熔体流动速率

合集下载

实验三热塑性塑料熔体流动速率的测定

实验三热塑性塑料熔体流动速率的测定

实验三热塑性塑料‎熔体流动速‎率的测定一、实验目的1.掌握热塑性‎塑料熔体流‎动速率的测‎定方法。

2.进一步认识‎塑料熔体流‎动速率与其‎分子量、加工性能的‎关系。

二、原理熔体流动速‎率(MFR,即Melt‎Flow Rate),系指热塑性‎塑料在一定‎温度和负荷‎下,熔体每10‎分钟通过熔‎体流动速率‎仪标准口模‎的重量。

它又称为熔‎融指数(MI,即Melt‎ Index‎)。

MFR表示‎热塑性塑料‎在高温粘流‎状态下的流‎动性能,它是高分子‎材料加工成‎型的重要参‎数之一,表示热塑性‎塑料熔体粘‎度的相对值‎。

热塑性塑料‎的M FR,随其分子量‎和分子结构‎的不同而异‎。

对一定结构‎的聚合物而‎言,MFR大,表明聚合物‎的分子量小‎,加工时流动‎性能就好一‎些。

加工时可选‎择略高于温‎度,所施加压力‎可小一些。

相反,如果MFR‎小,表明聚合物‎的分子量大‎,加工时流动‎性能差一些‎。

必须适当提‎高加工温度‎,施加较大的‎压力,以改善聚合‎物的流动性‎。

但MFR大‎,聚合物的断‎裂强度、硬度等性能‎均有所下降‎。

热塑性塑料‎的M FR是‎用熔体流动‎速率仪测定‎的。

在一定的温‎度和负荷条‎件下,使被测物通‎过标准口模‎,测出固定时‎间间隔内挤‎出的物料重‎量。

然后换算成‎每10分钟‎的挤出量,即为该物料‎的M FR。

本实验是按‎照G B36‎82-83“热塑性塑料‎熔体流动速‎率试验方法‎”操作进行的‎。

测定不同结‎构的树脂的‎M FR,所选择的测‎试温度、负荷、试样用量以‎及取样时间‎都有所不同‎。

我国目前的‎标准见表3‎-2和表3-3。

三、仪器与试剂‎XNR-400A熔‎体流动速率‎仪一台。

聚乙烯或聚‎丙烯颗粒1‎00克。

XNR-400A熔‎体流动速率‎仪的主要技‎术指标:标准实验力‎:1级0.325kg‎=(活塞杆+砝码托盘+隔热套+1#砝码+限位开关挡‎片)kg=3.187N2级1.200kg‎=(0.325+2#0.875砝码‎)kg=11.77N3级2.160kg‎=(0.325+0.875+3#0.960砝码‎轴)kg=21.18N4级3.800kg‎=(0.325+0.875+0.960+4#1.640砝码‎)kg=37.26N5级5.000kg‎=(0.325+0.875+0.960+1.640+5#1.200砝码‎)kg=49.03N6级10.000kg‎=(0.325+0.875+0.960+1.640+1.200+6#5.000砝码‎)kg=98.07N7级12.500kg‎=(0.325+0.875+0.960+1.640+1.200+5.000+7#2.500砝码‎)kg=98.07N 8级21.600kg‎=(0.325+0.875+0.960+1.640+1.200+5.000+2.500+8#9.100砝码‎)kg=211.82N装料筒:内径:Φ9.550±0.025毫米‎,长度:160毫米‎;出料口:内径:Φ2.095±0.005毫米‎,长度:8.000±0.025毫米‎;活塞杆头: 直径: 9.475±0.015毫米‎,长度: 6.350±0.100毫米‎仪器外形尺‎寸:650×350×950毫米‎。

熔体流动速率的测试方法

熔体流动速率的测试方法

熔体流动速率的测试方法一.基本概念1.什么是熔体流动速率?图1是熔体流动速率试验的结构示意图。

料筒外面包裹的是加热器,在料筒的底部有一只口模,口模中心是熔体挤压流出的毛细管。

料筒内插入一支活塞杆,在杆的顶部压着砝码。

试验时,先将料筒加热,达到预期的试验温度后,将活塞杆拔出,在料筒中心孔中灌入试样(塑料粒子或粉末),用工具压实后,再将活塞杆放入,待试样熔融,在活塞杆顶部压上砝码,熔融的试样料通过口模毛细管被挤出。

