形特性 强度特性
土的工程分类:便于研究和应用 土 的 压 实 性:如何获得较好的土
知识要点
1.掌握土体的三相组成及三相比例 指标之间的换算 2.领会无粘性土密实度概念、判别 方法及砂土相对密度的计算 3.掌握粘性土的塑限、液限、塑性 指数和液性指数的概念及其物理状态评价 4.掌握无粘性土和粘性土的分类依据 和分类方法 5.掌握土的工程分类
§1.1 土的形成与三相组成 一、土的形成
固体颗粒 – 颗粒级配
土的三相组成 – 固体颗粒
矿物成分取决于母岩的矿物成分和风化作用 原生矿物:由岩石经过物理风化形成,其矿物
成分与母岩相同。
例:石英、云母、长石等 特征:矿物成分的性质较稳定,由其组成的土具
有无粘性、透水性较大、压缩性较低的特点

第一章土的物理性质及分类

第一章土的物理性质及分类

第⼀章⼟的物理性质及分类第⼀章⼟的物理性质及分类1—1 概述⼟的定义:⼟是连续,坚固的岩⽯在风化作⽤下形成的⼤⼩悬殊的颗粒,经过不同的搬运⽅式,在各种⾃然环境中⽣成的沉积物。

⼟的三相组成:⼟的物质成分包括有作为⼟⾻架的固态矿物颗粒、孔隙中的⽔及其溶解物质以及⽓体。

因此,⼟是由颗粒(固相)、⽔(液相)和⽓(⽓相)所组成的三相体系。

第⼆节⼟的⽣成⼀、地质作⽤的概念地质作⽤--导致地壳成分变化和构造变化的作⽤。

根据地质作⽤的能量来源的不同,可分为内⼒地质作⽤和外⼒地质作⽤内⼒地质作⽤: 由于地球⾃转产⽣的旋转能和放射性元素蜕变产⽣的热能等,引起地壳物质成分、内部构造以及地表形态发⽣变化的地质作⽤。

如岩浆作⽤、地壳运动(构造运动)和变质作⽤。

外⼒地质作⽤:由于太阳辐射能和地球重⼒位能所引起的地质作⽤。

它包括⽓温变化、⾬雪、⼭洪、河流、湖泊、海洋、冰川、风、⽣物等的作⽤。

风化作⽤--外⼒(包括⼤⽓、⽔、⽣物)对原岩发⽣机械破碎和化学变化的作⽤。

沉积岩和⼟的⽣成--原岩风化产物(碎屑物质),在⾬雪⽔流、⼭洪急流、河流、湖浪、海浪、冰川或风等外⼒作⽤下,被剥蚀,搬运到⼤陆低洼处或海洋底部沉积下来,在漫长的地质年代⾥,沉积的物质逐渐加厚,在覆盖压⼒和含有碳酸钙、⼆氧化硅、氧化铁等胶结物的作⽤下,使起初沉积的松软碎屑物质逐渐压密、脱⽔、胶结、硬化⽣成新的岩⽯,称为沉积岩。

