2.3直线的参数方程2-x
直线的参数方程及应用

直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。
直线l上的点与对应的参数t是一一对应关系。
若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。
若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。
若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。
直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。
直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。
对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。
如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。
直线的参数方程(最全)

则 t 的几何意义:t=M0M
t>0
M 在 M0 的上方
t=0 M 与 M0 重合
t<0
M 在 M0 的下方
非标准形式 一般说来,t 不具有上述 几何意义
x x0 at
y
y0
bt
(t 为参数)
表示过定点(x0,y0),斜率
为 b 的直线的参数方程
a
例1
已知直线 L 过点 M0(4,0),倾为
(t为参数)
b ( a2 b2 t)
a2 b2
设: a = cos; b sin; a2 b2t t,则
a2 b2
a2 b2
x y
x0 y0
tcos(t为参数) tsin
当b 0时,t有上述的几何意义。
基础训练
1
直线
x y
2t 1
sin 200 t cos 200
直线的参数方程
2020/7/4
请同学们回忆:
直线的普通方程都有哪些?
点斜式: y y0 k(x x0) y kx b
两点式: y y1 x x1
y2 y1 x2 x1
x y 1 ab
一般式: Ax By C 0
法线式: Ax By C 0 (直线l的法向量(A,B))
t cos t sin
(t为参数)
思考
由M0M te,你能得到直线l的参数方程中
参数t的几何意义吗?
解: M0M te M0M te
y M
又 e是单位向量, e 1
M0M t e t
M0
所以,直线参数方程中
参数t的绝对值等于直
线上动点M到定点M0的 距离. |t|=|M0M|
直线方程几种形式

直线方程几种形式直线方程是平面解析几何中重要的概念之一,用于描述直线的位置和性质。
常见的直线方程有点斜式、一般式和截距式等形式。
下面将详细介绍这几种直线方程的特点和应用。
1.点斜式方程:点斜式方程是用直线上一点的坐标和该直线的斜率来表示的。
设直线上一点为P(x_1,y_1),直线的斜率为k,则直线的点斜式方程为:y-y_1=k(x-x_1)。
点斜式方程可以方便地确定直线上的点,并且可以通过斜率进行直线的倾斜性质分析。
然而,该方程形式并不直观,不易于观察直线在坐标系中的位置和性质。
2.一般式方程:一般式方程是用直线的一般表达式来表示的。
设直线的一般表达式为Ax+By+C=0,则直线的一般式方程为:Ax+By+C=0。
一般式方程可以直观地展示直线在坐标系中的位置和性质,例如通过A、B的符号确定直线的方向,通过C的值确定直线与坐标轴的交点等。
然而,一般式方程的形式比较复杂,不易于进行计算和分析。
3.截距式方程:截距式方程是用直线在坐标轴上的截距来表示的。
设直线与x轴的交点为A(a,0),与y轴的交点为B(0,b),则直线的截距式方程为:x/a+y/b=1截距式方程直观地描述了直线与坐标轴的交点,可以方便地确定直线在坐标系中的位置和性质。
截距式方程还可以用于求解两条直线的交点,或者通过截距的比值分析直线的相对位置关系。
除了上述常见的直线方程形式,还有一些其他的特殊情况和应用形式,如:1.对称式方程:对称式方程是直线关于坐标轴或者一些点对称的表达式。
例如,直线关于x轴对称时,方程为y = -mx + c;直线关于y轴对称时,方程为x= my + c;直线关于原点对称时,方程为y = mx。
2.参数方程:参数方程是用方程组的形式来表示直线的方程。
设直线上一点的坐标为P(x,y),则直线的参数方程为:x = x_1 + at,y = y_1 + bt,其中t是参数。
参数方程可以方便地表达直线上各个点的坐标,特别适用于描述直线的运动轨迹和变化规律。
第二讲 三直线的参数方程

