人教版七年级数学上册 一元一次方程易错题(Word版 含答案)
七年级数学一元一次方程的解法易错点测试(含答案)

七年级数学一元一次方程的解法易错点测试试卷简介:主要考察的是关于一元一次方程的解法中有关去分母、去括号容易出错的步骤,以及分母是小数的情况。
学习建议:掌握一元一次方程的解题步骤,熟练掌握去分母时要注意找准最小公倍数、每一项都要乘、分数线有括号作用等一、单选题(共4道,每道25分)1.方程解法中括号里面应填入()解:方程两边同时乘以6得12-3(3x-1)=21+2(x-14) 去括号得()移项、合并同类项得-11x=-22 系数化为1得x=2A.12-9x-3=21+2x-14B.12-9x+3=21+2x-28C.12-9x-1=21+2x-14D.12-9x+3=21+2x-14答案:B解题思路:解:方程两边同时乘以6得12-3(3x-1)=21+2(x-14)去括号得12-9x+3=21+2x-28移项、合并同类项得-11x=-22系数化为1得x=2易错点:去括号,括号前面是“-”时易错试题难度:三颗星知识点:解一元一次方程2.A.B.C.D.答案:B解题思路:去分母,得3(x-1)-4(2x+5)=2(5x-7)-12,去括号,移项得-15x=-26+23,-15x=-3,系数化为1,得x=易错点:去分母,系数化为1试题难度:三颗星知识点:解一元一次方程3.把方程中的分母化为整数,正确的是()A.B.C.D.答案:D解题思路:分子分母都乘以10,,分子分母都乘以100,易错点:不会给方程通分试题难度:三颗星知识点:解一元一次方程4.A.B.C.D.1答案:D解题思路:首先把每个分式变形,左边第一个式子的分子分母同乘以20,第二个分式分子分母同乘以5,第三个分式分子分母同乘以10,可得,30x-10-(25x-4)=12-16x+3,去括号,移项,合并同类项得,21x=21,从而解得,x=1.易错点:分式扩大倍数与去分母混淆试题难度:四颗星知识点:解一元一次方程。
最新七年级一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。
(1)求饮用水和蔬菜各有多少件。
(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。
已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。
(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。
该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.4.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.5.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【答案】(1)解:如果甲、乙两单位联合起来购买门票需40×102=4080(元),则比各自购买门票共可以节省:5500﹣4080=1420(元)(2)解:设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人.依题意得:50x+60×(102﹣x)=5500,解得:x=62.则乙单位人数为:102﹣x=40.答:甲单位有62人,乙单位有40人(3)解:方案一:各自购买门票需50×60+40×60=5400(元);方案二:联合购买门票需(50+40)×50=4500(元);方案三:联合购买101张门票需101×40=4040(元);综上所述:因为5400>4500>4040.故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱【解析】【分析】(1)运用分别购票的费用和﹣联合购票的费用就可以得出结论;(2)设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人,根据“如果两单位分别单独购买门票,一共应付5500元”建立方程求出其解即可;(3)有三种方案:方案一:各自购买门票;方案二:联合购买门票;方案三:联合购买101张门票.分别求出三种方案的付费,比较即可.6.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案)。
《易错题》七年级数学上册第三单元《一元一次方程》-选择题专项(含解析)

一、选择题1.已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b =D .2a b = D 解析:D【分析】根据等式的性质判断即可.【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确;B 、因为a=2b ,所以a-m=2b-m ,正确;C 、因为a=2b ,所以2a =b ,正确; D 、因为a=2b ,当b≠0,所以a b =2,错误; 故选D .【点睛】此题考查比例的性质,关键是根据等式的性质解答.2.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( )A .32+x =2(28−x)B .32−x =2(28−x)C .32+x =2(28+x)D .2(32+x)=28−x A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x ).故答案为:32+x=2×(28-x ),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.3.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m B 解析:B设计划注入水的时间为x 小时,根据“比预定的时间提前了10分钟完成注水任务”列出方程并解答.【详解】设计划注入水的时间为x 小时,依题意得:()20105002+5001+2025006060x x ⎛⎫⨯⨯---= ⎪⎝⎭%, 解得x=5.5×500=2500,即计划注入水的体积为2500立方米.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找到等量关系列出方程. 4.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n A 解析:A【分析】要比较m 、n 、k 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【详解】解:(1)∵|2x−3|+m =0无解,∴m >0.(2)∵|3x−4|+n =0有一个解,∴n =0.(3)∵|4x−5|+k =0有两个解,∴k <0.∴m >n >k .故选:A .【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.5.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2 B .ab ﹣2x 2 C .ab+4x 2 D .ab ﹣4x 2D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab ,4个小正方形的面积为4x 2,∴剩余部分的面积为:ab-4x 2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键. 6.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D A解析:A【分析】 设运动x 秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出x 的值,将其代入2x 中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x 秒后,乌龟和兔子第2020次相遇,依题意,得:2x +6x =2×4×2020,解得:x =2020,∴2x =4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A .故选:A .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 7.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ D 解析:D【分析】方程两边每一项都乘以6即可得.【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2),故选D.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.8.若4a﹣9与3a﹣5互为相反数,则a2﹣2a+1的值为()A.1 B.﹣1 C.2 D.0A解析:A【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A.考点:1.解一元一次方程;2.相反数;3.代数式求值.9.若正方形的边长增加3cm,它的面积就增加39cm,则正方形的边长原来是()A.8cm B.6cm C.5cm D.10cm C解析:C【解析】试题分析:原来正方形的边长为x,则=39,解得:x=5.考点:一元一次方程的应用10.下列方程中,其解为﹣1的方程是()A.2y=﹣1+y B.3﹣y=2 C.x﹣4=3 D.﹣2x﹣2=4A解析:A【分析】分别求出各项中方程的解,即可作出判断.