塑料熔体流动速率(MFR),以前又称为熔体流动指数(MFI)和熔融指数(MI)。

图11.1定义熔体流动速率是指热塑性材料在一定的温度和压力下,熔体每10min通过标准口模的质量,单位为g/10min.1.2 影响试验结果的因素a.负荷:加大负荷将使流动速率增加;b.温度:在试样允许的前提下,升高温度将使流动速率增加,如果料筒内的温度分布不均匀,将给流动速率的测试带来很明显的不确定因素;c.关键零件(口模内孔、料筒、活塞杆)的机械制造尺寸精度误差使测试数据大大偏离。

粗糙度达不到要求,也将使测试数据偏小。

2.意义熔体流动速率表征了热塑性聚合物的熔体的流动性能,通过对它的测量可以了解聚合物的分子量及其分布、交联程度,以及加工性能等等。

二.熔体流动速率试验的技术要求由于温度、负荷、机械零件的任何一项偏差,都会导致试验结果的不正确,因此,为了保证试验结果的正确性,必须对这些参数很具体地确定下来。

1.温度由于在本试验中,唯有温度是动态参数,对试验的结果影响也很大,因此对温度的技术参数规定得很细致。

有的厂家生产的各种仪器(还有如恒温槽,维卡软化点,等等)凡有温度指标的,均标上“温控精度”这一项,其实是对用户提供了一个貌似高精度而实则是没有实际意义的指标。

1.1 温度数显准确度。

准确度,这里指数显值与标准温度计之间的差值。

一般来说,只要温控系统具有长期的稳定性和微小的波动,准确度都是可以通过校正来消除误差的。

热塑性塑料熔体质量流动速率的测定-文档资料

热塑性塑料熔体质量流动速率的测定-文档资料
➢ 设置温度,恒温大于15min; ➢ 清洁活塞杆、料筒,将活塞杆插入,还需等待温度稳定; ➢ 将活塞杆拔出; ➢ 加料,压实(应在1min内完成),重新插入活塞杆; ➢ 待4~6分钟(一般4分钟后,温度达到稳定状态); ➢ 加砝码;
操作步骤
➢ 如料太多,或下移至起始刻度线太慢,可用手加压或增加砝码加压, 使快速达到活塞杆上的测试起始刻线;
➢ 计时,切样,第一根不要; ➢ 称重; ➢ 计算,取平均值; ➢ 用纱布、专用工具(清洗杆)清洗料筒、活塞杆,清洗一定要趁热进
行。料筒、活塞杆在每次试验后都必须进行清洗。 ➢ 口模清洗,用专用工具(口模清洗杆)将内孔中熔融物挤出。在做相
同材料的试验时,口模不必每次清洗,但在调换试验品种、关闭加热 器前或已经多次试验,则必须清洗。遇有不易清洗的情况,同样可涂 一些石腊等润滑物。
热塑性塑料熔体质量流动速率和熔体体积 流动速率的测定(GB/T 3682-2000)
钟家春 电子科技大学特种功能材料研究室
熔体流动速率(MFR)
以前又称为熔体流动指数(MFI)和熔融是指热塑性材料在一定的温度和压力下, 熔体每10min通过标准口模的质量。(g/10min)


热塑性塑料熔体流动速率受剪切速率影响。

对于同一种聚合物,可以评价其分子量大小、加 工性能。
熔体流动速率(MFR)

温度(PPS熔点在280℃,一般测试温度选在290℃)



负荷(2.16Kg/3.80Kg/5.00Kg/10.00Kg)
熔融指数仪结构说明
操作步骤
❖ 确定实验条件:(温度290℃,负荷2.16Kg,装料量 6~8g,切料间隔10S)
结果计算

