四川省资阳市九年级上学期期末数学试卷
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九上·温州月考) 在下列函数中,属于二次函数的是()A . y=B .C . y=D . y=3x-52. (2分)如图,二次函数y=ax2+bx+c图象的一部分,其中对称轴为x=﹣1,且过(﹣3,0),下列说法:①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是抛物线上的点,则y1<y2 ,其中说法正确的有()A . 4个B . 3个C . 2个D . 1个3. (2分) (2018九上·康巴什月考) 下列函数关系式中,不属于二次函数的是()A . y=1-x2B . y=(3x+2)(4x-3)-12x2C . y=ax2+bx+cD . y=(x-2)2+24. (2分)(2020·无锡模拟) 下列说法正确的是()A . 打开电视,它正在播天气预报是不可能事件B . 要考察一个班级中学生的视力情况适合用抽样调查C . 抛掷一枚均匀的硬币,正面朝上的概率是,若抛掷10次,就一定有5次正面朝上.D . 甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳定5. (2分) (2018九上·灌云月考) 如图,半径为5的⊙P与y轴相交于点M(0,﹣4)和N(0,﹣10).则P点坐标是()A . (﹣4,﹣7)B . (﹣3,﹣7)C . (﹣4,﹣5)D . (﹣3,﹣5)6. (2分)(2016·湘西) 在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是()A . 相交B . 相切C . 相离D . 不能确定7. (2分)下列命题中,正确的是()① 顶点在圆周上的角是圆周角;② 圆周角的度数等于圆心角度数的一半;③ 90°的圆周角所对的弦是直径;④ 不在同一条直线上的三个点确定一个圆;⑤ 同弧所对的圆周角相等。
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)一元二次方程x(x﹣2)=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根2. (2分) (2019九上·新蔡期中) 若关于x的一元二次方程有两个不相等的实数根,则一次函数的大致图象是A .B .C .D .3. (2分) (2015九上·宜昌期中) 在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A .B .C .D .4. (2分)(2014·梧州) (2014•梧州)如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E点,且AB=BD,EC=1,则AD的长为()A .B .C .D . 35. (2分)如图,已知P是△ABC边AB上的一点,连接CP.以下条件中不能判定△ACP∽△ABC的是()A . ∠ACP=∠BB . ∠APC=∠ACBC . AC2=AP•ABD . =6. (2分)(2017·增城模拟) 下列说法正确的是()A . 一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据0,1,2,1,1的众数和中位数都是1D . 若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定7. (2分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6cm,CD⊥AB于D,以C为圆心,CD为半径画弧,交BC于E,则图中阴影部分的面积为()A . cm2B . cm2C . cm2D . cm28. (2分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A .B .C .D .二、填空题 (共10题;共10分)9. (1分)(2017·盐城模拟) 某二次函数的图象的顶点坐标(4,﹣1),且它的形状、开口方向与抛物线y=﹣x2相同,则这个二次函数的解析式为________.10. (1分)(2017·黑龙江模拟) 某超市今年一月份的营业额为60万元.三月份的营业额为135万元.若每月营业额的平均增长,则二月份的营业额是________万元.11. (1分) (2016九上·扬州期末) 小明推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣ +3,则小明推铅球的成绩是________m.12. (1分)(2017·莱西模拟) 如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值________.13. (1分)(2017·溧水模拟) 如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若点B的坐标为(8,2),则y1与x的函数表达式是________.14. (1分) (2018九上·吴兴期末) 已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为________ .15. (1分)如图,⊙O的弦AB=4cm,点C为优弧上的动点,且∠ACB=30°.若弦DE经过弦AC、BC的中点M、N,则DM+EN的最大值是________ cm.16. (1分)如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=________.17. (1分)(2017·宝山模拟) 如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图像上,那么抛物线y=ax2+bx+c的对称轴是直线________.18. (1分) (2019八上·香洲期末) 如图,等边△ABC的周长为18cm , BD为AC边上的中线,动点P , Q 分别在线段BC , BD上运动,连接CQ , PQ ,当BP长为________cm时,线段CQ+PQ的和为最小.三、解答题 (共10题;共92分)19. (10分) (2016九上·扬州期末) 计算题(1)解方程:x(x﹣3)﹣4(3﹣x)=0;(2)利用配方法求抛物线y=﹣x2+4x﹣3的对称轴和顶点坐标.20. (5分)(2019·达州) 随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是________元,中位数是________元,众数是________元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么:________.(填“合适”或“不合适”)②选择一个你认为最合适的数据估算这个小吃店一个月的营业额 ________.21. (5分)在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.22. (5分)如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)当通道宽a为10米时,花圃的面积是多少?(2)通道的面积与花圃的面积之比能否恰好等于3:5?如果可以,试求出此时通道的宽.23. (5分)已知,如图,==,那么△ABD与△BCE相似吗?为什么?24. (7分) (2017七上·东城期末) 如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°时,则∠DOE的度数为________(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其它条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变.直接写出∠AOC和∠DOE的度数之间的关系:________25. (15分) (2017八上·云南期中) 某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?26. (15分)(2019·武汉模拟) 如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D 为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.27. (10分)(2016·孝感) 如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.28. (15分) (2017九下·泉港期中) 如图,在平面直角坐标系中,经过的点A(﹣4,0)、点B(6,0)的抛物线与y轴相交于点C(0,m),连接BC.(1)若△OAC∽△OCB,请求出m的值;(2)当m=3时,试求出抛物线的解析式;(3)在(2)的条件下,若P为抛物线上位于x轴上方的一动点,以P、A、B、C为顶点的四边形面积记作S,当S 取何值时,相应的点P有且只有3个?参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共92分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题4分,共40分) (共10题;共40分)1. (4分) (2019九上·下陆月考) 设一元二次方程2x2﹣4x﹣3=0两个实根为x1和x2 ,则下列结论正确的是()A . x1x2=3B . x1+x2=﹣4C . x1+x2=2D . x1x2=2. (4分) (2019九上·慈溪月考) 下列叙述正确的是()A . “13位同学中有两人出生的月份相同”是随机事件B . 小亮掷硬币100次,其中44次正面朝上,则小亮掷硬币一次正面朝上的概率为0.44C . “明天降雨的概率是80%”,即明天下雨有80%的可能性D . 彩票的中奖概率为1%,买100张才会中奖3. (4分)如图所示,可以看作是正方形ABCD绕点O分别旋转多少度前后的图形共同组成的()A . 30°,45°B . 60°,45°C . 45°,90°D . 