循环流化床锅炉的结构是什么

合集下载

循环流化床锅炉结构

循环流化床锅炉结构

循环流化床锅炉结构循环流化床锅炉是一种高效、环保的燃煤锅炉,其独特的结构设计和工作原理使其在煤燃烧过程中能够有效减少污染物排放,提高燃烧效率。

本文将介绍循环流化床锅炉的结构和工作原理。

一、循环流化床锅炉的结构循环流化床锅炉由炉膛、集渣器、换热面、循环系统和控制系统等组成。

1. 炉膛:炉膛是燃烧煤粉和空气的主要区域,其内部由燃烧区、分离区和循环区组成。

燃烧区是煤粉与空气混合燃烧的地方,燃烧温度高达1000摄氏度以上。

分离区是将燃烧后的烟气和固体颗粒分离,以减少烟气中的固体颗粒物质。

循环区是固体颗粒物质再次参与燃烧的地方。

2. 集渣器:集渣器用于收集和排除循环床中的灰渣,避免灰渣对换热面的影响。

集渣器通常位于炉膛的下部,通过灰渣排出口将灰渣排除。

3. 换热面:换热面是将炉膛中产生的高温烟气中的热能传递给水蒸气的部分,包括过热器、再热器和空气预热器等。

过热器将高温烟气中的热能传递给水蒸气,使其温度升高;再热器将再次加热的烟气传递给水蒸气,提高其温度和压力;空气预热器则通过将燃烧前的空气与烟气进行热交换,提高燃烧效率。

4. 循环系统:循环系统是循环流化床锅炉的核心部分,包括循环器、循环泵和固体回收器等。

循环器用于将固体颗粒物质循环注入炉膛,保持循环床的稳定性;循环泵则负责将固体颗粒物质从固体回收器中抽出,并注入循环器;固体回收器用于收集和回收固体颗粒物质,防止其流失。

5. 控制系统:控制系统是循环流化床锅炉的智能化管理部分,包括燃烧控制系统、水位控制系统和温度控制系统等。

燃烧控制系统负责调节煤粉和空气的供给,保持炉膛内的燃烧稳定;水位控制系统用于控制锅炉水位,保证锅炉的安全运行;温度控制系统则负责监测和调节锅炉的温度,保证烟气的排放符合环保要求。

二、循环流化床锅炉的工作原理循环流化床锅炉的工作原理是通过将煤粉和空气混合在炉膛中进行燃烧,形成一种流化状态的床层。

在燃烧过程中,固体颗粒物质不断循环注入炉膛,与煤粉和空气一起参与燃烧,使燃烧效率更高。

循环流化床锅炉的构造及工作原理

循环流化床锅炉的构造及工作原理
布风板上安装风帽、砌筑隔 热层。
隔热层分三层砌筑: 密封层 32mm 绝热层 60mm 不大于135mm 耐火层 不大于35mm
布风板的型式
风帽
风帽的作用:是使进入流化 床的空气产生第二次分流并 具有一定的动能,以减少初 始气泡的生成和使底部粗颗 粒产生强烈的扰动,避免粗 颗粒的沉积,减少冷渣含碳 损失。风帽还有产生足够的 压降、均匀布风的作用。
正常燃烧时,在一次风机的作用下,具有一定数量和动 能的空气,经床下启动燃烧器、水冷风室、床上风帽,将床 上物料(煤+炭火+返料灰+石灰石)吹起来,较大的颗粒在 其自身重力作用下向下跌落,与吹起来的粒子发生碰撞、产 生破碎,不断更新粒子的燃烧外表面,使燃烧即快又好。在 上升的火焰和炭火流中,既有分子团的不断形成与扩散,又 有物料的强烈碰撞与返混,使燃烧的炭火流就像金色的喷泉 充满整个炉膛空间。由于流化速度比较高,离开炉膛的烟气 要带走一定数量的灰,经过旋风分离器、上料腿、回料阀、 下料腿,再一次回到床上参加流化、燃烧、传热,顾名思义 ,叫循环流化床锅炉。
回料阀的阻 力:
回料阀空床阻力4000帕-5000帕左右
回料阀的内部工作状 态:
回料器内的两个状态(松 动、流化)
CFB锅炉燃烧过程中的七个状态
• 炉膛浓相区--------紊流状态 • 炉膛稀相区--------高速流化状态 • 旋风分离器--------旋转状态 • 上料腿------------移动状态(不是流动) • 回料器------------鼓泡状态+流化状态 • 下料腿------------流动状态
罗茨风机出力可自动 调节,返料灰多风压自动 加大,返料灰少风压自动 减小。
返料风机采用的运行 方式:

循环流化床锅炉的主要设备要点、看

循环流化床锅炉的主要设备要点、看

循环流化床炉膛结构形状示意图
(a)双炉膛 (b)裤衩腿 ( c ) 有开口的分割
墙 (d)主、副床
( e ) 有埋管的差速

二、布风装置
(一)风帽式布风装置
对布风装置的性能要求是:
1 能均匀合理地分配气流,避免在布风板 上面形成停滞区。
2 能使布风板上的床料与空气产生强烈的 扰动和混合。
3 具有合理的阻力,起到稳定床压和均匀 流化的作用。
结构形式主要有小孔径风帽、大孔径风帽。
图6-4 定向风帽
图6-5 钟罩式风帽
3.耐火保护层
风帽插入花板之后,花板自下而上 涂上密封层、绝热层和耐火层,直到距 风帽小孔中心线以下15~20mm处。这一 距离不宜超过20mm,否则运行中容易结 渣,但也不宜离风帽小孔太近,以免堵 塞小孔。
图6-7 布风板保护层 1-风帽;2-耐火层;3-绝热层;4-密封层;5-花板
角与涡流区。
流化床的风室主要有两种类型:分流式风室和
等压风室。
图6-8 等压风室 1-风室; 2-布风板
三、物料分离器
物料分离器有多种形式,最常用的是旋风分离 器。气固分离原理同前所述。
(一)高温旋风分离器
高温旋风分离器使含灰气流在筒内快速旋转, 固体颗粒在离心力和惯性力的作用下,逐渐贴近 壁面并向下呈螺旋运动,被分离下来;烟气和无 法分离下来的细小颗粒由中心筒排出,送入尾部 对流受热面。
典型结构有:
1 耐火材料制成的高温旋风分离器。
2 水冷、汽冷高温旋风分离器。
图6-11 高温绝热式旋风分离器的筒体
图6-12 水冷式高温旋风分离器
四、飞灰回送装置
飞灰回送装置是将分离下来的固体颗粒 送回炉膛的装置,通常称为返料器。返 料 器的主要作用是将分离下来的灰由压力 较 低的分离器出口输送到压力较高的燃烧 室 ,并防止燃烧室的烟气反窜进入分离器。对 非灰回送装置的基本要求:

循环流化床锅炉机组节能降耗措施

循环流化床锅炉机组节能降耗措施

循环流化床锅炉机组节能降耗措施循环流化床锅炉在工作中是流态方式,其燃烧温度一般保持在850℃—900℃,特点在于工作效率很高,并且燃碳率极高,燃料适应性比较广。

尤其是锅炉造价低于煤粉炉,是一种环保型的绿色锅炉。

但是因为循环流化床锅炉的辅机电耗比较大,功率也比较大,致使厂电率较高,浪费了很多资源,这样就影响了企业的经济效益。

在这种情况下需要对机组进行节能降耗方面的考虑,让用电率和供电煤耗都可以降低,机组运行更加经济和高效。

因此,对循环流化床锅炉机组启动节能降耗做分析有一定现实意义。

本文先对循环流化床锅炉结构做简析,然后在设备改造、锅炉运行调整与汽机运行调整基础上,详细分析和阐述循环流化床锅炉机组节能降耗措施。

标签:循环流化床锅炉机组;节能降耗一、循环流化床锅炉结构循环流化床锅炉炉膛温度要比一般煤粉炉低,炉膛内气固两相混合物对水冷壁的传热系数比煤粉炉大的多,可大幅节省受热面的金属耗量。

锅炉的炉膛底部位置,是浓度与传热系数最大的部分,在炉膛高度的提升下逐渐减小,也就是热流曲线最大值集中在底部。

这方面特点让炉膛高热密度位置正好处在炉膛下部部分,这样可以解决炉膛中热流曲线过高的问题。

所以,循环流化床锅炉中热流分布可以便于对水冷壁金属温度管控。

循环流化床锅炉使用的是单炉膛、单布风板结构,并且有很大宽深比,此结构利于加强前后墙二次风穿透性,从而达到了通过合理的二次风配比,减少炉膛中心缺氧和控制氮氧化物排放。