熔体流动速率的测试方法

熔体流动速率的测试方法

熔体流动速率的测试方法一.基本概念1.什么是熔体流动速率图1是熔体流动速率试验的结构示意图。

料筒外面包裹的是加热器,在料筒的底部有一只口模,口模中心是熔体挤压流出的毛细管。

料筒内插入一支活塞杆,在杆的顶部压着砝码。

试验时,先将料筒加热,达到预期的试验温度后,将活塞杆拔出,在料筒中心孔中灌入试样(塑料粒子或粉末),用工具压实后,再将活塞杆放入,待试样熔融,在活塞杆顶部压上砝码,熔融的试样料通过口模毛细管被挤出。

塑料熔体流动速率(MFR),以前又称为熔体流动指数(MFI)和熔融指数(MI)。

图11.1定义熔体流动速率是指热塑性材料在一定的温度和压力下,熔体每10min通过标准口模的质量,单位为g/10min.1.2 影响试验结果的因素a.负荷:加大负荷将使流动速率增加;b.温度:在试样允许的前提下,升高温度将使流动速率增加,如果料筒内的温度分布不均匀,将给流动速率的测试带来很明显的不确定因素;c.关键零件(口模内孔、料筒、活塞杆)的机械制造尺寸精度误差使测试数据大大偏离。

粗糙度达不到要求,也将使测试数据偏小。

2.意义熔体流动速率表征了热塑性聚合物的熔体的流动性能,通过对它的测量可以了解聚合物的分子量及其分布、交联程度,以及加工性能等等。

二.熔体流动速率试验的技术要求由于温度、负荷、机械零件的任何一项偏差,都会导致试验结果的不正确,因此,为了保证试验结果的正确性,必须对这些参数很具体地确定下来。

1.温度由于在本试验中,唯有温度是动态参数,对试验的结果影响也很大,因此对温度的技术参数规定得很细致。

有的厂家生产的各种仪器(还有如恒温槽,维卡软化点,等等)凡有温度指标的,均标上“温控精度”这一项,其实是对用户提供了一个貌似高精度而实则是没有实际意义的指标。

1.1 温度数显准确度。

准确度,这里指数显值与标准温度计之间的差值。

一般来说,只要温控系统具有长期的稳定性和微小的波动,准确度都是可以通过校正来消除误差的。

熔体流动速率测试

熔体流动速率测试
5
数据的记录
组别 1 2 3 4 5 6 7 8 9
重量(kg) 0.2215 0.2220 0.2272 0.2283 0.2285 0.2309 0.2310 0.2316 0.2318
6
结果计算
MFR=m/9x60=13.6853g/10min
7
ቤተ መጻሕፍቲ ባይዱ
影响因素 影响因素
原因分析
弹性因素
高聚物熔体是一种粘弹性液,在外力作用下,
在塑料加工中,熔体流动速率是用来衡量塑料熔体流动性的一 个重要指标。通过测定塑料的流动速率 ,可以研究聚合物的结构因 素
1
仪器设备
2
仪器设备
主要结构 炉体:有控温装置,波动在±0.5℃, 温度监测装置,精度±0.1℃ 活塞:长度大于料筒,放入料筒后, 下标环形记号与料筒口平齐,活塞底 面与标准口模的上端相距约50mm 标准口模:碳化钨制成,外径与料筒 内径成间隙配合 负荷:活塞杆与砝码的质量之和
3
实验条件
因为我们选择的材料是PP,根据试验标准温度在 230℃,口模内径为2.095mm,标准口径为2016kg。
4
试验步骤
1 、清洗仪器。在开始做一组试验前,要保证料筒在选定温度恒温不少于 15min。 2 、根据预先估计的流动速率,将5g样品装入料筒。 3 、在装料完成后,把选定的负荷加到活塞上。让活塞在重力的作用下降, 直到挤出没有气泡的细条。这个操作时间不应超过 1min。用切断工具切断 挤出物,并丢弃。然后让加负荷的活塞在重力作用下继续下降。当环形标 线到达料筒顶面时,开始用秒表计时,同时用切断工具切断挤出物并丢弃 之。 4 、逐一收集按一定时间间隔 的挤出物切段,切段时间间隔取决于熔体流 动速率,选定的时间为10s。 5 、当切割的样条达到十根时,试验结束,清理实验仪器。