22.5°,67.5°4. (4分)(2016·随州) 随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A . 20(1+2x)=28.8B . 28.8(1+x)2=20C . 20(1+x)2=28.8D . 20+20(1+x)+20(1+x)2=28.85. (4分)如图,AB是半圆的直径,AB=2,∠B=30°,则的长为()A .B .C . πD .6. (4分) (2020九上·台安月考) 已知函数在上的最大值是1,最小值是,则的取值范围是()A .B .C .D .7. (4分)在平面直角坐标系内点A、点B的坐标分别为(0,3)、(4,3),在坐标轴上找一点C,使△ABC 是等腰三角形,则符合条件的点C的个数是()A . 5个B . 6个C . 7个D . 8个8. (4分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .9. (4分) (2016九上·临洮期中) 若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y210. (4分) (2020七下·重庆期末) 如图,矩形ABCD中,AB=2 ,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是()A . 4 +3B . 2C . 2 +6D . 4二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分)11. (4分)(2020·上海模拟) 如果关于的方程有两个相等的实数根,那么m的值是________.12. (4分) (2020九上·合肥月考) 将抛物线y=x2-12x+16作关于x轴对称,所得抛物线的解析式是________.13. (4分) (2019九上·宁波期末) 如图,显示的是用计算机模拟随机投掷一枚图钉的某次试验的结果.小明根据试验结果推断:随着重复试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,就可以估计“钉尖向上”的概率是0.618.你认为小明的推断是________(填写“正确”或“错误”)的.14. (4分)如图所示,∠2=2∠1,∠3=70°,∠4=120°,则∠A=________.15. (4分) (2018八上·浉河期末) 如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8cm2 ,则图中阴影部分的面积等于________cm²16. (4分) (2019九上·武汉月考) 我们把a、b两个数中较小的数记作min{a,b},直线y=kx﹣k﹣2(k<0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为________.三、解答题(本大题共9个小题,共86分) (共9题;共86分)17. (8分)解方程:x2﹣3x+2=018. (8分) (2016九上·嵊州期中) 如图,AB是⊙O的直径,点C,D在圆上,且 = ,求证:AC∥OD.19. (8分) (2020九上·东莞月考) 已知抛物线经过点(0,3),且顶点坐标为(1,﹣4),求抛物线的解析式.20. (10分) (2018八上·大石桥期末) 在等边△ABC中,AO是高,D为AO上一点,以CD为一边,在CD下方作等边△CDE,连接BE.(1)求证:AD=BE;(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.21. (10分) (2020九上·成都月考) 为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其他活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为________,喜欢“戏曲”活动项目的人数是________人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.22. (10分) (2016九下·赣县期中) 已知关于x的一元二次方程x2﹣kx+k﹣1=0.(1)求证:此一元二次方程恒有实数根.(2)无论k为何值,该方程有一根为定值,请求出此方程的定值根.23. (10分)(2019·天门模拟) 某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金,某电视台栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量(件)与销售价(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其他费用为106元(不包含债务).(1)求日销售量(件)与销售价(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最少需要多少天能还清所有债务,此时每件服装的价格应定为多少元?24. (10分)(2020·新疆模拟) 如图,在矩形中,过对角线中点O的直线分别交边于点 .(1)求证:四边形是平行四边形;(2)若,当四边形是菱形时,求的长.25. (12分) (2017九上·重庆期中) 如图,已知二次函数的图象与x轴交于点 A、点B,交 y 轴于点 C.(1)求直线 BC的函数表达式;(2)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)在(2)的条件下,在轴上是否存在一点M使△CPM的周长最小,若存直接写出周长的最小值;若不存在,请说明理由.参考答案一、选择题(本大题共10个小题,每小题4分,共40分) (共10题;共40分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(本大题共9个小题,共86分) (共9题;共86分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
四川省资阳市九年级上学期数学期末试卷

四川省资阳市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)函数y=ax(a≠0)与y=在同一坐标系中的大致图象是()A .B .C .D .2. (2分)已知x=2时关于x的一元二次方程的一个解,则a的值为()A . 0B . -1C . 1D . 23. (2分) (2016九上·呼和浩特期中) 下列方程中,有两个不相等的实数根的是()A . x2+x+1=0B . x2﹣x﹣1=0C . x2﹣6x+9=0D . x2﹣2x+3=04. (2分)给出下列命题及函数y=x,y=x2和y=的图象:①如果>a>a2 ,那么0<a<1;②如果a2>a>,那么a>1;③如果>a2>a ,那么-1<a<0;④如果a2>>a时,那么a<-1.则()A . 正确的命题是①④B . 错误的命题是②③④C . 正确的命题是①②D . 错误的命题只有③5. (2分) (2017九上·建湖期末) 如图,△ACD和△ABC相似需具备的条件是()A .B .C . AC2=AD•ABD . CD2=AD•BD6. (2分)如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A . ①②B . ②③C . ①④D . ③④7. (2分)从1.5m高的测量仪上,测得某建筑物顶端仰角为30°,测量仪距建筑物60m,则建筑物的高大约为()A . 34.65mB . 36.14mC . 28.28mD . 29.78m8. (2分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A . 3个B . 2个C . 1个D . 0个二、填空题 (共8题;共8分)9. (1分) (2016九上·新泰期中) sin260°+cos260°﹣tan45°=________.10. (1分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为________.11. (1分)(2016·龙岗模拟) 已知一元二次方程x2﹣4x+3=0的两根为x1 , x2 ,那么(1+x1)(1+x2)的值是________12. (1分) (2016九上·浦东期中) 已知线段b是线段a、c的比例中项,且a=2 cm,b=4 cm,那么c=________cm.13. (1分)(2020·泰兴模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=6,点G是△ABC的重心,GH⊥BC,垂足是H,则GH的长为________.14. (1分)(2017·西安模拟) 如图,△AOB与反比例函数交于C、D,且AB∥x轴,△AOB的面积为6,若AC:CB=1:3,则反比例函数的表达式为________.15. (1分)如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为________,线段O1O2的长为________.16. (1分) (2019九上·榆树期中) 如图,四边形与四边形关于点O成位似图形.若四边形与四边形的面积之比为,则它们的位似比为________.三、解答题 (共10题;共69分)17. (5分)解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18. (5分) (2017七下·东城期中) .19. (5分)(2018·泸州) 如图,甲建筑物AD,乙建筑物BC的水平距离为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).20. (5分)(2018·崇仁模拟) 市政府为了解决市民看病贵的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?21. (5分)(2018·河东模拟) 如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.22. (2分)如图1,Rt ACB Rt ACO,点A在第二象限内,点B、C在x轴的负半轴上,OA=4,CAO=30.