【详解】解:A、方程2y=-1+y,移项合并得:y=-1,符合题意;B、方程3-y=2,解得:y=1,不合题意;C、方程x-4=3,移项合并得:x=7,不合题意;D、方程-2x-2=4,移项合并得:-2x=6,解得:x=-3,不合题意,故选A.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣6D解析:D【详解】因为xΔy=xy+x+y,且2Δm=-16,所以2m+2+m=-16,解得m=- 6,故选D.考点:1.新定义题2.一元一次方程.12.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3B解析:B【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.13.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.44C解析:C【解析】试题设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C.14.下列判断错误的是()A.若a=b,则a−3=b−3B.若a=b,则7a−1=7b−1C.若a=b,则ac2+1=bc2+1D.若ac2=bc2,则a=b D解析:D 【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则a c 2+1=bc 2+1,正确; D. 当c=0时,若ac 2=bc 2,a 就不一定等于b ,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.15.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62B 解析:B【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可.【详解】设个位上的数为x ,则十位数字为()31x +,由题意得:x +(3x +1)=9,解得:x =2,十位数字为:6+1=7,这个两位数是:72.故选:B.【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.16.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A .()182812x x -=B .()1828212x x -=⨯C .()181412x x -=D .()2182812x x ⨯-= B 解析:B【分析】若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.17.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元C解析:C【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.18.下列方程变形一定正确的是()A.由x+3=-1,得x=-1+3 B.由7x=-2,得x=-7 4C.由12x=0,得x=2 D.由2=x-1,得x=1+2D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.19.把方程10.58160.60.9x x-++=的分母化为整数,结果应为()A.1581669x x-++=B.10105801669x x-++=C.101058016069x x-+-=D.15816069x x-++= B解析:B【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断.【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B .【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.20.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x = D解析:D【分析】根据解一元一次方程的步骤计算,并判断.【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+,移项、合并同类项得5x =,故正确.故选:D .【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号. 21.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元B解析:B【分析】设每件的成本价为x 元,列方程求解即可.【详解】设每件的成本价为x元,0.8(140%)15x x⨯+=+,解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 22.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米B解析:B【解析】【分析】相向而行,2小时相遇,那么相应的等量关系为:甲2小时走的路程+乙2小时走的路程=170,把相关数值代入即可求解.【详解】解:乙每小时行x千米,甲每小时走(x+5)千米,则2x+2(x+5)=170,解得x=40,选B.【点睛】本题主要考查用一元一次方程解决行程问题中的相遇问题;得到甲乙行程和的等量关系是解决本题的关键.23.下列变形中,正确的是()A.2x+6=0变形为2x=6B.x+32=2+x变形为x+3=4+2xC.−2(x−4)=2变形为x−4=1D.−x+12=12变形为−x+1=1B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, x+32=2+x两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, −2(x−4)=2两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, −x+12=12两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.24.如图所示,两人沿着边长为90 m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65 m/min的速度、乙从B点以75 m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DCC.AD D.AB C解析:C【分析】设乙x分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.25.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A.①②③B.①③C.①②D.②③B解析:B【分析】根据等式的性质,可得答案.【详解】因为最左边天平是平衡的,所以2个球的重量=4个圆柱的重量;①中一个球的重量=两个圆柱的重量,根据等式的性质,此选项正确;②中,一个球的重量=1个圆柱的重量,错误;③中,2个球的重量=4个圆柱的重量,正确;故选B .【点睛】本题的实质是考查等式的性质,先根据①判断出2个球的重量=4个圆柱的重量,再据此解答.26.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= A 解析:A【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A .【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.27.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元B解析:B【分析】设未知数,根据题意中的等量关系列出方程,然后求解.【详解】解:设每支铅笔的标价是x 元,根据题意得:20×(1-80%)x=1.6解得x=0.4故选:B .【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%. 28.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km 其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②B 解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 29.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=18B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18, 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.30.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A.95元B.90元C.85元D.80元B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.。
七年级数学一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.(公园门票价格规定如下表:1)班人数较少,不足50人,(2)班超过50人,但不足100人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.3.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。