锅炉使用前后墙是为了保障炉内热量平衡与减少单个给煤装置故障时,对炉内热平衡的影响。

二、循環流化床锅炉机组节能降耗(一)设备改造要想实现锅炉机组启动节能降耗,就需要对机组设备做优化和改善。

比如在除尘器后的烟道内增加低温省煤器,在各种锅炉的工作中,排烟热损失是最大的。

而产生排烟热损失的关键就在于排烟温度,排烟温度每上升12到15℃,排烟热损失会增加1%。

而通过增加低温省煤设备,能够把排烟温度急速降至105℃,可见节能效果非常突出。

#循环流化床锅炉操作手册

#循环流化床锅炉操作手册

第一章、循环流化床锅炉的结构及系统流程简述1、概述中原大化集团50万吨甲醇项目动力站三台锅炉是由济南锅炉集团有限责任公司和中国科学院项目热能物理研究所联合开发的170t/h高温高压循环流化床锅炉。

锅炉采用单锅筒横置式,单炉膛自然循环,全悬吊结构,全钢架“∩”布置。

运转层标高8.5m,炉膛采用膜式水冷壁,锅炉中部是汽冷旋风分离器,尾部竖井烟道布置了多组蛇形管受热面和锅炉包覆管受热面及一、二次风空气预热器。

在燃烧系统中,给煤机将煤送入落煤管进入炉膛,锅炉燃烧所需空气分别由一、二风机提供。

一次风机送出的空气经一次风空气预热器预热后由左右两侧风道引入炉下左右水冷风室,通过水冷布风板上的风帽进入燃烧室。

二次风机送出的风经二次风空气预热器预热后,通过分布在炉膛前后墙上的二次风咀进入炉膛,补充空气,加强扰动与混合。

燃料和空气在炉膛内流化状态下掺混燃烧,并与受热面进行热交换。

炉膛内的烟气<携带大量未燃尽碳颗粒)在炉膛上部进一步燃烧放热。

离开炉膛并夹带大量物料的烟气经蜗壳式汽冷旋风分离器之后,绝大部分物料被分离出来,经返料器返回炉膛,实现循环燃烧。

分离后的烟气经转向室、高温过热器、低温过热器、省煤器、一、二次风空气预热器由尾部烟道排出。

因为采用了循环流化床燃烧方式,通过向炉内添加石灰石,能显著降低烟气中SO2的排放,采用低温和空气分级供风的燃烧技术能够显著抑制NOx的生成。

其灰渣活性好,具有较高的综合利用价值,因而它更能适合日益严格的国家环保要求。

1.1锅炉型号及参数锅炉型号: YG-170/9.8-M2额定蒸发量: 170T/H额定蒸汽压力: 9.81MPa额定给水温度:180℃1.2锅炉技术经济指标锅炉热效率: 90.6%脱硫效率<钙硫比≥2):≥80%燃料消耗量:22854 kg/h燃料颗粒度要求: ≤13mm<其中大于1mm以上颗粒重量比不小于50%)石灰石颗粒度要求:≤2mm排污率: 2%冷风温度:20℃一次风预热温度:150℃二次风预热温度:150℃排烟温度: 140℃锅炉初始排放烟尘浓度:≤15000mg/Nm3灰与渣的比率: 5.5 :4.5高温旋风分离器分离效率: 99.5%,dc50:80um噪声水平: <85dBA1.3 锅炉设计数据锅炉水阻力: 0.25 MPa锅炉蒸汽阻力: 1.5M锅炉烟气系统阻力: 3255Pa锅炉烟气量<a=1.5 t=140℃): 350000m3/h锅炉一次风阻力: 12960Pa锅炉二次风阻力: 8750Pa锅炉总风量<a=1.25 t=20℃): 188000m3/h一、二次风比为1:1或根据煤种调整为6:4锅炉宽度: 11000 mm锅炉深度: 20000mm锅炉高度: 45637mm锅炉水容积: 110m32、锅炉结构2.1炉膛水冷壁系统炉膛由膜式水冷壁组成,保证了炉膛的严密性。