(1)求点C的坐标(2)如图2,将ACB绕点C按顺时针方向旋转30到的位置,其中交直线OA于点E,分别交直线OA、CA于点F、G,则除外,还有哪几对全等的三角形,请直接写出答案(不再另外添加辅助线);(3)在(2)的基础上,将绕点C按顺时针方向继续旋转,当COE的面积为时,求直线CE的函数表达式.23. (15分)(2019·襄阳) 今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:成绩(分)分组频数频率150.300.401050.10(1)表中 ________, ________;(2)这组数据的中位数落在________范围内;(3)判断:这组数据的众数一定落在范围内,这个说法________(填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在范围内的扇形圆心角的大小为________;(5)若成绩不小于80分为优秀,则全校大约有________名学生获得优秀成绩.24. (2分) (2020九上·路南期末) 游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x 轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离 .(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道的水平距离;(3)若小明站在平台上相距y轴1m的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.25. (10分) (2020九上·武侯月考) 在中,,,.(1)如图1,折叠使点落在边上的点D处,折痕交、分别于、,若,则HQ=________.(2)如图2,折叠使点落在边上的点处,折痕交、分别于、.若,求证:四边形是菱形.(3)如图3,在(1)(2)的条件下,线段上是否存在点,使得和相似?若存在,求出的长;若不存在,请说明理由.26. (15分) (2018八上·田家庵期中) 如图,在△ABC中,AB=AC , AB的垂直平分线分别交AB , AC于点D , E .(1)若∠A=40°,求∠EBC的度数;(2)若AD=5,△EBC的周长为16,求△ABC的周长.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共10题;共69分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、答案:23-5、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、考点:解析:。
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·贵港模拟) 若一元二次方程的两个根分别为,则的值为()A . -4B . -2C . 0D . 1【考点】2. (2分) (2018九上·宁城期末) 二次函数y=2x2的图象可以看做抛物线y=2( x-1)2+3怎样平移得到的()A . 向左平移1个单位,再向下平移3个单位B . 向左平移1个单位,再向上平移3个单位C . 向右平移1个单位,再向上平移3个单位D . 向右平移1个单位,再向下平移3个单位【考点】3. (2分)(2020·无锡模拟) 已知圆锥的底面半径为,母线长为,则圆锥的侧面积是()A .B .C .D .【考点】4. (2分)(2019·贺州) 如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE =4,则BC等于()A . 5B . 6C . 7D . 8【考点】5. (2分)一组数据35、38、37、36、37、36、35、36的众数是()A . 35.B . 36C . 37D . 38【考点】6. (2分)下列命题中,假命题是()A . 在同圆中,相等的弧所对的弦相等B . 在同圆中,相等的弦所对的弧相等C . 在同圆中,相等的弧所对的圆心角相等D . 在同圆中,相等的圆心角所对的弦相等【考点】7. (2分)已知☉O的半径为6,A为线段PO的中点,当OP=10时,点A与☉O的位置关系为()A . 在圆上B . 在圆外C . 在圆内D . 不确定【考点】8. (2分) (2020九上·北海期末) 如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A . 8cmB . 12cmC . 11cmD . 10cm【考点】9. (2分)已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A . 20cm2B . 20πcm2C . 10πcm2D . 5πcm2【考点】10. (2分)(2017·深圳模拟) 如图,在 ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把 ABC沿EF折叠,使点A与点D恰好重合,则 DEF的周长是().A . 14B . 15C . 16D . 17【考点】二、填空题 (共8题;共8分)11. (1分) (2019九上·兰州期中) 方程(x-3)2=4的解是________【考点】12. (1分) (2020九上·新昌期末) 如果2a=3b,那么 ________.【考点】13. (1分)某工厂一月份产值50万元,第一季度的产值比一月份的3倍还多32万元,设二三月份的平均增长率是x,则列出方程是________ .【考点】14. (1分) (2018九上·永康期末) 如图所示,AB是⊙O的弦,OC⊥AB于C.若AB=,OC=1,则半径OB的长为________.【考点】15. (1分)(2019·萧山模拟) 如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是________【考点】16. (1分) (2020九上·赣州月考) 如图,在正六边形ABCDEF中,分别以C , F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为________.【考点】17. (1分)(2020·吉林) 如图,.若,,则 ________.【考点】18. (1分)二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是________.【考点】三、解答题 (共10题;共88分)19. (5分)如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB 交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.【考点】20. (10分) (2019九上·金凤期中) 解方程(1) x2﹣2x=5(2)(3﹣y)2+y2=9(3) 2x2﹣7x+1=0【考点】21. (5分) (2019九上·孟津月考) 是否存在a的值,使方程x2+(a-2)x+a2+4=0的两根互为相反数?若有,求出a的值;若没有,说明原因.【考点】22. (10分)(2017·南漳模拟) 为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛.某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有________名学生;扇形统计图中C等级所对应扇形的圆心角等于________度;(2)补全条形统计图;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.【考点】23. (10分) (2020九上·濉溪期末) 如图,内接于,,是的弦,与相交于点,平分,过点作,分别交,的延长线于点、,连接 .(1)求证:是的切线;(2)求证: .【考点】24. (6分)按要求作图如图(1)选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.如图(2)选择△ABC内一点P为对称中心,画出△ABC关于点P的对称△A′B′C′.【考点】25. (10分) (2019九上·港南期中) 小琴的父母承包了一块荒山地种植一批梨树,今年收获一批金溪密梨,小琴的父母打算以m元/斤的零售价销售5000斤密梨;剩余的5000(m+1)斤密犁以比零售价低1元的批发价批给外地客商,预计总共可赚得55 000元的毛利润.(1)求小琴的父母今年共收获金溪密梨多少斤?(2)若零售金溪密梨平均每天可售出200斤,每斤盈利2元.为了加快销售和获得较好的售价,采取了降价措施,发现销售单价每降低0.1元,平均每天可多售出40斤,应降价多少元?每天销售利润为600元.【考点】26. (6分) (2016九上·通州期末) 小明四等分弧AB,他的作法如下:①连接AB(如图);作AB的垂直平分线CD交弧AB于点M,交AB于点T;②分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。
四川省资阳市九年级上学期数学期末考试试卷