熔体流动速率

熔体流动速率

在实际生产中,通常通过优化流道几何形状来提高熔 体流动速率。例如,在挤出成型中,采用渐变式流道 设计可以减小流道阻力,提高熔体流动速率,从而增 加产量。
流速分布
流速分布对熔体流动速率的影响不容忽视。流速分布 不均匀会导致局部流动速率过高或过低,影响产品质 量和产量。因此,需要合理设计流速分布。
在实际生产中,可以通过数值模拟和实验等方法来研究 流速分布对熔体流动速率的影响。例如,在注塑成型中 ,采用计算机模拟技术可以预测流速分布对充模过程的 影响,从而优化模具设计和注射工艺参数。
在实际生产中,通常通过添加增塑剂、润滑 剂等来降低熔体的粘度,从而提高其流动速 率。例如,在生产塑料袋时,加入增塑剂可 以降低塑料熔体的粘度,使其更容易流动,
从而提高生产效率。
流道几何形状
流道几何形状对熔体流动速率的影响较大。流道截面 尺寸、长度、弯曲程度等因素都会影响熔体的流动速 率。流道截面尺寸越大、长度越短、弯曲程度越小, 则熔体流动速率越大。
塑料加工过程中,熔体流动速率是一个重要的参数,它决定了塑料在成型 过程中的流动行为和产品质量。
通过控制熔体流动速率,可以优化塑料制品的外观、尺寸和性能,提高生 产效率和产品质量。
熔体流动速率对塑料加工过程中的温度、压力和剪切速率等参数有直接的 影响,因此需要综合考虑各种因素来制定最佳的加工条件。
在橡胶加工中的应用
VS
在国际单位制中,也使用其他单位如 kg/hr或lbs/hr来表示熔体流动速率。
02
熔体流动速率的影响因 素
温度
温度对熔体流动速率的影响是显著的。随着温度的升高,熔体的粘度降低,流动性增强,流动速率增大。因此,提高温度可 以促进熔体的流动。
在实际生产中,通常通过调整温度来控制熔体的流动速率,以满足生产工艺的要求。例如,在塑料加工中,通过调节温度来 控制塑料熔体的流动速率,从而控制产品的质量和产量。

高分子材料专业实验-熔体流动速率的测定及热变形温度测定

高分子材料专业实验-熔体流动速率的测定及热变形温度测定

熔体流动速率的测定实验目的通过本次实验了解聚合物材料熔体流动速率的物理意义并掌握测定聚合物材料熔体流动速率的原理和方法。

实验原理聚合物材料熔体流动速率(MFR)是指在一定温度和负荷下,聚合物材料熔体每10分钟通过标准口模的质量(g/10min)。

在聚合物材料成型加工中,熔体流动速率是用来衡量聚合物材料熔体流动性的一个重要指标,其测试仪器通常称为聚合物材料熔体流动速率测试仪(或熔体流动速率仪)。

对一定结构聚合物材料熔体,若所测得的MFR愈大,表征该聚合物材料的平均分子量愈低,成型时流动性愈好。

但此种仪器测得的流动性能指标,是在低剪切速率下获得的,不存在广泛的应力——应变速率关系,因而不能用来研究聚合物材料熔体粘度与温度、粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。

原料与仪器1.实验用主要原材料:LDPE(中国石油天然气股份有限公司大庆石化公司,18D,ρ=0.945g/cm3)2.实验用主要仪器设备:XNR-400熔体流动速率仪(承德市试验机厂)1台,TG328A分析天平(上海天平仪器厂)1台,手表1只,装料漏斗1个,玻璃镜1个,镊子1个,清洗杆1根,手套若干双实验条件及操作1.实验条件:标准口模内径2.095mm,实验温度190.1℃,口模系数464g·mm3,负荷2160g,LDPE 使用量为4.5g,切样时间间隔为60s2.实验操作流程实验记录及结果记录: 温度:190℃口模系数:464g/mm3负荷:2160g切样1# 2# 3#时间间隔/s 称重/mg45126.645125.545121.8计算:1.切取样条平均质量(W)的计算:W=( W1+W2+W3)/3=(126.6+125.5+121.8)/3=124.6mg式中,W1,W2,W3分别为三个切取样条各自的质量。

