2019届百校联盟TOP20高三九月联考(全国I卷) 理科数学(含详细解析)
2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题(带答案解析)

绝密★启用前2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.集合{}2|320A x x x =-+>,则A =R ð( ) A .{|2x x >或1}x < B .{}|12x x << C .{|2x x ≥或1}x ≤ D .{|12}x x ≤≤2.已知复数431iz i+=+,则z =( ) A .2B .52C D .3.已知n S 为等比数列{}n a 的前n 项和,23a =,313S =,则6a =( ) A .243或127B .81或181C .243D .1274.已知P 为椭圆22:19x C y +=上一点,()0,4Q ,则P ,Q 两点间的最大距离是( ) A .3B .5C .D .5.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为( )……装…………………订…………○…线…………○……※不※※要※※在※※订※※线※※内※※答※※题※※……装…………………订…………○…线…………○……A .150B .177.8C .183.3D .2006.已知[]x 表示不超过x 的最大整数,执行如图所示的程序框图,若输入的x 值为2.4,则输出z 的值为( )A .1.2B .0.6C .0.4D .0.4-7.某几何体的三视图如图所示,则该几何体的体积为( )A .13B .1C .3D .328.已知偶函数()f x 满足(1)(1)f x f x +=-,且当[]0,1x ∈时,()21xf x =-,若函数()y f x kx =-()0k >有六个零点,则( ) A .15k =B .11,75k ⎛⎫∈ ⎪⎝⎭C .11,53k ⎛⎫∈ ⎪⎝⎭D .17k =9.已知双曲线22:13y C x -=的左右焦点分别为1F ,2F ,过1F 作斜率为k ()0k >的直线l 与双曲线C 的左右两支分别交于A ,B 两点,若22AF BF =,则直线l 的斜率为( )A .4B .5C .58D .3510.函数()sin 221f x x x =++的图象向右平移6π个单位长度后得到函数()g x 的图象,当()0,1a ∈时,方程|()|g x a =在区间[]0,2π上所有根的和为( ) A .6πB .8πC .10πD .12π11.在四面体A BCD -中,AC BC AD BD ====,AB CD x ==,则四面体A BCD -体积的最大值为()A .12B .23C .13D .3412.函数2()(23)1f x ax a x a =--++与1()1g x x =-的图象有三个交点,则实数a 的取值范围为( ) A .()18,0-B .1415,27⎛⎫- ⎪⎝⎭C .1418,27⎛⎫- ⎪⎝⎭ D .14(18,0)0,27⎛⎫- ⎪⎝⎭U第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.已知向量(2,3)a =,(1,2)b =-r,若()()a b a mb +⊥-rrrr()m R ∈,则m =_____________.14.532x x ⎛⎫- ⎪⎝⎭的展开式中3x 项的系数为____________(用数字作答).15.已知变量x ,y 满足约束条件10220240x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则目标函数1yz x =+的最大值为______.16.如图,ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足()cos (2cos cos )b c A a B C +=--,b c =,设AOB θ∠=()0θπ<<,24OA OB ==,则四边形OACB 面积的最大值为__________.○…………订……………○……※※订※※线※※内※※○…………订……………○……三、解答题17.已知n S为等差数列{}n a的前n项和,35a=,749=S.(1)求数列{}n a的通项公式;(2)设2nn nab=,nT为数列{}n b的前n项和,求证:3nT<.18.如图,在直三棱柱111ABC A B C-中,4AC=,3AB=,14AA=,AB AC⊥.