四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·奉化期末) 已知 x=-1 是一元二次方程 x2+px+q=0 的一个根,则代数式 p-q 的值是()A . 1B . -1C . 2D . -22. (2分)(2019·淮安模拟) 以坐标原点O为圆心,作半径为2的圆,若直线y=-x+b与⊙O相交,则b的取值范围是()A . .B .C .D .3. (2分)关于x的一元二次方程x2-6x+2k=0有两个不相等的实数根,则实数k的取值范围是()A .B .C .D .4. (2分)(2013·梧州) 小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是()A .B .C .D .5. (2分)已知圆锥侧面展开图的扇形半径为2cm,面积是cm2 ,则扇形的弧长和圆心角的度数分别为B .C .D .6. (2分) (2018九上·邗江期中) 下列命题中,真命题的个数是()①经过三点一定可以作圆;②平分弦的直径必定垂直于这条弦;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形三边的距离相等.A . 4个B . 3个C . 2个D . 1个7. (2分) (2016九上·牡丹江期中) 抛物线y=x2﹣6x+5的顶点坐标为()A . (3,﹣4)B . (3,4)C . (﹣3,﹣4)D . (﹣3,4)8. (2分)已知:二次函数,下列说法错误的是()A . 当时,y随x的增大而减小B . 若图象与x轴有交点,则C . 当时,不等式的解集是D . 若将图象向上平移1个单位,再向左平移3个单位后过点,则9. (2分) (2019九下·象山月考) 如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A . 9πm2B . πm2C . 15πm210. (2分)(2017·绍兴模拟) 如图,反比例函数y= 的图象经过二次函数y=ax2+bx图象的顶点(,m)(m>0),则有()A . a=b+2kB . a=b﹣2kC . k<b<0D . a<k<0二、填空题 (共8题;共8分)11. (1分) (2019八下·兰州期末) 如图,将△AOB绕点按逆时针方向旋转后得到,若,则的度数是________.12. (1分)因式分解:(a﹣b)2﹣(b﹣a)=________.13. (1分)(2016·安徽) 如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为________.14. (1分) (2020七下·岱岳期中) 四个实数,,,π中,任取一个数是无理数的概率为________.15. (1分)(2019·萧山模拟) 有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是________.16. (1分)(2019·宿迁) 如图,,若的顶点在射线上,且,点在射线上运动,当是锐角三角形时,的取值范围是________.17. (1分) (2019·杭州模拟) 如图所示,内切△ABC ,切点分别为,,,切于点,交,于点,,若△ABC 的周长为12,BC=2,则△ADE 的周长是________.18. (1分) (2018九上·丰台期末) 半径为2的圆中,60°的圆心角所对的弧的弧长为________.三、解答题 (共8题;共95分)19. (5分) (2016九上·封开期中) 每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①写出A、B、C的坐标.②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1 ,并写出A1、B1、C1 .20. (20分)(2018·黄冈模拟) 抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21. (10分)(2018·东营) 2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=________,b=________,c=________,d=________;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.22. (10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.23. (10分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2 ,求点E运动路径的长度.24. (10分) (2016九上·宾县期中) 已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.25. (15分)(2014·衢州) 如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.26. (15分)(2017·深圳模拟) 平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共95分)19-1、20-1、20-2、20-3、答案:略20-4、答案:略21-1、答案:略21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、答案:略24-1、答案:略24-2、答案:略25-1、25-2、答案:略25-3、答案:略26-1、答案:略26-2、答案:略26-3、答案:略。
四川省资阳市九年级上学期数学期末试卷
【考点】
12. (1分)(2020九上·海门月考)抛物线 的顶点在 轴上,则 ________.
【考点】
13. (1分)(2020九上·罗山期末)如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=________m.
【考点】
20. (1分)(2020八上·陆川期末)如图,△ABC的三边AB,BC,CA的长分别为14,12,8,其三条角平分线的交点为O,则 ________.
【考点】
三、 解答题 (共7题;共67分)
21. (5分)(2018·东营模拟)计算题
(1) 计算:|﹣ |﹣ +2sin60°+( ) ﹣1+(2﹣ )0
A .
B .
C .
D .
【考点】
3. (2分) 把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式 为( )
A . y=-(x+1)2-3
B . y=-(x-1)2-3
C . y=-(x+1)2+3
D . y=-(x-1)2+3
【考点】
4. (2分) 如图,在Rt△ABC中,∠C=90°,点B在CD上,且BD=BA=2AC,则tan∠DAC的值为( )
A . y1>y2>y3
B . y1>y3>y2
C . y3>y1>y2
D . y2>y3>y1
【考点】
四川省资阳市九年级上学期数学期末考试试卷
四川省资阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形不是轴对称图形的是()A . 圆B . 正方形C . 直角三角形D . 等腰三角形2. (2分) (2016九上·端州期末) 抛物线y=-2(x+3)2-4的顶点坐标是:()A . (3,-4)B . (-3,4)C . (-3,-4)D . (-4,3)3. (2分)在Rt△ABC中,∠C=90°,若sinA= ,AB=2,则AC长是()A .B .C .D . 24. (2分)如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为()A . 40°B . 50°C . 80°D . 90°5. (2分) (2019九上·高州期末) 如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC ,若AD:DB=3:2,则AE:AC等于()A . 3:2B . 3:1C . 2:3D . 3:56. (2分)(2018·泸县模拟) 如图,⊙O的直径BC=12cm,AC是⊙O的切线,切点为C,AC=BC,AB与⊙O交于点D,则的长是()A . πcmB . 3πcmC . 4πcmD . 5πcm7. (2分)函数y=是()A . 一次函数B . 二次函数C . 反比例函数D . 正比例函数8. (2分) (2016九上·磴口期中) A是双曲线y=﹣上一点,过点A向x轴作垂线,垂足为B,向y轴作垂线,垂足为C,则四边形OBAC的面积为()A . 6B . 5C . 10D . ﹣59. (2分) (2018九上·杭州月考) 一辆新汽车原价万元,如果每年折旧率为,两年后这辆汽车的价钱为元,则关于的函数关系式为()A . y=20(1+x)2B . y=20(1-x)2C . y=20(1+x)D . y=20+x210. (2分) (2017九上·南涧期中) 抛物线y=x2-2x+1的对称轴是()A . 直线x=1B . 直线x=-1C . 直线x=2D . 直线x=-2二、填空题 (共6题;共6分)11. (1分)若分式无意义,且,那么=________.12. (1分)为了改善市区人民的生活环境,某市建设污水管网工程,某圆柱型水管的直径为100cm,截面如图所示,若管内的污水的面宽AB=60cm,则污水的最大深度为________.13. (1分)(2016·丹东) 反比例函数y= 的图象经过点(2,3),则k=________.14. (1分)(2017·天津模拟) 如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.15. (1分)(2018·张家界) 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为________.16. (1分)如图,等腰直角三角形中, =4 cm.点是边上的动点,以为直角边作等腰直角三角形 .在点从点移动至点的过程中,点移动的路线长为________cm.三、解答题 (共10题;共84分)17. (10分) (2017九上·信阳开学考) 计算题(1)计算:(2016﹣π)0+|1﹣ |+(﹣)﹣2(2)解方程:x2﹣2x﹣1=23.18. (2分)(2017·徐汇模拟) 如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.19. (5分)(2017·鄞州模拟) 如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果保留根号)20. (5分) (2018九上·南昌期中) 如图所示的是水面一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下水面宽度为20米,拱顶距离正常水面4米,建立平面直角坐标系如图所示,求抛物线的解析式.21. (10分) (2019八下·南关期中) 点(,0)是轴上的一个动点,它与原点的距离的2倍为 .(1)求关于的函数解析式,并在所给网格中画出这个函数图象;(2)若反比例函数=的图象与函数的图象相交于点,且点的纵坐标为2.