未经成岩作⽤所⽣成的所谓沉积物,也就是通常所说的“⼟”。

风化、剥蚀、搬运及沉积--外⼒地质作⽤过程中的风化、剥蚀、搬运及沉积,是彼此密切联系的。

⼆、矿物与岩⽯的概念岩⽯--⼀种或多种矿物的集合体。

矿物--地壳中天然⽣成的⾃然元素或化合物,它具有⼀定的物理性质、化学成份和形态.(⼀) 造岩矿物组成岩⽯的矿物称为造岩矿物。

矿物按⽣成条件可分为原⽣矿物和次⽣矿物两⼤类。

区分矿物可以矿物的形状、颜⾊、光泽、硬度、解理、⽐重等特征为依据。

(⼆)岩⽯岩⽯的主要特征包括矿物成分、结构和构造三⽅⾯。

第一章土的物理性质及工程分类

第一章土的物理性质及工程分类
第一章 土的物理性质与工程分类
1.1 土的概念与基本特征 1.2 土的生成 1.3 土的组成 1.4 土的三相量比例指标 1.5 无粘性土的密实度 1.6 粘性土的稠度 1.7 土的压实原理 1.8 地基土(岩)的工程分类
1.1 土的概念与基本特征
土的概念:土是岩石经过风化、剥蚀、搬运、 土的概念:土是岩石经过风化、剥蚀、搬运、沉积等地 质作用形成松散的堆积物或沉淀物。 质作用形成松散的堆积物或沉淀物。土是各种矿物颗 粒的集合体。 粒的集合体。不同的土其矿物成分和颗粒大小存在着 很大差异,颗粒 水和气体的相对比例也不相同。 颗粒、 很大差异 颗粒、水和气体的相对比例也不相同。 基本特征:土的物理性质,如轻重 软硬、干湿、松密等。 基本特征:土的物理性质 如轻重、软硬、干湿、松密等。 如轻重、 影响土的物理性质的因素 土的三相组成物质的性质、 影响土的物理性质的因素:土的三相组成物质的性质、 土的物理性质的因素: 物质的性质 相对含量及土的结构构造等---内因 内因。 相对含量及土的结构构造等 内因。 外部环境---外因。 外部环境 外因。 外因 必须掌握这些物理性质、测定方法及指标与指标的换算。 必须掌握这些物理性质、测定方法及指标与指标的换算。
2)地壳运动 地壳的升降运动和水平运动。升降运动表现为地壳 地壳运动--地壳的升降运动和水平运动 地壳运动 地壳的升降运动和水平运动。升降运动表现为地壳 的上拱和下拗, 型的构造隆起和拗陷: 的上拱和下拗,形成大 型的构造隆起和拗陷:水平运动表现为地 壳岩层的水平移动,使岩层产生各种形态的褶皱和断裂. 壳岩层的水平移动,使岩层产生各种形态的褶皱和断裂.地壳运 动的结果,形成了各种类型的地质构造和地球表面的基本形态。 动的结果,形成了各种类型的地质构造和地球表面的基本形态。 3)变质作用--在岩浆活动和地壳运动过程中 原岩( 变质作用--在岩浆活动和地壳运动过程中, 3)变质作用--在岩浆活动和地壳运动过程中,原岩(原来生成的 各种岩石)在高温、高压下及挥发性物质的渗入下,发生成分、 各种岩石)在高温、高压下及挥发性物质的渗入下,发生成分、结 变质岩。 构造变化的地质作用,生成变质岩 构、构造变化的地质作用,生成变质岩。 (2)外力地质作用 外力地质作用: (2)外力地质作用: 由于太阳辐射能和地球重力位能所引起的地质作用。 由于太阳辐射能和地球重力位能所引起的地质作用。它包括 气温变化、雨雪、山洪、河流、湖泊、海洋、冰川、 气温变化、雨雪、山洪、河流、湖泊、海洋、冰川、风、生物等 的作用。 的作用。 1)风化作用--外力 包括大气、 风化作用--外力( 生物) 1)风化作用--外力(包括大气、水、生物)对原岩发生机械破碎和 化学变化的作用。 化学变化的作用。

土的物理性质及工程分类

土的物理性质及工程分类

如有你有帮助,请购买下载,谢谢!第一章:土的物理性质及工程分类土是三相体——固相(土颗粒)、液相(土中水)和气相(土中空气)。

固相:是由难溶于水或不溶于水的各种矿物颗粒和部分有机质所组成。

2.土粒颗粒级配(粒度) 2. 土粒大小及其粒组划分b.土粒颗粒级配(粒度成分)土中各粒组相对含量百分数称为土的粒度或颗粒级配。

粒径大于等于0.075mm 的颗粒可采用筛分法来区分。

粒径小于等于0.075mm 的颗粒需采用水分法来区分。

颗粒级配曲线斜率: 某粒径范围内颗粒的含量。

陡—相应粒组质量集中;缓--相应粒组含量少;平台--相应粒组缺乏。

特征粒径: d 50 : 平均粒径;d 60 : 控制粒径;d 10 : 有效粒径;d 30粗细程度: 用d 50 表示。

曲线的陡、缓或不均匀程度:不均匀系数C u = d 60 / d 10 ,Cu ≤5,级配均匀,不好Cu ≥10,,级配良好,连续程度:曲率系数C c = d 302 / (d 60 ×d 10 )。

较大颗粒缺少,Cc 减小;较小颗粒缺少,Cc 增大。

Cc = 1~ 3, 级配连续性好。

粒径级配累积曲线及指标的用途:1.粒组含量用于土的分类定名;2)不均匀系数Cu 用于判定土的不均匀程度:Cu ≥ 5, 不均匀土; Cu < 5, 均匀土;3)曲率系数Cc 用于判定土的连续程度:C c = 1 ~ 3,级配连续土;Cc > 3或Cc < 1,级配不连续土。