2.聚合物物料熔体流动速率(MFR)的计算:MFR=600×0.1246/45g(10min)-1=1.7g/10min结果讨论1.影响测定结果的因素:a.口模直径与粗糙度,料筒长短及光洁度b.聚合物物料的分子量分布:聚合物物料的分子量不能过宽,否则前期流出的熔体主要为低分子量的聚合物,后期流出的物料主要为高分子量的聚合物,这样的话切样时间间隔不变,前面切取的样条质量将明显比后面切取的大。

聚合物熔体流动速率的测定

聚合物熔体流动速率的测定

聚合物熔体流动速率的测定一、实验目的1. 了解热塑性塑料在粘流态时粘性流动的规律。

2.熔体速率仪的使用方法。

二、实验原理所谓熔体流动速率(MFR)是指热塑性塑料熔体在一定的温度、压力下,在10分钟内通过标准毛细管的质量,单位:g/10min。

对于同种高聚物,可用熔体流动速率来比较其分子量的大小,并可作为生产指标。

一般来讲,同一类的高聚物(化学结构相同)若熔体流动速率变小,则其分子量增大,机械强度较高;但其流动性变差,加工性能低;熔体流动速率变大,则分子量减小,强度有所下降,但流动性变好。

研究流动曲线的特性表明,在很低的剪切速率下,聚合物熔体的流动行为是服从牛顿定律的,其粘度不依赖于剪切速率,通常把这种粘度称为最大牛顿粘度或0剪切粘度η0,它是利用η=f(S)关系,从很小的剪切应力(S)外推到零求得的。

根据布契理论,线形聚合物的零剪切粘度与大于临界分子量的重均分子量()的关系式为,式中K是依赖于聚合物类型及测定温度的常数。

许多研究表明,对于分子量分布较窄或分级的高密度聚乙烯,是遵守3.4次方规则的。

但在分子量分布宽时,M的指数有所增大。

如果使指数保持为3.4,则需用某种平均分子量()代替重均分子量,其关系式为:---------------------------------------- (l)式中,。

当分子量分布窄时,接近;当分子量分布宽时,接近Z均分子量。

在实际应用中,不是用零剪切粘度评定分子量,而是用低剪切速率的熔体流动速度(习惯上叫熔融指数)评定的。

经研究,熔融指数与重均分子量的关系如下:-------------------------- (2)但由于熔融指数不只是分子量的函数,也受分子量分布及支链的影响,所以在使用这一公式时应予注意。

按照ASTM规定,聚乙烯的熔融指数是在190℃,负载2.16公斤下,熔体在10分钟内通过标准口型(φ2.095×8mm)的重量,单位为g/10min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熔体流动速率
熔体流动速率仪的测定方法
熔体流动速率仪,又称熔融指数仪,其定义为:在规定条件下,一定时间内挤出的热塑性物料的量,也即熔体每10min通过标准口模毛细管的质量,用MFR表示,单位为g/10min。

熔体流动速率可表征热塑性塑料在熔融状态下的粘流特性,对保证热塑性塑料及其制品的质量,对调整生产工艺,都有重要的指导意义。

近年来,熔体流动速率从“质量”的概念上,又引伸到“体积”的概念上,即增加了熔体体积流动速率。

其定义为:熔体每10min 通过标准口模毛细管的体积,用MVR表示,单位为cm3/10min[1]。

从体积的角度出发,对表征热塑性塑料在熔融状态下的粘流特性,对调整生产工艺,又提供了一个科学的指导参数。

对于原先的熔体流动速率,则明确地称其为熔体质量流动速率,仍记为MFR。

熔体质量流动速率与熔体体积流动速率已在最近的ISO标准中明确提出,我国的标准也将作相应修订,而在进出口业务中,熔体体积流动速率的测定也将很快得到应用。

一、熔体质量流动速率(MFR)的测定方法:
熔体质量流动速率的测定,按方法分为切割(手工或自动定时)测定与自动(半自动)测定。

1、切割测定:
根据定义,当熔体在负荷的作用下通过口模毛细管挤出,由操作人员使用切割刀具将流经口模出口的一段熔料割取,并记录该段熔料自口模流出的时间,经称重并换算至流出时间为10min时
的质量,即为熔体质量流动速率值MFR。