①求k的值;②结合图象,当>时,写出的取值范围.(3)过原点的一条直线交=(>0)于、两点(点在点的右侧),分别过点、作轴和轴的平行线,两平行线交于点,则△ 的面积是________.22. (6分) (2019九上·西岗期末) 【发现】x4﹣5x2+4=0是一个一元四次方程.(1)【探索】根据该方程的特点,通常用“换元法”解方程:设x2=y,那么x4=y2,于是原方程可变为________.解得:y1=1,y2=________.当y=1时,x2=1,∴x=±1;当y=________时,x2=________,∴x=________;原方程有4个根,分别是________.(2)【应用】仿照上面的解题过程,求解方程: .23. (10分)(2017·青浦模拟) 如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6cm,BC=8cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=k•AP(k>0),联接PC、PQ.(1)求⊙O的半径长;(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.24. (11分) (2015九上·宁波月考) 已知线段AB,只用圆规找AB的中点P.作法:②以A为圆心,AB长为半径作圆;②以B为圆心,AB长为半径在圆上连续截取,记截点为B1 , B2 , B3 , B4 , B5;③以B3为圆心,BB3长为半径画弧;以B为圆心,AB长为半径画弧,与前弧交于点C;④以C为圆心,CB长为半径画弧交线段AB于点P.结论:点P就是所求作的线段AB的中点.(1)配合图形,理解作法,根据作图过程给予证明:点P是线段AB的中点.(2)已知⊙O,请只用圆规把圆周四等分.(保留作图痕迹,不要求写作法)25. (10分)(2018·宿迁) 如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长,26. (15分) (2016九上·赣州期中) 如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c过A,B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA,PC,PG,分别以AP,AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共84分)17-1、17-2、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、。
四川省资阳市九年级(上)期末数学试卷(含解析)
四川省资阳市九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目的要求的.)1.下列对于二次根式的计算正确的是()A.B.2=2C.2=2D.2=2.下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是()1050100150200250300500投篮次数4356078104123152251投中次数0.400.700.600.520.520.490.510.50投中频率A.0.7B.0.6C.0.5D.0.43.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)4.某班一物理科代表在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有36人会做这个实验;若设1人每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36B.1+x+(1+x)x=36C.1+x+x2=36D.x+(x+1)2=365.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于97°的两个等腰三角形相似6.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.7.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=()A.B.C.D.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC的周长为30,BC=12.则MN的长是()A.15B.9C.6D.310.如图,在正方形ABCD中,点E是CD的中点,点F是BC上的一点,且BF=3CF,连接AE、AF、EF,下列结论:①△ADE∽△ECF,②∠DAE=∠EAF,③AE2=AD•AF,④S△AEF =5S△ECF,其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题.(本大题6个小题,每小题4分,共24分)11.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=.12.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀.随机摸出一球不放回;再随机摸出一球,两次摸出的球上的汉字能组成“柠檬”的概率是.13.在△ABC中,∠A、∠B为锐角,且|tan A﹣1|+(﹣cos B)2=0,则∠C=°.14.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A、B、E在x轴上.若正方形BEFG的边长为6,则点G的坐标为.15.已知一个直角三角形的两条直角边的长是方程2x2﹣10x+9=0的两个实数根,则这个直角三角形的斜边长是.16.△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2019次剪取后,余下的所有小三角形的面积之和是.三、解答题(本大题共8个小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(9分)(1)计算:()﹣1+4cos60°﹣(3.14﹣π)0+(2)解方程:﹣x﹣2=018.(10分)已知a=,求的值.19.(10分)如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1::的斜坡CD前进2米到达点D,在点D处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(结果保留根号).20.(10分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共人,a=,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.21.(11分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?22.(11分)关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣2k+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2.是否存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.23.(12分)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF 与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)在∠EDF绕点D旋转过程中:①如图2,探究三条线段AB、CE、CF之间的数量关系,并说明理由;②如图3,过点D作DG⊥BC于点G.若CE=4,CF=2,求DN的长.24.(13分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB =90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目的要求的.)1.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【解答】解:由题意得:投篮的总次数是10+50+100+150+200+250+300+500=1560(次),投中的总次数是4+35+60+78+104+123+152+251=807(次),则这名球员投篮的次数为1560次,投中的次数为807,故这名球员投篮一次,投中的概率约为:≈0.5.故选:C.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.3.【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:B.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.【分析】设1人每次都能教会x名同学,根据两节课后全班共有36人会做这个实验,即可得出关于x的一元二次方程,此题得解.【解答】解:设1人每次都能教会x名同学,根据题意得:1+x+(x+1)x=36.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.【分析】根据相似三角形的判定定理进行判定即可.【解答】解:A、斜边与一条直角边对应成比例的两个直角三角形相似一定成立;B、两个等腰直角三角形相似一定成立;C、两边对应成比例且有一个角相等的两个三角形相似不一定成立;D、各有一个角等于97°的两个等腰三角形相似一定成立,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.【分析】根据a的符号,分类讨论,结合两函数图象相交于(0,1),逐一排除;【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选:C.【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.7.【分析】设AB=x,求出BC=x,CD=AD=x,求出BD,再解直角三角形求出即可.