(1)证明:1A C⊥平面1ABC;(2)在线段11A B上是否存在点D,使得平面DBC与平面11AAC C所成的锐二面角为45︒,若存在,求出线段1A D的长度;若不存在,说明理由.19.新能源汽车正以迅猛的势头发展,越来越多的企业不断推出纯电动产品,某汽车集团要对过去一年推出的四款纯电动车型中销量较低的A车型进行产品更新换代.为了了解这种车型的外观设计是否需要改进,该集团委托某调查机构对大众做问卷调查,并从参与调查的人群中抽取了400人进行抽样分析,得到如下表格:(单位:人)(1)根据表中数据,能否在犯错误的概率不超过0.05的前提下认为大众对A型车外观设计的喜欢与年龄有关?(2)现从所抽取的中年人中按是否喜欢A 型车外观设计利用分层抽样的方法抽取5人,再从这5人中随机选出3人赠送五折优惠券,求选出的3人中至少有2人喜欢该集团A 型车外观设计的概率;(3)将频率视为概率,从所有参与调查的人群中随机抽取20人赠送礼品,记其中喜欢A 型车外观设计的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20.已知动点Q 在x 轴上方,且到定点()0,1F 距离比到x 轴的距离大1. (1)求动点Q 的轨迹C 的方程;(2)过点()1,1P 的直线l 与曲线C 交于A ,B 两点,点A ,B 分别异于原点O ,在曲线C 的A ,B 两点处的切线分别为1l ,2l ,且1l 与2l 交于点M ,求证:M 在定直线上. 21.已知函数()ln(1)1axf x x x =+-+()a R ∈. (1)若当0x >时,()0f x >恒成立,求a 的取值范围; (2)比较20172019与20182018的大小.22.已知极坐标系的极点与直角坐标系的原点重合,轴与x 轴的正半轴重合.曲线C 的极坐标方程:4cos ρθ=,直线l 的参数方程2112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于不同的两点A ,B ,()2,1-M ,求11||||AM BM +的值.(1)当3a =时,解不等式()0f x <;(2)若存在实数x ,使得()4f x ≥成立,求a 的取值范围.参考答案1.D 【解析】 【分析】求出集合A 的值,可得A R ð的值. 【详解】解:由题意:{}{}2|320| 2 1A x x x x x x =-+>=><或,所以{}|12R C A x x =≤≤,故选:D. 【点睛】本题主要考查补集的概念,属于基础题,求出集合A 是解题的关键. 2.A 【解析】 【分析】根据复数的运算,化简复数7122z i =-,再利用复数模的运算公式,即可求解. 【详解】由题意,复数()()()()43143771111222i i i i z i i i i +-+-====-++-,所以2z ===, 故选A . 【点睛】本题主要考查复数模长的计算,其中解答中根据复数的运算法则进行化简是解决本题的关键,着重考查了运算与求解能力,属于基础题. 3.A 【解析】 【分析】设数列{}n a 的公比为q ,由23a =,313S =,列出关于1a 与q 的方程组,可得1a 与q 的值,可得答案. 【详解】解:设数列{}n a 的公比为q ,则()1213113a q a q q =⎧⎪⎨++=⎪⎩,解之得113a q =⎧⎨=⎩,或1913a q =⎧⎪⎨=⎪⎩ 所以5613243a =⨯=或56119327a ⎛⎫=⨯=⎪⎝⎭. 故选:A. 【点睛】本题主要考查等比数列基本量的计算及等比数列的性质,属于基础题,求出1a 与q 的值是解题的关键. 4.D 【解析】 【分析】设点()00,P x y ,可得220019x y +=,且011y -≤≤,可得PQ 的距离用0y 表示,由二次函数的性质可得其最大值. 【详解】解:设点()00,P x y ,可得220019x y +=,且011y -≤≤,则PQ ===≤max ||PQ =故选:D. 【点睛】本题主要考查椭圆的简单性质,属于基础题型,设点()00,P x y 并求出0y 的取值范围代入PQ 的距离公式进行计算是解题的关键.5.C 【解析】 【分析】根据中位数两侧的频率相等且为0.5进行计算可得答案.【详解】解:因有50%的居民用电量小于或等于中位数,居民用电量小于150度的频率为(0.00240.0036)500.30+⨯=,150~200度之间的频率为0.0060500.30⨯=,所以中位数为150~200度之间的23处,即215050183.33+⨯≈. 