金品质•高追求
我们让你更放心!
返回
◆数学•选修4-4•(配人教A版)◆
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 , 4 3 3 4 设直线的倾斜角为 α,则 tan α= ,sin α= ,cos α= . 4 5 5 又∵点 P(1,1)在直线 l 上, 4 x=1+5t, ∴直线 l 的参数方程为 (t 为参数). 3 y=1+5t ∵3×5-4×4+1=0,∴点 M 在直线 l 上. 4 由 1+ t=5,得 t=5,即点 P 到点 M 的距离为 5. 5 ∵点 N 不在直线 l 上,∴根据两点之间的距离公式,可 得|PN|= 1+22+1-62= 34. 返回 金品质•高追求 我们让你更放心!
金品质•高追求
我们让你更放心!
返回
◆数学•选修4-4•(配人教A版)◆ 解析:曲线C的极坐标方程ρ=4sin θ可化为ρ2=4ρsin θ,其
直角坐标方程为x2+y2-4y=0,即x2+(y-2)2=4. 直线l的方程为x-y-4=0. 所以,圆心到直线l的距离d= |-2-4|=3 2.
2
所以,|PQ|的最小值为3 2-2.
返回
◆数学•选修4-4•(配人教A版)◆
(2)如图所示,点 B 在 l1 上,只要求出点 B 对应的参数值 t,则|t|就是点 B 到点 A 的距离. 把 l1 的参数方程代入 l2 的方程中,得 1 3 - 4 + t - 2 - t +1=0, 2 2 3+ 1 即 t= 7 , 2 14 ∴t= =7( 3-1). 3+1 ∵t 为正值,∴|AB|=7( 3-1).
金品质•高追求
我们让你更放心!
返回
◆数学•选修4-4•(配人教A版)◆
直线参数方程标准形式

直线参数方程标准形式直线是平面几何中的基本概念,而直线的参数方程标准形式是描述直线的一种重要方式。
在学习直线参数方程标准形式之前,我们首先要了解直线的一般方程和点斜式方程,这样才能更好地理解参数方程标准形式的概念和应用。
一、直线的一般方程和点斜式方程。
1. 直线的一般方程。
直线的一般方程通常表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不全为零。
这种形式的方程可以表示任意一条直线,但并不直观,不利于直线的直观理解和运用。
2. 直线的点斜式方程。
直线的点斜式方程通常表示为y y1 = k(x x1),其中(x1, y1)为直线上的一点,k 为直线的斜率。
点斜式方程直观地表示了直线的斜率和一点坐标,更容易理解和使用。
二、直线参数方程标准形式。
直线的参数方程标准形式是另一种描述直线的方式,它的形式为:x = x1 + at。
y = y1 + bt。
其中(x1, y1)为直线上的一点,a和b为参数。
直线的参数方程标准形式比点斜式方程更加灵活,可以更直观地描述直线的方向和位置。
三、直线参数方程标准形式的应用。
1. 直线的平行和垂直关系。
通过直线的参数方程标准形式,我们可以很容易地判断两条直线是否平行或垂直。
如果两条直线的参数a和b分别成比例,那么它们平行;如果两条直线的参数a和b的乘积为-1,那么它们垂直。
2. 直线的交点。
两条直线的交点可以通过它们的参数方程标准形式求解。
将两条直线的参数方程联立,解出交点的坐标,即可得到它们的交点。
3. 直线的平移和旋转。
直线的参数方程标准形式可以很方便地描述直线的平移和旋转。
对参数a和b进行变换,即可得到平移或旋转后的直线方程。
四、总结。
直线的参数方程标准形式是描述直线的一种重要方式,它比一般方程和点斜式方程更加灵活和直观。
通过参数方程标准形式,我们可以更方便地判断直线的性质、求解直线的交点,以及描述直线的平移和旋转。
因此,掌握直线参数方程标准形式对于理解和运用直线的性质具有重要意义。
高中数学2-3直线的参数方程

∵l1与l2垂直,∴2k+2=0,∴k=-1.
课前自主学习
课堂讲练互动
教材超级链接
点击2 参数方程与极坐标方程的综合问题
辽宁高考)已知 P 为半圆 【例2】 (2010·
x=cos C: y=sin
θ , (θ 为参 θ
数,0≤θ≤π )上的点, A 的坐标为(1,0),O 为坐标原点, 点 π 点 M 在射线 OP 上,线段 OM 与 C 的弧 AP 的长度均为 . 3
课前自主学习
课堂讲练互动
教材超级链接
(2)由于 AB 的中点为 M, → → 则AM=MB, → → → → ∴FM-FA=FB-FM, → → → =1(FA+FB), 即FM 2 → → → =1(FA+FB)=t1+t2e, 又FM 2 2 t1+t2 故点 M 对应的参数为 = 5, 2 t1+t2 ∴M(3,2),|FM|= 2 = 5.
为常数,t 为参数).
课前自主学习 课堂讲练互动
教材超级链接
π 【变式1】 直线 l 经过点 M0(1,5),倾斜角为 ,且交直线 x-y 3 -2=0 于 M 点,则|MM0 |=________. 1 x=1+2t, 解析 由题意可得直线 l 的参数方程为 y=5+ 3t 2 (t 为参数), 1 3 代入直线方程 x-y-2=0,得 1+ t-5+ t-2=0,解得 2 2
教材超级链接
2.在直线参数方程中,如果直线上的点 M1、M2 所对应的 参数值分别为 t1 和 t2,则线段 M1M2 的中点所对应的参 1 数值为 t 中 = ·(t1+t2). 2
【思维导图】
课前自主学习
课堂讲练互动
教材超级链接
题型一
直线的参数方程