【解答】解:设AB=x,∵在Rt△ABC中,∠B=90°,∠ACB=45°,∴∠BAC=∠ACB=45°,∴AB=BC=x,由勾股定理得:AC==x,∵AC=CD,∴AC=CD=x,∴BD=BC+CD=(+1)x,∴tan22.5°===﹣1,故选:B.【点评】本题考查了解直角三角形、勾股定理、等腰三角形的性质和判定等知识点,能求出BD =(+1)x是解此题的关键.8.【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6,故选:A.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.【分析】延长AM、AN分别交BC于点F、G,根据BN为∠ABC的角平分线,AN⊥BN得出∠BAN=∠G,故△ABG为等腰三角形,所以BN也为等腰三角形的中线,即AN=GN.同理AM=MF,根据三角形中位线定理即可得出结论.【解答】证明:∵△ABC的周长为30,BC=12.∴AB+AC=30﹣BC=18.延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线,∴∠CBN=∠ABN,∵BN⊥AG,∴∠ABN+∠BAN=90°,∠G+∠CBN=90°,∴∠BAN=∠AGB,∴AB=BG,∴AN=GN,同理AC=CF,AM=MF,∴MN为△AFG的中位线,GF=BG+CF﹣BC,∴MN=(AB+AC﹣BC)=(18﹣12)=3.故选:D.【点评】本题考查了等腰三角形的判定与性质、三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.10.【分析】设正方形的边长为4a,根据题意用a表示出FC,BF,CE,DE,根据相似三角形的判定定理,勾股定理,正切的定义,相似三角形的性质定理判断即可.【解答】解:设正方形的边长为4a,则FC=a,BF=3a,CE=DE=2a,∴=2,=2,∴=,又∠D=∠C,∴△ADE∽△ECF,①正确;由勾股定理得,EF==a,AE==2a,AF==5a,tan∠DAE==,tan∠EAF==,∴∠DAE=∠EAF,②正确;AE2=(2a)2=20a2,AD•AF=4a•5a=20a2,∴AE2=AD•AF,③正确;∵AE2=AD•AF,∴=,又∠DAE=∠EAF,∴△ADE∽△AEF,∴△ECF∽△AEF,∴=()2=5,∴S△AEF =5S△ECF,⑤正确;故选:D.【点评】本题考查的是相似三角形的判定和性质,正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题.(本大题6个小题,每小题4分,共24分)11.【分析】把点(﹣1,0)代入抛物线y=2x2+3x+k﹣2,即可解得k.【解答】解:∵抛物线y=2x2+3x+k﹣2经过点(﹣1,0),∴0=2﹣3+k﹣2,解得k=3.故答案为:3.【点评】本题主要考查用待定系数法求二次函数解析式的知识点,本题比较基础,较简单.12.【分析】列表得出所有等可能的情况数,找出能组成“柠檬”的情况数,即可求出所求的概率.【解答】解:列表得:柠檬之乡柠﹣﹣﹣檬柠之柠乡柠檬柠檬﹣﹣﹣之檬乡檬之柠之檬之﹣﹣﹣乡之乡柠乡檬乡之乡﹣﹣﹣∵12种可能的结果中,能组成“柠檬”有2种可能,共2种,∴两次摸出的球上的汉字能组成“柠檬”的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 13.【分析】根据非负数的性质求出tan A 和cos B 的值,然后求出∠A 、∠B 的度数,最后求出∠C . 【解答】解:由题意得,tan A =1,cos B =, 则∠A =45°,∠B =60°, 则∠C =180°﹣45°﹣60°=75°. 故答案为:75.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 14.【分析】根据位似变换的性质得到△OBC ∽△OEF ,且=,根据相似三角形的性质求出OB ,得到答案.【解答】解:∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为1:3,∴△OBC ∽△OEF ,且=, ∴==,即=,解得,OB =3,∴点G 的坐标为(3,6), 故答案为:(3,6).【点评】本题考查的是位似变换,坐标与图形性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形是解题的关键. 15.【分析】设这两个根分别是m ,n ,根据韦达定理可得m +n =5,mn =,代入到斜边长的平方=m 2+n 2=(m +n )2﹣2mn 求解可得. 【解答】解:设这两个根分别是m ,n , 根据题意可得m +n =5,mn =,根据勾股定理,直角三角形的斜边长的平方=m 2+n 2=(m +n )2﹣2mn =25﹣9=16, 则这个直角三角形的斜边长是4, 故答案为:4.【点评】本题考查的是勾股定理的运用和一元二次方程根与系数的关系.根据一元二次方程两根之间的关系,巧妙运用完全平方公式和勾股定理求解. 16.【分析】根据题意,可求得S △AED +S △DBF =S正方形ECFD=S 1=1,同理可得规律:S n 即是第n 次剪取后剩余三角形面积和,根据此规律求解即可答案. 【解答】解:∵四边形ECFD 是正方形, ∴DE =EC =CF =DF ,∠AED =∠DFB =90°, ∵△ABC 是等腰直角三角形, ∴∠A =∠B =45°,∴AE =DE =EC =DF =BF =EC =CF , ∵AC =BC =2, ∴DE =DF =1,∴S △AED +S △DBF =S 正方形ECFD =S 1=1;同理:S 2即是第二次剪取后剩余三角形面积和, S n 即是第n 次剪取后剩余三角形面积和,∴第一次剪取后剩余三角形面积和为:2﹣S 1=1=S 1, 第二次剪取后剩余三角形面积和为:S 1﹣S 2=1﹣==S 2, 第三次剪取后剩余三角形面积和为:S 2﹣S 3=﹣==S 3, …第n 次剪取后剩余三角形面积和为:S n ﹣1﹣S n =S n =.则s 2019=;故答案为:.【点评】此题考查了正方形与等腰直角三角形的性质.此题难度较大,属于规律性题目,找到规律:S n 即是第n 次剪取后剩余三角形面积和是解此题的关键.三、解答题(本大题共8个小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.) 17.【分析】(1)直接利用负指数幂的性质以及特殊角的三角函数值和零指数幂的性质分别化简得出答案;(2)直接利用十字相乘法分解因式进而解方程得出答案. 【解答】解:(1)原式=2+2﹣1+3 =6; (2)﹣x ﹣2=0 (x +2)(x ﹣)=0,解得:x1=﹣,x2=.【点评】此题主要考查了一元二次方程的解法以及实数运算,正确化简各数以及正确分解因式是解题关键.18.【分析】先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【解答】解:∵a===2﹣,∴a﹣2=2﹣﹣2=﹣<0,则原式=﹣=a+3+=2﹣+3+2+=7.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.19.【分析】(1)延长ED交射线BC于点H.由题意得DH⊥BC.解直角三角形即可得到结论;(2)过点E作EF⊥AB于F.得到∠AEF=30°.推出四边形FBHE为矩形.根据矩形的性质得到EF=BH=BC+CH=9.解直角三角形即可得到结论.【解答】解:(1)延长ED交射线BC于点H.由题意得DH⊥BC.在Rt△CDH中,∠DHC=90°,tan∠DCH=i=1:.∴∠DCH=30°.∴CD=2DH.∵CD=2,∴DH=,CH=3.答:点D的铅垂高度是米;(2)过点E作EF⊥AB于F.由题意得,∠AEF即为点E观察点A时的仰角,∴∠AEF=30°.∵EF⊥AB,AB⊥BC,ED⊥BC,∴∠BFE=∠B=∠BHE=90°.∴四边形FBHE为矩形.∴EF=BH=BC+CH=9.FB=EH=ED+DH=1.5+.在Rt△AEF中,∠AFE=90°,AF=EF tan∠AEF=9×=3,∴AB=AF+FB=3+1.5+=4+1.5.答:旗杆AB的高度约为(4+1.5)米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题和坡度坡比问题,掌握仰角俯角和坡度坡比的定义,并根据题意构建合适的直角三角形是解题的关键.20.【分析】(1)用A类学生数除以它所占的百分比即可得到总人数,再用1分别减去A、C、D 类的百分比即可得到a的值,然后用a%乘以总人数得到B类人数,再补全条形统计图;(2)用2000乘以A类的百分比即可.(3)画树状图展示所有12种等可能的结果数,再找出每班所抽到的两种方式恰好是“跑步”和“跳绳”的结果数,然后根据概率公式求解.【解答】解:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,故答案为:300,10;图形如下:(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率==.【点评】本题考查的是统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.21.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x =23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.22.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k﹣1)2+1>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【解答】解:(1)由题意知△>0,∴[﹣(2k﹣1)]2﹣4×1×(k2﹣2k+2)>0,整理,得:4k﹣7>0,解得:k>;(2)由题意知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k+1)2+1>0,∵|x1|﹣|x2|=,∴x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+2)=5,整理,得:4k﹣12=0,解得:k=3.