4)不均匀系数Cu 和曲率系数Cc 用于判定土的级配优劣:如果 Cu ≥ 5且C c = 1 ~ 3,级配良好的土;如果 Cu < 5 或 Cc > 3或Cc < 1, 级配不良的土。

土粒的矿物成份——矿物分为原生矿物和次生矿物。

原生矿物:岩浆在冷凝过程中形成的矿物(圆状、浑圆状、棱角状) 次生矿物:原生矿物经化学风化后发生变化而形成。

(针状、片状、扁平状) 粗粒土:原岩直接破碎,基本上是原生矿物,其成份同生成它们的母岩。

土力学与地基基础第一章

土力学与地基基础第一章
表1.3 砂土密实度的评定
1.5 粘性土的稠度
1.5.1 界限含水量
粘性土的土粒很细,单位体积的颗粒总表面积较大, 土粒表面与水相互作用的能力较强,土粒间存在粘结力。 稠度就是指土的软硬程度,是粘性土最主要的物理状态 特征。当含水量较大时,土粒被自由水所隔开,表现为 浆液状;随着含水量的减少,土浆变稠,逐渐变为可塑 状态,这时土中水主要表现为弱结合水;含水率再减少, 土就变为半固态;当土中主要含强结合水时,土处于固 体状态,如图1.4所示。
图1.5 土的结构
2、土的颗粒级配 对于土粒的大小及其组成情况,通常以土中各个粒组的 相对含量(各粒组占土粒总量的百分数)来表示,称为土 的颗粒级配。 (1)土的颗粒级配测定方法 ①筛分法----适用于粒径小于等于60mm而大于0.075mm ②比重瓶法-----适用于粒径小于0.075mm (2)颗粒级配表达方式
(1.11) (1.12) (1.12)
同样条件下,上述几种重度在数值上有如下关系,即
(1.13)
(4)土的孔隙比和孔隙率 土中孔隙体积与土粒体积之比称为孔隙比,用符 号e(小数)表示,用以评价天然土层的密实程度。
(1.14)
土中孔隙体积与土的总体积的比值称为孔隙率,用 符号n表示。
(1.15)
(5)饱和度 土中水的体积与孔隙体积之比称为饱和度,用符 号Sr表示。反映土体的潮湿程度。
图1.10 含水量与干密度关系曲线
1、可以总结出如下的特性: (1)、峰值(ωop= ωp +2); (2)、击实曲线位于理论饱和曲线左侧
(3)、击实曲线的形态 2、 影响击实效果的因素 (1)、含水量的影响 (2)、击实功能的影响 (3)、不同土类和级配的影响 3、压实特性在现场填土中的应用 为了便于工地压实质量的控制,可采用压实系数λ来表示,即

土力学:第1章 土的物理性质和工程分类

土力学:第1章 土的物理性质和工程分类
由于引力降低,弱结合水的水分子的排列不如强结 合水紧密,弱结合水可能从较厚水膜或浓度较低处缓慢 地迁移到较薄的水膜或浓度较高处,亦即可从一个土粒 迁移到另一个土粒,这种运动与重力无关,这层不能传 递静水压力的水定义为弱结合水。
d320 d60d10
(1 1b)
式中:d 、d 、d 分别相当于累计百分含量为
10
30
60
10%、30%和60%的粒径;
d10 称为有效粒径;
d60 称为限制粒径;
d 、d 10
30、称d为6平0 均粒径。
3.粒度成分及其表示方法(5)
不均匀系数 Cu 、Cc 反映大小不同粒组的分布情况:
Cu >= 5、Cc =1-3的土级配良好,其余情况为级配不良。
1)横坐标(按对数比例尺)表示某一粒径, 2)纵坐标表示小于某一粒径的土粒的百分
含量。
3.粒度成分及其表示方法(3)
表1-3中的三种土的累计曲线如图1-1所示。
3.粒度成分及其表示方法(4)
在累计曲线上,可确定两个描述土的级配的指标:
• 不均匀系数
Cu
d60 d10
(1 1a)
• 曲率系数
Cs
粒组名称
粒组范围(mm)
粒组名称
粒组范转(mm)
漂石(块石)粒组
>200
砂粒粒组
0.075~2
卵石(碎石粒组)
20~200
粉粒粒组
0.005~0.075
砾石粒粗
2~20
粘粒粒组
<0.005
我国上述规范采用的粒组划分标准见表1-1。《土的
工程分类标准》1.(G土B的J14粒5-9组0)划在分砂粒(粒4组)与粉粒粒组