循环流化床锅炉操作手册

循环流化床锅炉操作手册

第一章、循环流化床锅炉的结构及系统流程简述1、概述中原大化集团50万吨甲醇项目动力站三台锅炉是由济南锅炉集团有限责任公司和中国科学院工程热能物理研究所联合开发的170t/h高温高压循环流化床锅炉。

锅炉采用单锅筒横置式,单炉膛自然循环,全悬吊结构,全钢架“∩”布置。

运转层标高8.5m,炉膛采用膜式水冷壁,锅炉中部是汽冷旋风分离器,尾部竖井烟道布置了多组蛇形管受热面和锅炉包覆管受热面及一、二次风空气预热器。

在燃烧系统中,给煤机将煤送入落煤管进入炉膛,锅炉燃烧所需空气分别由一、二风机提供。

一次风机送出的空气经一次风空气预热器预热后由左右两侧风道引入炉下左右水冷风室,通过水冷布风板上的风帽进入燃烧室。

二次风机送出的风经二次风空气预热器预热后,通过分布在炉膛前后墙上的二次风咀进入炉膛,补充空气,加强扰动与混合。

燃料和空气在炉膛内流化状态下掺混燃烧,并与受热面进行热交换。

炉膛内的烟气(携带大量未燃尽碳颗粒)在炉膛上部进一步燃烧放热。

离开炉膛并夹带大量物料的烟气经蜗壳式汽冷旋风分离器之后,绝大部分物料被分离出来,经返料器返回炉膛,实现循环燃烧。

分离后的烟气经转向室、高温过热器、低温过热器、省煤器、一、二次风空气预热器由尾部烟道排出。

由于采用了循环流化床燃烧方式,通过向炉内添加石灰石,能显著降低烟气中SO2的排放,采用低温和空气分级供风的燃烧技术能够显著抑制NOx的生成。

其灰渣活性好,具有较高的综合利用价值,因而它更能适合日益严格的国家环保要求。

1.1锅炉型号及参数锅炉型号: YG-170/9.8-M2额定蒸发量: 170T/H额定蒸汽压力: 9.81MPa额定给水温度: 180℃1.2锅炉技术经济指标锅炉热效率: 90.6%脱硫效率(钙硫比≥2): ≥80%燃料消耗量: 22854 kg/h燃料颗粒度要求: ≤13mm(其中大于1mm以上颗粒重量比不小于50%)石灰石颗粒度要求: ≤2mm排污率: 2%冷风温度: 20℃一次风预热温度: 150℃二次风预热温度: 150℃排烟温度: 140℃锅炉初始排放烟尘浓度: ≤15000mg/Nm3灰与渣的比率: 5.5 :4.5高温旋风分离器分离效率: 99.5%,dc50:80um噪声水平: <85dBA1.3 锅炉设计数据锅炉水阻力: 0.25 MPa锅炉蒸汽阻力: 1.5 M锅炉烟气系统阻力: 3255Pa锅炉烟气量(a=1.5 t=140℃): 350000 m3/h锅炉一次风阻力: 12960Pa锅炉二次风阻力: 8750Pa锅炉总风量(a=1.25 t=20℃): 188000 m3/h一、二次风比为1:1或根据煤种调整为6:4锅炉宽度: 11000 mm锅炉深度: 20000 mm锅炉高度: 45637 mm锅炉水容积: 110 m32、锅炉结构2.1炉膛水冷壁系统炉膛由膜式水冷壁组成,保证了炉膛的严密性。