配置有自动定时切割装置的设备,可根据需要设置切割间隔时间。

任何型号的熔体流动速率测定仪都可进行手工切割测定。

二、自动(半自动)测定:
自动(半自动)测定不需对流出熔料进行切割。

它的原理是:在测定仪上预先设定熔料的流出体积,再由测定仪上的计时器自动记录流出该体积的熔料所需的时间。

这样,只要知道熔料的密度(注意:是该材料在特定试验温度下的熔体密度),即可按(1)式计算出熔体质量流动速率:
式中:L───测定仪预先设定的活塞移动有效距离,cm;
ρ──熔体密度,g/cm3;
t───活塞移动有效距离所需的时间,s。

聚乙烯、聚丙烯的熔体参数[2]如表1所示。

表1 聚乙烯、聚丙烯的熔体参数
材料
试验温
度℃
活塞移动
有效距离/mm
熔体密度
g°cm-3
系数F
聚乙烯190
25.46.35
3.175 0.763
6
82620710
3.5
聚丙烯230
25.46.35
3.175 0.738
6
79920010
对于自动测定仪而言,经电脑计算后可直接通过打印机将最终结果(MFR、MVR)及日期、批号、测试条件(温度、负荷等)一
并打印出来。

三、切割测定与自动(半自动)测定的比较:
切割测定,特别是人工切割,有时间误差,有刀具表面的粘连带来的质量误差,而自动(半自动)测定则基本不存在此类误差,其重复性好是显而易见的,两种测试方法的最终结果应一致,但有时这两种方法的结果还会有较大的差异,这时应考虑到以下影响:
1、气泡的影响:
当被测熔料有效段中有气泡时,使用手工测定,结果将偏小,使用自动测定,结果将偏大,这是因为手工测定是将有效段称重,存在气泡时,质量减小,而使用自动(半自动)测定时,以固定体积的流出来计时,体积中含有气泡时,流出时间缩短。

两者比较,测定的差异将会明显。

若想减少气泡的影响,则应在加料时一次完成,必要时,还需对被测料进行真空干燥处理。

如果有的料内有明显的气泡,就无法正确测量了。

2、添加剂的影响:
使用自动(半自动)测定,特别在测定聚乙烯或聚丙烯材料时,往往会疏忽由于加入添加剂而改变了它的熔体密度。

这时,如直接用F计算,或直接用原熔体密度数代入计算都会出错,即使只加入着色剂可能也会有影响。

此时,如一定要进行自动(半自动)操作,必须重新求得它的熔体密度。

当用这两种方法测定结果差异较大时,应考虑到材料中含有添加剂的可能性。

四、熔体体积流动速率(MVR)的测定:
要进行熔体体积流动速率的测定,测定仪除具备常规测定机构(控温、负荷、活塞杆、料筒、口模等)外,还需具备料筒内特定容积的设置及容积熔料流出时间的自动计时装置。

综上所述,凡具备自动(半自动)操作的熔体质量流动速率测定仪均可进行熔体体积流动速率的测定,如早期的RZ-12A、RL-11A,以及RL -11B、RL-Z1、RL-Z1B等型号的测定仪。

1、半自动型测试方法:
测试方法:按熔体质量流动速率的测定方法作好加料等准备工作,选择自动操作行程,待预热时间达到,温度回复后,加负荷,随活塞杆下移,计时器开始自动计时。

当计时器停止计时时,读出计时值,按(2)式计算:
式中,L与t的含义与(1)式相同。

2、自动型测试方法:
测试方法:如系近期生产的RL-Z1B等测定仪,已在软件中增加了体积流动速率的计算程序,因此,按常规操作后,仪器会自动打印出MFR与MVR两项结果,如系前期生产的机型,只要将所得的MFR值按(3)式即可计算出MVR值:
式中,ρ的含义与(1)式相同。