第一章土的物理性质与工程分类-第一章土的物理性质及工程分

第一章土的物理性质与工程分类-第一章土的物理性质及工程分

第一章土的物理性质及工程分类第一节土的组成与结构一、土的组成天然状态下的土的组成(一般分为三相)⑴固相:土颗粒--构成土的骨架,决定土的性质--大小、形状、成分、组成、排列⑵液相:水和溶解于水中物质⑶气相:空气及其他气体(1)干土=固体+气体(二相)(2)湿土=固体+液体+气体(三相)(3)饱和土=固体+液体(二相)二、土的固相——矿物颗粒土粒粒径大小及矿物成分不同,对土的物理力学性质有着较大影响。

如当土粒粒径由粗变细时,土的性质可从无粘性变化到有粘性。

(一)土的粒组划分工程上将物理力学性质较为接近的土粒划分为一个粒组,粒组与粒组之间的分界尺寸称为界限粒径。

土颗粒根据粒组范围划分不同的粒组名称:六大粒组:块石(漂石)、碎石(卵石)、角粒(圆粒)、砂粒、粉粒、粘粒界限粒径分别是:200mm、20mm、2mm、0.075mm、0.005mm,见下表。

表1-1 粒组划分标准(GB 50021—94)(二)土的颗粒级配自然界的土通常由大小不同的土粒组成,土中各个粒组重量(或质量)的相对含量百分比称为颗粒级配,土的颗粒级配曲线可通过土的颗粒分析试验测定。

1.颗粒大小分析试验方法(1)筛分法:适用60—0.075mm的粗粒土(2)密度计法:适用小于0.075mm的细粒土2.颗粒级配曲线——半对数坐标系3.级配良好与否的判别1)定性判别(1)坡度渐变——大小连续——连续级配(级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配(1)曲线形状平缓——粒径变化范围大——不均匀——良好(2) 曲线形状较陡——变化范围小——均匀——不良 2) 定量判别:不均匀系数 1060d d C u =103060d d d 分别表示级配曲线上纵坐标为60% 30% 10%时对应粒径 不均匀系数越大,土粒越不均匀,工程上把5<u C 的看作是均匀的,级配不好;把10>u C 大于的土看作是不均匀的,级配良好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 第一章土的物理性质及工程分类一、教学目的:1.了解土的生成和工程力学性质及其变化规律;2.掌握土的物理性质指标的测定方法和指标间的相互转换;3.熟悉土的抗渗性与工程分类。

二、教学重点:土的组成、土的物理性质指标、物理状态指标。

三、教学难点:指标间的相互转换及应用。

四、教学时数: 6 学时。

五、习题:第一章土的物理性质及工程分类一、土的生成与特性1.土的生成工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。