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.23.【分析】(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)①证得△CDF∽△CED,根据相似三角形的性质得到=,即CD2=CE•CF,根据等腰直角三角形的性质得到CD=AB,于是得到AB2=4CE•CF;②如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,求得CD=2,推出△CEN∽△GDN,根据相似三角形的性质得到==2,根据勾股定理即可得到结论.【解答】(1)证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,,∴△DCE≌△DCF(SAS),∴DE=DF;(2)解:①∵∠DCF=∠DCE=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴=,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD=AB,∴AB2=4CE•CF;②如图,过D作DG⊥BC于G,则∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CE•CF得CD=2,∴在Rt△DCG中,CG=DG=CD•sin∠DCG=2×sin45°=2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴==2,∴GN=CG=,∴DN===.【点评】本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.24.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB =60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
四川省资阳市九年级上册数学期末考试试卷
四川省资阳市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共32分)1. (2分) (2016九上·江津期中) 下面图形中,是中心对称图形的是()A .B .C .D .2. (2分) (2017九上·鞍山期末) 一个直角三角形的两直角边长分别为,其面积为2,则表示与之间关系的图象大致为()A .B .C .D . 不符合题意3. (2分) (2019七下·光明期末) 下列事件中是确定事件的是()A . 小王参加光明半程马拉松,成绩是第一名B . 小明投篮一次得3分C . 一个月有31天D . 正数大于零4. (2分)(2020·绍兴模拟) 如图,AB是半圆O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD 相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件错误的是()A . ∠ACD=∠DABB . AD=DEC . AD2=BD·CDD . CD·AB=AC·BD5. (2分)如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是()A .B . 2πC . 4πD . 无法确定6. (2分) (2020九上·巢湖月考) 一元二次方程x2-x=2020的根的情况为()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根7. (2分) (2018九上·硚口月考) 如图,Rt△ABC中,∠C=90°,AB=13,BC=5,则其内切圆半径为()A . 1B . 2C . 3D . 48. (2分) (2020九上·三门期末) 商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A . 抽101次也可能没有抽到一等奖B . 抽100次奖必有一次抽到一等奖C . 抽一次不可能抽到一等奖D . 抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖9. (2分) (2019九上·光明期中) 若双曲线y= 在每一个象限内,y随x的增大而减小,则k的取值范围是()A .B .C .D .10. (2分)(2017·兰州模拟) 在平面直角坐标系中,抛物线y=x2﹣1与x轴交点的个数()A . 3B . 2C . 1D . 011. (1分) (2019九上·瑞安期末) 在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是________cm.12. (11分) (2018九上·云安期中) 如图,已知抛物线y=x2+bx+c与x轴交于点A、B,AB=2,与y轴交于点C,对称轴为直线x=2,对称轴交x轴于点M.(1)求抛物线的函数解析式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是菱形,则点D的坐标为________.二、填空题 (共5题;共5分)13. (1分) (2017九下·宜宾期中) 设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为________14. (1分) (2019九上·绍兴期中) 小颖在二次函数y=2x2+4x+5的图象上找到三点(-1,y1),(,y2),(-3 ,y3),则你认为y1 , y2 , y3的大小关系应为________.15. (1分)(2019·凤翔模拟) 如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是________°.16. (1分)某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是________.17. (1分) (2017九上·宁县期末) 如图,已知A点是反比例函数(k≠0)的图象上一点,AB⊥y 轴于B,且△ABO的面积为3,则k的值为________三、解答题 (共8题;共81分)18. (5分) (2018九上·大连月考) 解方程: .19. (5分)如图所示,在三角形ABC中,过点C作边AB的垂线段,并标出垂足.用刻度尺量出AB和C到边AB的距离,并计算出三角形ABC的面积.20. (9分) (2017八下·柯桥期中) 商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.(1)当每件商品的售价为140元时,每天可销售________件商品,商场每天可盈利________元;(2)设销售价定为x元时,商品每天可销售________件,每件盈利________元;(3)在销售正常的情况下,每件商品的销售价定为多少时,商场每天盈利达到1500元.21. (10分) (2018九上·天台月考) 有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的(1)用树状图或列表法求出为负数的概率;(2)求一次函数的图象经过一、二、四象限的概率22. (11分) (2017九上·孝义期末) 如图,一次函数y=x+2与反比例函数y= 的图象相交于A(2,m),B(-4,n)两点.(1)求反比例函数的解析式;(2)根据所给条件,请直接写出不等式x+2>的解集:________;(3)过点B作BC⊥x轴,垂足为C,连接AC,求S△ABC .23. (15分) (2018九上·路南期中) 已知OA=OB=4,∠AOB=60°,半⊙A的半径为1,点C是半圆上任意一点,连结OC ,把OC绕点O顺时针旋转60°到OD的位置,连结BD .(1)如图1,求证:AC=BD .(2)如图2,当OC与半圆相切于点C时,求CD的长.(3)直接写出△AOC面积的最大值.24. (15分)(2020·淮安模拟) 已知抛物线的图象经过点A(2,-8),求:(1)该抛物线的解析式;(2)判断点B(3,-18)是否在该抛物线上;(3)求出此抛物线上纵坐标是-50的点的坐标.25. (11分) (2020九上·北京月考) 在中,斜边AC的中点M关于BC的对称点O,将△ABC绕点O顺时针旋转至△DCE,连接BD,BE,如图所示.(1)在① ,② ,③ 中,等于旋转角的是________(填出满足条件的角的序号);(2)若求的大小(用含的式子表示);(3)点N是BD的中点,连接MN,用等式表示线段MN与BE之间的数量关系,并证明.参考答案一、单选题 (共12题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、12-2、12-3、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共81分) 18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省资阳市九年级上学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共16题;共32分)
1. (2分)一元二次方程x2-2x-m=0,用配方法解该方程,配方后的方程为()
A . (x-1)2=m2+1
B . (x-1)2=m-1
C . (x-1)2=1-m
D . (x-1)2=m+1
2. (2分)在研究相似问题时,甲、乙同学的观点如下:
对于两人的观点,下列说法正确的是()
A . 两人都对
B . 两人都不对
C . 甲对,乙不对
D . 甲不对,乙对
3. (2分)如图,四边形ABCD是⊙O的内接四边形,∠DAB与∠DCE的关系是()
A . 相等
B . 互余
C . 互补
D . 无法确定
4. (2分)(2015·泗洪) 在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的
成绩的方差S甲2=1.21,乙的成绩的方差S乙2=3.98,由此可知().