循环流化床锅炉结构原理及运行资料讲解

循环流化床锅炉结构原理及运行资料讲解一、循环流化床锅炉的结构1.炉膛:炉膛是循环流化床锅炉的燃烧区,通过给燃料和气体供应,将燃料在悬浮状态下燃烧,从而释放热能。

2.燃烧器:燃烧器是燃料进入循环床的通道,它将燃料和氧气混合并点燃,形成高温气流。

3.空气预热器:空气预热器用于对燃烧所需的空气进行预热,以提高燃烧效率,并减少燃料消耗。

4.循环床:循环床由大量细颗粒物质组成,可以是砂、矿渣等,它起到支撑燃料和增大反应面积的作用。

在循环床中,床料循环流动,保持悬浮状态,使燃料充分接触氧气,加快燃烧速度。

5.分离器:分离器用于将循环床中的固体颗粒与燃烧产物分离,确保床料的循环正常进行。

6.尾气换热器:尾气换热器用于回收废气中的热能,并将其传递给水蒸汽,提高锅炉的热效率。

7.省煤器:省煤器用于对锅炉排出的烟气进行冷却,并从中回收热能,用于预热给水,减少燃料的消耗。

8.除尘器:除尘器用于对燃烧产生的烟尘进行收集和过滤,保证热空气的洁净排放。

二、循环流化床锅炉的原理循环流化床锅炉的工作原理是利用气体和固体颗粒的流态化来进行燃烧。

在循环床中,床料被高速空气一同悬浮并形成流化状态,颗粒间相互碰撞并形成干燥、氧化和燃烧等反应过程。

通过床料的循环和燃料的补给,保持循环床内的温度和反应区的平衡。

循环流化床锅炉的燃烧过程主要包括迅速燃烧区、燃烧工质区和氧化还原区。

迅速燃烧区是燃料在高速空气中的氧化和挥发过程,燃料开始燃烧并释放大量热能。

燃烧工质区是氧化剂和燃料完全混合燃烧的区域,燃料被完全氧化,产生大量的热能。

氧化还原区是氧化剂与燃料反应的区域,会产生一些复杂的氧化反应。

三、循环流化床锅炉的运行资料1.安装要求:循环流化床锅炉的安装位置应有良好的通风条件,并与电源、给水、排烟等系统连接良好。

锅炉应安装在水平坚固的基础上,并具备良好的防震措施。

安装完成后,需要对各个系统进行调试,确保锅炉的正常运行。

2.运行参数:循环流化床锅炉的运行参数包括供热温度、供热压力、燃料含硫量、床温、床压等。

循环流化床锅炉主要设备及系统

炉膛和尾部竖井烟道之间布置有水冷式旋风分离器,其下部布 置回料器,通过两个回料腿将物料反送往炉内实现循环燃烧; 尾部竖井烟道从上到下布置有中温过热器,低温过热器;向下 烟道布置有管式省煤器。其下布置有空气预热器:光管卧式。
锅炉共设四台皮带给煤机,布置在炉前,在前部水冷壁下部收 缩段沿宽度方向均匀布置。炉膛风室下部风道内布置有床下风 器
1.省煤器作用是利用锅炉排烟余热加热给水的热交换器。 省煤器吸收排烟余热,降低排烟温度,提高锅炉效率,节 约燃料。另外,由于进入汽包的给水,经过省煤器提高了 水温,减小了因温差而引起的汽包壁的热应力,从而改善 了汽包的工作条件,延长了汽包的使用寿命。
2.省煤器的作用在于将锅炉给水进行加热,以此从即将离开锅 炉的烟气中回收热量,省煤器布置在尾部烟道顺列布置,为检 修方便,省煤器的蛇形管分成2个管组, ,布置在由包墙管构 成的尾部烟道中。省煤器蛇形管由Φ38×4mm、材料 20G 管子 组成,省煤器以 100mm 的横向节距沿整个尾部烟道的宽度方向 布置,省煤器的给水由入口集箱端引入,经前后墙省煤器的受热 面逆流而上,引至省煤器出口集箱,再从省煤器出口集箱通过 连接管引至炉前,最后引入锅筒。
第一节 汽包
作用:
(1)是工质加热、蒸发、过热三个过程的连接枢 纽.同时作为一个平衡器,保持水冷壁中汽水混合物 流动所需压力。
(2)容有一定数量的水和汽,加之汽包本身的质量很 大,因此有相当的蓄热量,在锅护工况变化时.能起 缓冲、稳定汽压的作用。
(3)装设汽水分离和蒸汽净化装置,保证饱和蒸汽的 品质。
布风板阻力越大,布风越均匀 布风板阻力应为床层阻力的25%—30%才可维持床
层稳定运行
循环流化床锅炉燃烧的三大核心部件
—燃烧室、分离器、回料阀