最新七年级数学上册一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
(易错题)初中数学七年级数学上册第三单元《一元一次方程》测试题(包含答案解析)(1)

一、选择题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2 2.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个3.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 4.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018 B .2018- C .1009- D .10095.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 6.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- 7.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 8.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 9.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是 10.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- 11.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .73812.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46二、填空题13.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.14.化简:226334x x x x _________. 15.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列) 16.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.17.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.18.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.19.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.20.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.三、解答题21.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 22.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.23.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.24.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条? 25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.2.A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式. 3.C解析:C【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.4.C解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()212m m+-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()() 4424419892+-=,当m=45时,()() 4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.6.C解析:C【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x2-2x+1)=3x-2-x2+2x-1=253x x-+-.故选:C.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.7.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x+是整式,故正确;B.11x+是分式,故错误;C. 1÷x是分式,故错误;D.1xx+是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.8.D解析:D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A、x3与x2不是同类项,不能合并,故A错误;B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.9.C解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】式子5xx-分母中含有未知数,因而不是整式,故A、B错误,是代数式,故C正确.故选:C.【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.10.B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a-+的和是32a-,∴这个多项式为:(3a-2)-(a2-2a+1)=3a-2-a2+2a-1=-a2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 11.B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.12.C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题13.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.14.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 15.【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.16.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.17.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x 当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.18.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数. 20.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.三、解答题21.132 【解析】 试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-,当12,2x y =-=-时,原式174.22=-= 22.(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】 此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.23.(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab ,答:绿化的面积是(5a 2+3ab )平方米;(2)当a =20,b =12时5a 2+3ab =5×202+3×20×12=2000+720=2720,答:当a =20,b =12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 24.(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.25.(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.26.化简后为32y ,与x 无关.【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.。
七年级一元一次方程易错题(Word版 含答案)

3.如图 1,O 为直线 AB 上一点,过点 O 作射线 OC,∠ AOC=30°,将一直角三角板 (∠ M=30°)的直角顶点放在点 O 处,一边 ON 在射线 OA 上,另一边 OM 与 OC 都在直线 AB 的上方.
(1)将图 1 中的三角板绕点 O 以每秒 3°的速度沿顺时针方向旋转一周.如图 2,经过 t 秒 后,OM 恰好平分∠ BOC.①求 t 的值;②此时 ON 是否平分∠ AOC?请说明理由;
(3)解:由题意得 200x+7600=7800, 解得 x=1. 符合实际意义,
答: 有可能 ,杭州厂运往南昌的机器为 1 台.