如不知道ρ的数值,只需在参数设置时,将ρ设为1,则打印出的MFR即为MVR值。

3、熔体密度的测定:
塑料熔体密度是指热塑性塑料在特定温度下的熔融状态时的密度,这明显区别于一般所指塑料密度。

利用自动(半自动)型熔体流动速率测定仪,可进行熔体密度的测试。

测试方法:仪器设置在自动(半自动)测试状态,选择行程(行程长,测试精度高),选择标准试验温度,按一般操作做好准备,将活塞下移,割取自计时器自动启动至结束间的一段料,称重,按(4)式计算熔体密度:
式中:m───样条平均质量,g;
L───活塞移动有效距离,cm。

熔体密度的测定,与活塞杆上所加负荷大小关系不大,但其数值决定了操作者的方便与否。

负荷太大,活塞下移太快,切割不及时,误差太大;负荷太小,下移速度太慢,操作不方便,而且,熔体在高温下,时间太长也易热降解,影响测定的正确性。

4、高熔体流动速率的测定方法:
测试人员遇到高熔体流动速率的测定,是很棘手的。

对于聚乙烯、聚丙烯而言,因为有已知的熔体密度参数,即使MFR在200以上,也能方便地测试,但对于没有熔体密度参数的塑料如何处理呢?
首先,在慢速流动的情况下,测出塑料的熔体密度。

由于测定熔体密度与口模毛细管直径无关,与负荷大小无关,因此,可选择细直径、小负荷的方式,在特定温度下,按上述方式测出熔体密度ρ。

然后,使用自动(半自动)测定方法,进行流动速率的测定。

如果料筒内的熔体在温度还未平衡时就已经流失,可在仪器上先安装堵头,在温度平衡后,开始测试时,弹开堵头,即进入自动(半自动)测试程序。

5、熔体流动速率比的计算:
熔体流动速率比(FRR)通常用于表示流变特性,它受材料分子量分布的影响,,用两次不同试验条件下测得的熔体质量流动速率或熔体体积流动速率的比值求得,见(5)式:
式中:t───试验温度,℃(两次试验中相同);
m1、m2───分别为两次试验使用的不同负荷,N。

6、表观粘度的计算:
表观粘度ηa是表示被测塑料在特定温度下的流动性的基本参数,反映了熔体流动时流层之间的摩擦阻力,与熔体流动速率成反比,在测得熔体质量流动速率及熔体密度或测得熔体体积流动速率后,可通过(6)式近似算出[3]:
式中:ηa───表观粘度,pa?s;
F ───负荷,N;
ρ───熔体密度,g/cm3。

由于MFR是在低剪切速率条件下测得的,所以(6)式适用于低剪切速率下的熔体密度。

7、试验值误差分析
7.1试验值偏低:
下列因素是影响试验值偏低的主要原因:
活塞杆与料筒孔壁表面粗糙,活塞杆在负荷作用下下移阻力加大;使用后,活塞杆表面会薄薄地沉积一层焦化物,而且导向套内壁
一般不清洗,使其间配合过紧,具有粘滞性;口模内孔壁沉积焦化物;加热器内局部损坏,温度不均;温度偏低;负荷偏小。

对活塞杆及口模沉积的焦化物,可用极细的金相砂纸轻轻擦掉,因为这两只零件硬度很高,不会受影响。

对加热器及温度控制造成的问题,应在平时通过经常的温度校对来发现。

7.2试验值偏高:
试验值偏高的可能性很小,主要是温度太高或负荷太大。

7.3低熔体速率试验正常,高熔体速率试验值偏低:
应考虑到料筒内壁沿轴向温度分布不均,当上方温度偏低时,对高熔体流动速率的材料测试,将会出现结果偏低的现象。

7.4粉料试验时数据不稳定:
当用户遇到粉料试验数据无规则,且波动幅度较大时,可在粉料中加入稳定剂,即可恢复正常。

对设备而言,零件加工的精度与粗糙度,温度控制的精度与料筒内的温度分布;对用户而言,试验部分的经常清洁,料筒轴线的垂直,经常的温度校准(使用特制水银温度计时,注意修正值及露径的修正)与标样试验,这些都是正确测定的根本保证。

相关文档
最新文档