土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。

不同风化形成不同性质的土,有下列三种:(1)物理风化:只改变颗粒大小,不改变矿物成分。

由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。

(2)化学风化:矿物发生改变,生成新成分—次生矿物。

由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。

(3)生物风化:动植物与人类活动对岩体的破坏。

矿物成分没有变化。

2.土的结构和构造(1)土的结构定义:土颗粒间的相互排列和联结形式称为土的结构。

1)种类:●单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。

●蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。

●絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。

小链之间相互吸引,形成大链环,称絮状结构。

图1.1 土的结构3)工程性质:密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。

(2)土的构造1)定义:同一土层中,土颗粒之间的相互关系。

2)种类:●层状结构:由不同颜色或不同粒径的土组成层理,一层一层互相平行。

●分散构造:土粒分布均匀,性质相近,如砂与卵石层为分散构造。

●结核状构造:在细粒土中混有粗颗粒或各种结核,属结核状构造。

●裂隙状构造:土体中有很多不连续的小裂隙。

3)工程性质:分散结构的工程性质最好,结核状取决于细粒土,裂隙状渗透性大,工程性质差。

3.土的工程特性(1)压缩性高当应力数值相同,材料厚度一样时,卵石的压缩性为刚才压缩性的数千倍;饱和细沙的压缩性为C20混凝土的数千倍,足以证明土的压缩性极高。

软塑或流塑状态的粘性土比饱和细沙的压缩性还要高。

(2)强度低土的强度特指抗剪强度,而非抗压强度或抗拉强度。

无粘性土的强度来源于土粒表面滑动的摩擦和颗粒间的咬合摩擦;粘性土的强度出摩擦力外,还有粘聚力,均远小于建筑材料本身的强度。

(3)透水性大土体颗粒间具有许多透水空隙,因此透水性比木材、混凝土都大,尤其是粗颗粒的卵石或砂土,其透水性更大。

4.土的生成与工程特性的关系(1)搬运、沉积条件:冲积层优于风积层。

(2)沉积年代:沉积年代越长,工程性质越好。

(3)自然环境:特殊土地基。

二、土的三相组成土的三相组成是指土由固体矿物、水和气体三部分组成。

1.土的固体颗粒土的固体颗粒是土的三相组成中的主体,是决定土的工程性质的主要成分。

(1)土粒的矿物成分1)原生矿物由岩石经物理风化生成,它的成分与母岩的相同,常见的有石英,包括单矿物颗粒—一个颗粒为单一的矿物,如常见的石英、长石、云母、角闪石与灰石等,砂土即为单矿物颗粒;多矿物颗粒—一个颗粒中包含多种矿物,如巨粒土的漂石、卵石和粗粒土的砾石,往往为多矿物颗粒。

2)次生矿物母岩经化学风化生成的新矿物,它的成分成分与母岩的完全不同。

次矿物主要是粘土矿物,由两种种原子层构成:一种是Si-O四面体构成的硅氧晶片,另一种是Al-OH八面体构成的铝氢氧晶片。

因为这两种晶片结合的情况不同,粘土矿物可分为下列三种:图1.2 粘土矿物两种原子层蒙脱石—两结构单元之间没有氢键,相互的联结弱,水分子可以进入量晶胞之间。

因此,蒙脱石的亲水性最大,具有强烈的吸水膨胀、失水收缩的特性。

伊利石—又称水云母,部分Si-O四面体中的Si为Al、Fe所取代,损失的原子价由阳离子钾补偿。

因此,晶格层组之间具有结合力,亲水性低于蒙脱石。

高岭石—晶胞之间有氢键,相互结合力较强,晶胞之间的距离不易改变,水分子不能进入。

因此,高岭石的亲水性最小。

腐殖质:土中腐殖质含量多,使土的压缩性增大。

有机质超过3%~5%的不宜作为建筑材料。

(2)土颗粒的大小和形状通过界限粒径(划分粒组的分界尺寸)将土颗粒划分为6个粒组:粘粒(小于0.005㎜)、粉粒(0.005,0.075)、砂粒(0.075,2)、圆砾(角砾)(2,60)、卵石(碎石)/(60,200)、漂石(块石)(大于200mm)。

通常粗粒土的压缩性低、强度高、渗透性大。

表面粗糙抗剪强度越高。

(3)土的颗粒级配粒径级配:土中各粒组的相对含量,占总质量的百分数。

1) 筛分法:适用于砾石类和砂类土,d >0.075mm ,主要设备为一套标准分析筛,孔径分别为20,10,5,2.0,1.0,0.5,0.25,0.075mm 。

取样数量:d <20mm ,可取1000~2000g; d <10mm ,可取300~1000g; d <2mm ,可取100~300g;震筛10~15min 后称取各级筛底盘试样的质量。

2) 密度计法:适用于粉土和粘性土,d <0.075mm ,测定悬浊液读数。

粒径级配曲线上:纵坐标10%所对应的粒径称为有效粒径;纵坐标为60%所对应的粒径60d 称为限定粒径;60d 与10d 的比值称为不均匀系数u C ,即6010u d C d = (1.1) 不均匀系数u C 为表示土颗粒组成的重要特征。

当u C 很小时曲线很陡,表示土均匀;当u C 很大时曲线平缓,表示土的级配良好。

曲率系数c C 为表示土颗粒组成的又一特征,c C 按下式计算:2301060c d C d d =⨯ (1.2) 式中30d 为粒径级配曲线上纵坐标为30%所对应的粒径。

砾石和砂土级配u C ≥5且 c C =1~3为级配良好;级配不同时满足这两个要求则为级配不良。

2. 土中水(1)结合水1)强结合水排列致密、定向性强;密度>1g/cm 3;冰点处于零下几十度具有固体的的特性;接近固体,不传递静水压力;温度高于100°C 时可蒸发,粘土只含结合水时呈坚硬状态。