循环流化床锅炉与煤粉炉锅炉的比较

循环流化床锅炉与煤粉炉锅炉的比较一、锅炉结构概述循环流化床锅炉跟煤粉炉燃烧系统截然不同,它是由一个流态燃烧室及其后的物料收集系统构成的。

燃料及空气进入燃烧室后,由于物料的热容量大并强烈地掺混,迅速加热着火燃烧。

被烟气带出炉膛的细小物料由旋风分离装置收集,返回炉膛进行再燃烧。

因设计理念和燃烧机理的重大突破,循环流化床锅炉与煤粉炉及其他炉型相比,在燃烧工艺方面有着明显的优势。

二、运行方式比较2.1锅炉启动方式的比较2.1.1点火方式如四角切圆煤粉锅炉在启动中所采取的点火方式是在炉膛内点燃对角油枪,对炉膛内的耐火材料、金属受热面和烟气直接进行加热,并随着耐火材料、金属受热面和烟气温度的提高逐渐增加油枪的出力或增加点火油枪的投入数量,使炉膛内的烟气温度达到煤粉的着火温度。

由于煤粉较易于着火,点火系统还可采用微油点火或等离子点火技术(无烟煤除外),可以节省大量的燃油,节约运行成本。

CFB锅炉的点火方式则不同,它是采用床下风道点火器或联合床上点火器联合点火的方式【根据煤种燃点挥发分、发热量等实际情况可选择取消不用床上油枪】再利用热烟气加热炉膛内的床层,以不断提高床层的温度水平来达到煤粒的着火温度。

从结构上讲,床下风道点火器和床上点火器不仅要对炉膛内的耐火材料、金属受热面和烟气进行加热,还要对燃烧室内的耐火材料和床层物料进行加热,因此CFB锅炉的启动时间和在启动过程中的燃油量都比煤粉锅炉要大,而且它在启动过程中所受到的升温、升压速度的限制条件也比煤粉锅炉要多。

CFB锅炉无法实行节油点火技术。

由上述分析可知,CFB锅炉与同容量煤粉锅炉相比,启动时间相对较长,这对于机组的经济性是不利的。

2.2锅炉变负荷运行2.2.1 煤粉炉的变负荷运行煤粉锅炉的炉内热交换方式以辐射为主。

煤粉锅炉一般要求煤粉气流在离开燃烧器出口200~300 mm 处开始着火,以保证既不烧坏燃烧器又不使火炬脱节。

降低锅炉负荷时,必须减少锅炉给粉量,为了保证良好的空气动力场,喷烧器出口气流速度不得低于设计值,也就降低了煤粉气流的浓度,煤粉的燃烧速度随煤粉浓度的降低而降低。

循环流化床锅炉简介

环燃烧。
返料器的设计需考虑颗粒的流动 性和输送效率,以确保锅炉的稳 定运行。
03
返料器的结构和性能对于循环流 化床锅炉的燃烧效率和灰渣处理
具有重要影响。
04
受热面
受热面是循环流化床锅炉中用于吸收热量的部分, 通常包括水冷壁、过热器和省煤器等。
受热面的设计需考虑热效率、传热系数和耐久性 等因素,以确保锅炉的安全、高效运行。
垃圾发电
循环流化床锅炉利用城市垃圾进 行发电,能够实现垃圾的资源化 利用,减少环境污染。
供热应用
集中供热
循环流化床锅炉在城市集中供热系统中用于提供热水和蒸汽,满足城市居民和企 事业单位的用热需求。
区域供热
循环流化床锅炉在区域供热系统中用于提供热量,满足特定区域内建筑物和设施 的采暖和热水需求。
05 循环流化床锅炉的未来发 展
受热面的结构和材料对于循环流化床锅炉的性能 和寿命具有重要影响。
03 循环流化床锅炉的优点与 缺点
优点
高燃烧效率
循环流化床锅炉采用流态化燃烧方式,具有较高的燃烧效率,能够有 效地降低能源消耗。
低污染排放
循环流化床锅炉采用低温燃烧和分级燃烧技术,能够降低氮氧化物、 硫氧化物等污染物的排放,有利于环境保护。
燃料适应性广
循环流化床锅炉能够适应多种燃料,包括煤、油、气等,具有较强的 燃料适应性。
负荷调节范围广
循环流化床锅炉的负荷调节范围较广,能够满足不同工况下的能源需 求。
缺点
磨损问题 维护成本高 启动时间长 技术要求高
循环流化床锅炉的燃烧室内存在高速的颗粒流动和激烈的颗粒 碰撞,容易导致炉内受热面和辅助设备的磨损问题。
技术改进
燃烧效率提升
通过改进燃烧技术,提高循环流化床锅炉的燃烧效率,降低能源 消耗和污染物排放。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环流化床锅炉的结构是什么
阀⑦对固体粒子流量进行分配,一部分通过回料器直接送入下炉膛以维持主循环回路固体粒子平衡;另一部分从旋风分离器分离下来的固体粒子通过布置在类似鼓泡床中的外置式换热器④放
热后被送入炉膛。