3
直线参数方程可以用于解决一些与直线相关的 解析几何问题,如交点、距离等。
在物理中的应用
在力学中,直线参数方程可以用于描述物体的运 动轨迹。
在电磁学中,直线参数方程可以用于描述电流和 电压的关系。
在光学中,直线参数方程可以用于描述光的传播 路径。
在计算机图形学中的应用
在计算机图形学中 ,直线参数方程可 以用于绘制直线和 曲线。
在计算机图形学中,直线的参数方程可以用来描述物体的形状和轮廓。例如,在 绘制一条直线时,可以使用直线的参数方程来表示。这种方程形式可以方便地表 示出直线的方向和位置,并且可以方便地进行绘制和控制。
直线参数方程与三维建模
在三维建模中,直线的参数方程可以用来描述物体的表面和边缘。例如,在创建 一个立方体或球体时,可以使用直线的参数方程来表示。这种方程形式可以方便 地表示出物体的形状和轮廓,并且可以方便地进行修改和控制。
THANK YOU.
用点斜式推导直线参数方程
总结词
利用点斜式的直线方程,推导出直线参数方程的表达式 。
详细描述
已知直线通过点 $P_{1}(x_{1}, y_{1})$ 和斜率为 $k$, 则直线的点斜式方程为 $y - y_{1} = k(x - x_{1})$。为 了将其转化为参数方程形式,引入参数 $t$ 并令 $y y_{1} = t$,则 $x = x_{1} + \frac{t}{k}$
直线参数方程的特殊形式包括
当 θ = π/2 时,直线垂直于 y 轴 ,t 为任意实数;
直线参数方程的性质还包括:通 过改变 t 的值可以得到直线上不 同的点,t 的取值范围为全体实数 。
02
直线参数方程的应用
在解析几何中的应用
直线的参数方程ppt课件

返回首页
下一页
5.化直线l的参数方程
x=-3+t, y=1+ 3t
(t为参数)为普通方程,并求倾斜角,
说明|t|的几何意义.
上一页
返回首页
下一页
【解】 由xy= =- 1+3+3tt, 消去参数t,得
直线l的普通方程为 3x-y+3 3+1=0.
故k= 3=tan α,即α=π3,
几何意义为|
→ M0M
|=4,且
→ M0M
与e方向相反(即点M在直线l上点M0的左下
方).
上一页
返回首页
下一页
1.一条直线可以由定点M0(x0,y0),倾斜角α(0≤α<π)惟一确定,直线上
的动点M(x,y)的参数方程为
x=x0+tcos y=y0+tsin
α, α
(t为参数),这是直线参数方程的
上一页
返回首页
下一页
【解析】 将xy= =12- +23tt 化为y=-32x+72, ∴斜率k1=-32, 显然k=0时,直线4x+ky=1与上述直线不垂直, ∴k≠0,从而直线4x+ky=1的斜率k2=-4k. 依题意k1k2=-1,即-4k×-32=-1, ∴k=-6. 【答案】 -6
上一页
θ, θ
(θ为参数)交于A,B两点,求|PA|·|PB|.
上一页
返回首页
下一页
【解】 (1)直线l的参数方程为
x=-3+tcos56π=-3- 23t, y=3+tsin56π=3+2t
(t为参数).
上一页
返回首页
下一页
(2)把曲线C的参数方程中参数θ消去,得4x2+y2-16=0. 把直线l的参数方程代入曲线C的普通方程中,得 4-3- 23t2+3+12t2-16=0, 即13t2+4(3+12 3)t+116=0. 由t的几何意义,知 |PA|·|PB|=|t1·t2|, 故|PA|·|PB|=|t1·t2|=11136.