A . 甲比乙的成绩稳定
B . 乙比甲的成绩稳定
C . 甲、乙两人的成绩一样稳定
D . 无法确定谁的成绩更稳定
5. (2分)如图,在直角坐标系中,⊙O的半径为1,则直线y=﹣x+与⊙O的位置关系是().
A . 相离
B . 相交
C . 相切
D . 以上三种情形都有可能
6. (2分)已知两点P1(x1 , y1)、P2(x2 , y2)在反比例函数的图象上,当x1>x2>0时,下列结论正确的是()
A . 0<y1<y2
B . 0<y2<y1
C . y1<y2<0
D . y2<y1<0
7. (2分)在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()
A . 当a=﹣1时,点B在圆A上
B . 当a<1时,点B在圆A内
C . 当a<﹣1时,点B在圆A外
D . 当﹣1<a<3时,点B在圆A内
8. (2分) (2017九上·东台期末) 如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=60°,那么∠BAD 等于()
A . 20°
B . 30°
C . 35°
D . 70°
9. (2分)(2013·百色) 在反比例函数y= 中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx 的图象大致是图中的()
A .
B .
C .
D .
10. (2分)(2017·梁溪模拟) 在直角坐标系中,O为原点,A(0,4),点B在直线y=kx+6(k>0)上,若以O、A、B为顶点所作的直角三角形有且只有三个时,k的值为()
A .
B .
C . 3
D .
11. (2分)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()
A .
B .
C .
D .
12. (2分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()
A .
B .
C .
D .
13. (2分)(2019·南岸模拟) 如图,点C在以AB为直径的半圆O的弧上,∠ABC=30°,且AC=2,则图中阴影部分的面积是()
A . ﹣
B . ﹣2
C . ﹣
D . ﹣
14. (2分) (2019九上·利辛月考) 如图,△ABC中,AB=AC=10,点D在BC上,连接AD,若CD=AB,AD=BD,则BC的长为()
A . -5+5
B . 5+5
C . 10+5
D . 15-5
15. (2分) (2016九下·广州期中) 如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()
A . 1
B . 2
C . 3
D . 4
16. (2分)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab-2,有下列命题:
①1⊗3=2;
②方程x⊗1=0的根为:x1=-2,x2=1;
③不等式组的解集为:-1<x<4;
④点(,)在函数y=x⊗(-1)的图象上.
其中正确的是()
A . ①②③④
B . ①③
C . ①②③
D . ③④
二、填空题 (共4题;共4分)
17. (1分)一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了36次手,设到会的人数为x人,则根据题意列方程为________.
18. (1分)已知A(1,2),B(3,0),将△AOB以坐标原点O为位似中心扩大到△OCD(如图),D(4,0),则点C的坐标为________ .
19. (1分) (2018九上·北仑期末) 如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =7+2 ,圆形纸片的半径为2,求圆心O运动的路径长为________.
20. (1分)如图,是二次函数y=3x2的图象,把该图象向左平移1个单位,再向下平移2个单位,所得的抛物线的函数关系式为________.
三、解答题 (共6题;共72分)
21. (20分)(2018·黄冈模拟) 已知反比例函数y= 的图象与一次函数y=kx+m的图象相交于点A(2,1).
(1)分别求出这两个函数的解析式;
(2)当x取什么范围时,反比例函数值大于0;
(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;
(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
22. (5分)(2019·凤翔模拟) 汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)
23. (12分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.
(1)
这50名同学捐款的众数为________ 元,中位数为________ 元。
(2)
求这50名同学捐款的平均数。
(3)
该校共有600名学生参与捐款,请估计该校学生的捐款总数。
24. (10分) (2019八上·郑州期中) 某种型号汽车油箱容量为40升,每行驶100千米耗油10升.设一辆加满油的该型号汽车行驶路程为x(千米),行驶过程中油箱内剩余油量为y(升).
(1)求y与x之间的函数表达式;
(2)该辆汽车以80千米/时的速度从甲地出发开往距离甲地1050千米的B地,为了有效延长汽车使用寿命,厂家建议每次加油时,油箱内剩余油量不低于油箱容量的,按此建议,求该辆汽车最多行驶多长时间就需再一次加油?此次加油后,剩余路程至少还需再加几次油?
25. (10分)(2019·杭州模拟) 如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB
于点D,交AC于点E.
(1)求证:∠PCE=∠PEC;
(2)若AB=10,ED=,sinA=,求PC的长.
26. (15分)杜甫实验学校准备在操场边建一个面积为600平方米的长方形劳动实践基地.
(1)求实践基地的长y(米)关于宽x(米)的函数表达式;
(2)由于受场地限制,实践基地的宽不能超过20米,请结合实际画出函数的图象;
(3)当实践基地的宽是l5米时,实践基地的长是多少米?
参考答案一、选择题 (共16题;共32分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
二、填空题 (共4题;共4分)
17-1、
18-1、
19-1、
20-1、
三、解答题 (共6题;共72分)
21-1、21-2、21-3、21-4、
22-1、23-1、
23-2、
23-3、24-1、
24-2、25-1、
25-2、26-1、
26-2、26-3、。