分离后含少量飞灰的干净烟气进入尾部竖井
③,经空气预热器和飞灰收集系统,最后由烟囱排入大气。

1.2锅炉整体布置
锅炉为单汽包、自然循环、半露天布置的循环流化床锅炉,锅炉整体呈左右对称布置,支吊在锅炉钢架上,采用高温旋风分离器进行气固分离,采用外置换热器控制床温及再热汽温。

本锅炉由五跨组成,第一、二跨布置有主循环回路(炉膛、高温钢板旋风分离器、回料器以及外置式换热器)、冷渣器以及二次风系统等;第三、四跨布置尾部烟道(包括高温过热器、低温再热器以及省煤器);第五跨为单独布置的回转式空气预热器。

炉膛采用全膜式水冷壁结构,炉膛底部采用裤衩型将下炉膛一分为二。

布风板之下为由水冷壁管弯制围成的水冷风室。

锅炉采用回料器给煤的方式,四个给煤口布置在回料器上,石灰石采用气力输送,8个石灰石给料口布置回料腿上。

在水冷风室之前的两个一次风道内分别布置一台风道点火器,另外在炉膛下部还设置有2×4只不带点火和火检的床上助燃油枪,用于锅炉启动点火和低负荷稳燃。

四台流化床式冷渣器被分为两组布置在炉膛两侧,每台冷渣器有9个排渣口,分别将底渣排到机械除渣系统或地面。

四台高温旋风分离器布置在炉膛两侧的钢架副跨内,在旋风分离器下各
布置一台回料器。

由旋风分离器分离下来的物料一部分经回料器直接返回炉膛,另一部分则经过布置在炉膛两侧的外置换热器后再返回炉膛。

外置式换热器内布置有受热面,靠后墙外置式换热器内设置有中温过热器(ITS1和ITS2),可以通过控制其间的固体粒子流量来控制炉膛温度;靠前墙外置式换热器内设置有低温过热器(LTS)和高温再热器(HTR),可以通过控制其间的固体粒子流量来控制再热蒸汽温度。

汽冷包墙包覆的尾部烟道内从上到下依次布置有高温过热器、低温再热器、省煤器。

空气预热器采用四分仓回转式空气预热器。

1.3. 锅炉汽水系统
高压系统包括省煤器、锅筒、蒸发受热面和过热器。

水循环系统采用自然循环。

锅炉给水首先被引至布置在尾部烟道的省煤器进口集箱,逆流向上流经水平布置的省煤器管组后通过省煤器引出管进入锅筒。

在启动阶段没有给水流入锅筒时,省煤器再循环管路可以将锅水从锅筒引至省煤器进口集箱,防止省煤器管子内的水静滞汽化。

本方案为自然循环锅炉。

锅炉水循环采用集中供水,分散引入、引出的方式。

给水引入锅筒水空间,并通过各自的集中下降管进入水冷壁和附加受热面进口集箱。

锅水在向上流经炉膛水冷壁、附加受热面的过程中被加热成为汽水混合物,经各自的上部出口集箱通过汽水引出管引入锅筒进行汽水分离。

被分离出来的水重新进入锅筒水空间,并进行再循环,被分离出来的合格的饱和蒸汽从锅筒顶部的蒸汽连接管引出。

饱和蒸汽从锅筒引
出后,由饱和蒸汽连接管引入尾部烟道包墙过热器,然后通过蒸汽连接管进入布置在炉前外置式换热器中(该外置式换热器还布置有高温再热器)的低温过热器(LTS),再进入布置在炉后外置式换热器中的中温过热器(ITS1和ITS2)),此后由连接管引入到布置在尾部烟道中的高温过热器(HTS),最后合格的过热蒸汽由高过出口集箱(合并成一根连接管)引入汽轮机。

过热器系统采取调节灵活的喷水减温作为汽温调节和保护各级受热
面管子的手段,整个过热器系统共布置有三级喷水减温器。

第一级在低温过热器(LTS)和第一级中间过热器(ITS1)之间,用于控制LTS出口和ITS1入口温差为10℃;第二级在第一级中间过热器(ITS1)和第二级中间过热器(ITS2)之间,用于控制ITS2出口温度为485℃;第三级在第二级中间过热器(ITS2)和高温过热器(HTS)之间,用于控制HTS出口温度为540℃。