【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运 费),列式后化简即可。 (2)根据(1)中的表达式等于 8400,列方程并求解。 (3)根据(1)中的表达式等于 7800,列方程并求解,若方程的解符合实际意义,则有可 能,否则就不可能。
∠ CON=∠ COM=45°,又三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度 旋转,设∠ AON 为 3t,∠ AOC 为 30°+6t,根据∠ AOC﹣∠ AON=45°得出含 t 的方程,求解得 出 t 的值 ; ( 3)根据∠ AON+∠ BOM=90°,∠ BOC=∠ COM,及三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度旋转,故设∠ AON 为 3t,∠ AOC 为 30°+6t,从而得到∠ COM
【答案】 (1)
(2)解:设
=m,方程两边都乘以 100,可得 100×
由
=0.7373…,可知 100×
即 73+x=100x
【精选】人教版七年级上册数学 一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.(公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校七年级(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人,(2)班超过50人,但不足100人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.2.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,(1)求,的值;(2)若线段以每秒3个单位的速度,向右匀速运动,当 ________时,点与点重合,当 ________时,点与点重合;(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.【答案】(1)解:由题意得:∵∴,∴,(2)8;(3)解:秒后,点表示的数为,点表示的数为∵重合∴解得 .∴线段从开始运动到完全通过所需要的时间是6秒(4)解:①当点在的左侧时∵∴解得②当点在的右侧时∵∴解得:所以当或时,【解析】【解答】(2)若线段以每秒3个单位的速度,则A点表示为-10+3t, B点表示为-8+3t,点与点重合时,-10+3t=14解得t=8点与点重合时,-8+3t=20解得t=故填:8;;【分析】(1)由与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点在的左侧时②当点在的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.3.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.4.用“※”定义一种新运算:对于任意有理数a和b,规定a※b=ab2+2ab+a.如:1※2=1×22+2×1×2+1=9(1)(﹣2)※3=________;(2)若※3=16,求a的值;(3)若2※x=m,( x)※3=n(其中x为有理数),试比较m,n的大小.【答案】(1)-32(2)因为※3= ×32+2× ×3+ =8a+8,所以8a+8=16,解得a=1;(3)根据题意,得m=2x2+2×2x+2=2x2+4x+2,n= x×32+2× x×3+ x=4x,则m﹣n=2x2+2>0,所以m>n.【解析】【解答】解:(1)原式=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32,故答案为:﹣32.【分析】(1)根据新运算展开,再求出即可;(2)先根据新运算展开,再解一元一次方程即可;(3)先根据新运算展开,再求出m、n,即可得出答案.5.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.6.阅读下列例题,并按要求回答问题:例:解方程.解:①当时,,解得;②当时,,解得.所以原方程的解是或.(1)以上解方程的方法采用的数学思想是________.(2)请你模仿上面例题的解法,解方程:.【答案】(1)分类讨论(2)解:①当时,,解得,②当时,,解得,∴原方程的解是或.【解析】【分析】(1)材料中是分①、②两种情况来解答题目,明确的体现了“分类讨论”的数学思想;(2)模仿例题,分两种情况分别求解即可.7.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.8.光华中学在运动会期间准备为参加前导队的同学购买服装(前导队包括花束队、彩旗队和国旗队)其中花束队有60名同学,彩旗队有30名同学,国旗队有10名同学,已知花束队的服装与彩旗队的服装单价比为4:3,国旗队的服装单价比彩旗队的服装单价多5元。
(1)若购买花束队和国旗队的服装一共花去6800元,求每个队服装的单价分别是多少元?(2)国庆来临之际恰逢商店搞活动,有以下三种优惠方案:A方案:花束队的服装超过2000元的部分打九折,其它两队按原价出售;B方案:彩旗队的服装买五送一,其它两队按原价出售;C方案:国旗队的服装打三折,其它两队按原价出售;请你帮助学校计算一下选择哪种方案购买前导队的服装合算?(3)在(2)的条件下商店卖出这些服装共获利20%,请你算一算商店购进这些服装的成本是多少元?【答案】(1)解:设花束队的服装单价为4x元,则彩旗队服装单价为3x元,则国旗队服装单价为3x+5.根据题意解得x=25,则4x=100, 3x=75,3x+5=80故花束队服装单价100元,彩旗队的服装单价75元,国旗队的服装单价80元.(2)解:A方案优惠的费用为:元B方案优惠的费用为:6×75=450元C方案优惠的费用为:80×10×0.7=560元.因为C方案优惠的费用最多,故答案为:择C方案比较划算.(3)解:选择C费用时,花费元.设购进这些服装的成本是a元,则根据题意解得a=7075元.商店购进这些服装的成本是7075元.【解析】【分析】(1)由花束队的服装与彩旗队的服装单价比为4:3,可设花束队的服装单价为4x元,则彩旗队服装单价为3x元,根据购买花束队服装费用+国旗队的服装费用=6800,列出方程,解出方程即可.(2)根据优惠方案,分别求出A、B、C优惠的费用,然后比较即可.(3)设购进这些服装的成本是a元,根据成本×(1+20%)=C方案的费用,列出方程,求出a值即可.9.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2。