2)弱结合水:位于强结合水之外,电场引力作用围之;密度大;不传递静水压力(不应重力而移动);有粘滞性。

● 自由水:离土粒较远,位于电场引力围外,排列散乱。

● 重力水:位于地下水位以下,具有浮力作用,可从总水头较高处向较低处流动。

● 毛细水:位于地下水位以上,受毛细作用上升,粉土中空隙小,毛细水上升高。

(2)气态水:水汽,影响不大。

(3)固态水:0℃以下自由水发生冻胀。

3. 土中气体土颗粒中没有被水填充的部分为气体。

(1) 自由气体:与大气连通,压缩逸出,对工程无影响。

(2)封闭气体:与大气隔绝,加载缩小,卸载膨胀,使土的渗透性降低。

三、 土的物理性质指标1. 土的三项基本物理性质指标(此三项均由实验室测定)(1)土的密度ρ和土的重度γ1)物理意义:ρ为单位体积土的重量,3/g cm 。

γ单位体积土所受的重力,即39,810,/g kN m γρρρ==≈。

2)表达式 =m Vρ=土的总质量土的总体积 (1.3) 3)常见值:331.6~2.2/,16~22/g cm kN cm ργ==。

4)测定方法:环刀法(粘性土和粉土),灌水法(卵石、砾石与原状砂)。

(2)土粒比重()s s G d1)物理意义:土中固体矿物的质量与同体积4℃时的纯水质量的比值。

2)表达式: =4(4)(4)ss s s w w m V G ρρρ==固体颗粒的密度纯水℃时的密度℃℃ (1.4) 3)常见值:砂土s G =2.65~2,69,粉土s G =2.70~2.71,粘性土2.72~2.75,数值大小取决于矿物成分。

4) 测定方法:比重瓶法;经验法。

(3)土的含水率ω1)物理意义:土体中水的质量与固体矿物质量的比值,用百分数表示。

2)表达式: =100%w sm m ω=⨯水的质量固体颗粒质量 (1.5) 3)常见值:砂土0%~40%ω=,粘性土20%~60%ω=,0ω≈,粘性土呈坚硬状态。

4)测定方法:烘箱法。

2. 反映土的松密程度的指标(1)土的孔隙比e1)物理意义:土中孔隙体积与固体颗粒体积之比。

2)表达式: =V SV e V =孔隙体积固体颗粒体积 (1.6) 3) 常见值:砂土0.5~1.0e =,粘性土0.5~1.2e =4)确定方法:由S ρω、G 、实测值推算。

(2)土的孔隙度(孔隙率)n1)物理意义:表示孔隙体积含量,土中空隙占总体积的百分比。

2)表达式: =100%V V n V =⨯孔隙体积土体总体积 (1.7) 3)常见值:30%~50%n =4)确定方法:由S ρω、G 、实测值推算。

3. 反映土中含水程度的指标(1)含水率ω(前已述)(2)土的饱和度r S1)物理意义:水在空隙中的充满程度。

2)表达式: =W r V V S V =水的体积孔隙体积 (1.8) 3)常见值:0~1r S =4)确定方法:由S ρω、G 、实测值推算。

5)工程应用:砂土和粉土以饱和度分为稍湿(<0.5)、很湿(0.5~0.8)、饱和(>0.8)三类。

4. 特定条件下土的密度(重度)(1)土的干密度d ρ和土的干重度d γ1)物理意义:干密度为单位体积土的质量,3/g cm 。

2)土的干重度为单位体积干土所受的重力,即39.810/d d d d g kN m γρρρ==≈。

3)表达式 =s d m Vρ=固体颗粒质量土的总体积 (1.9) 4) 常见值:331.3~2.0/;13~20/d d g cm kN cm ργ==。

5)工程应用:干密度或干重度越大,表明土体越密实,表明工程质量越好。

6)测定方法:环刀法,放射性同位素测试仪。

(2)土的饱和密度sat γ和土的饱和重度sat ρ1)物理意义:孔隙中全部充满水时单位体积土的质量,3/g cm 。

孔隙中全部充满水时单位体积土所受的重力,即39.810/sat sat sat sat g kN m γρρρ==≈。

2)表达式 +m =s w a w s v w sat m V m V V V ρρρ++==孔隙全部充满水的总质量土的总体积 (1.10) 3) 常见值:331.8~2.3/;18~23/sat d g cm kN cm ργ==。

(3)土的有效重度(浮重度)'γ1)物理意义:地下水位以下土体单位体积土所受的重力扣除浮力。

2)表达式 'sat w γγγ=- (1.11)3)常见值:3'8~13/kN m γ=。

相关文档
最新文档