过热器系统喷水用给水,抽头点在高加后,给水调节阀前。

再热汽系统为从汽轮机高压缸抽取的再热蒸汽通过连接管进入
布置在尾部烟道内的低温再热器(LTR)入口集箱,流经低温再热器蛇形管,由低温再热器出口集箱引出,然后由连接管引入布置在外置换热器中的高温再热器(HTR),经高温再热器加热后合格的再热蒸汽由高再出口集箱(最终合并为单根管)引回汽轮机。

再热器系统在锅炉正常运行时无喷水,再热汽温靠控制外置床的灰流量来实现。

在低温再热器(LTR)入口设有事故喷水,在事故工况时,通过喷水来控制高温再热器(HTR)出口汽温。

喷水
抽头点在给水泵中间抽头。

再热器系统设有两个疏水点,一个在低温再热器入口,另一个在高温再热器入口。

1.4烟风流程
CFB锅炉的燃烧需要相对较高的空气压头使颗粒在床内能得到流化,经过一二次风机出来的一二次风通过空预器后被送入炉膛。

其它用风包括外置式换热器、回料器、冷渣器的流化风,其流化风均取自高压流化风机。

空气预热器采用成熟的四分仓回转式空气预热器。

暖风器(一个位于一次风道,二个位于二次风道)用于保证空预器出口壁温高于露点温度。

从一次风机出来的空气分成两路:第一路,约占总风量45%空气经暖风器、一次风空气预热器加热后,作为一次燃烧用风和流化风进入炉膛底部的水冷风室,通过布置在布风板上的风帽使床料流化,并形成向上通过炉膛的气固两相流,该回路上布置有床下风道点火器;第二路,同样经预热的热一次风作为FBHE至炉膛灰道的输送风。

另外,在一次风机出口至床下点火风道之间,布置有绕过空预器的一次风快冷风道,风量约为一次风总风量的35%~45%,用于快速冷却炉膛。

从二次风机出来的空气分成三路:第一路,一部分未经预热的冷二次风作为回料阀上给煤机密封用风;第二路,经暖风器、二次风空气预热器加热后的热二次风分两层,进入炉膛下部内侧和外侧,作为燃烧及燃烧调整用风;第三路,经空预器的热二次风作为给煤点吹扫风,防止给煤堵塞。

除了上述几路持续用风外,经空气预热器加热后的热二次风还作为间断用风送到以
下几个用风点:一,作为石灰石给入点密封风,防止石灰石系统停运时炉膛烟气反窜;二,作为炉膛至分离器入口烟道吹扫风,清理该烟道可能发生的严重积灰。

二次风机之间通过二次风联络风道相连,风量约为25%的二次风总风量。

高压风系统主要提供回料器、外置床、冷渣器、部分灰道及分离器底部的流化风以及锥形阀、油枪用风,通过调节挡板保证各支路要求的风量,正常运行时,其中四台运行、一台备用。

1.5灰循环系统
锅炉在正常运行过程中,大量的固体粒子在炉膛和分离器组成的主循环回路中不停的循环着。

一部分极细的粒子随烟气一起到达尾部烟道,作为飞灰进入除尘器;而其余大部分粒子却被分离器捕获下来,通过回料器或外置式换热器回到炉膛。

炉膛底部排渣经冷渣器冷却后排出。

带中间过热器的外置式换热器也有排渣管接至冷渣器,必要时可以用于排灰。

底灰系统系统主要用于排放和(或)冷却灰渣。

除每一台冷渣器的主排渣口外,还应包括:冷渣器、外置式换热器风箱放灰、冷渣器、外置式换热器布风板放灰、回料器风箱放灰、炉膛风室放灰、一二次风放灰点放灰。

其中,冷渣器的受热面间排渣口、外置式换热器布风板、外置式换热器风箱、回料器风箱、炉膛风室、一二次风放灰点的放灰可不纳入底灰系统,根据情况放至地面安全处。

其余排灰口均应纳入底灰输送系统(包括埋刮板输渣机、斗式提升机等)。

1.6辅助燃料系统。

相关文档
最新文档