故选:C. 【点睛】本题主要考查频率分布直方图的性质及中位数的概念与性质,属于基础而题型. 6.D 【解析】程序运行时,变量值依次为 2.4,1y x ==,满足0x ≥, 1.2x =,1.2,0y x ==,满足0x ≥,0.6x =,0.6,1y x ==-,不满足0x ≥,执行10.60.4z x y =+=-+=-,故选D .7.A 【解析】 【分析】由三视图可得几何体的直观图,计算可得其体积. 【详解】解:由三视图知该几何体是高为1的四棱锥,其底面是边长为1的正方形,直观图如图,所以体积2111133V =⨯⨯=. 故选:A. 【点睛】本题主要考查由三视图还原为直观图及空间几何体的体积,其中得出该几何体是底面是边长为1的正方形,高为1的四棱锥是解题的关键. 8.B 【解析】 【分析】由已知可得()f x 为周期函数且2T =,作出函数()y f x =与y kx =的图象,由函数()y f x kx =-()0k >有六个零点,数形结合可求出k 的取值范围.【详解】解:由题意:()f x 为偶函数,故()()f x f x =-,且(1)(1)f x f x +=-, 故可得:(2)[1(1)]()()f x f x f x f x +=-+=-=, ()f x 为周期函数且2T =, 由[]0,1x ∈时,()21xf x =-,作出函数()y f x =与y kx =的图象,如图函数()y f x kx =-()0k >有六个零点, 当两图象在区间()5,7上有一个交点时满足条件,故可得:()()550770f k f k ⎧-⎪⎨-⎪⎩><,可得150170k k -⎧⎨-⎩><,1175k <<,所以11,75k ⎛⎫∈ ⎪⎝⎭.故选:B. 【点睛】本题主要考查函数的周期性与函数零点的性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题. 9.B 【解析】 【分析】因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,由双曲线的性质可得12AF x =-,12BF x =+,2F M ==,求出x 的值,可得12tan MF F ∠的值,可得直线l 的斜率. 【详解】解:如图,因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,因为212AF AF -=,则12AF x =-,又因为122BF BF -=,则12BF x =+,11||4AB BF AF =-=,则||||2AM BM ==,则2F M ==x =,所以2121tan F M MF F F M∠===l. 故选:B. 【点睛】本题主要考查双曲线的简单性质,直线与双曲的位置关系,考查了学生的计算能力,属于中档题. 10.C 【解析】 【分析】求出()g x 的解析式,画出函数()y g x =与函数y a =的图象,可得方程|()|g x a =在区间[]0,2π上所有根的和.【详解】解:()sin 2212sin 213f x x x x π⎛⎫=++=++ ⎪⎝⎭,向右平移6π个单位长度后得到()2sin 21g x x =+.画出函数()y g x =与函数y a =的图象如图,共有8个交点,其中交点A ,D 和B ,C 关于34x π=对称,交点E ,H 和F ,G 关于74x π=对称,所以32A D B C x x x x π+=+=,72E HFG x x x x π+=+=,故所有交点横坐标之和为10π,则方程|()|g x a =在区间[]0,2π上所有根的和为10π.故选:C. 【点睛】本题主要考查三角函数的平移及正弦函数的图像与性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题. 11.B 【解析】 【分析】根据已知条件的对称性,把四面体放入长方体中,可得2222x a b ==,2262x c -=,故可得4163A BCD V abc abc abc -=-=,由不等式的性质可得其最大值. 【详解】解析一:根据已知条件的对称性,把四面体放入长方体中,如图设OA a =,OB b =,OD c =,则222222233a b x a c b c ⎧+=⎪+=⎨⎪+=⎩,所以2222x a b ==,2262x c -=,又4163A BCD V abc abc abc -=-= 所以()()3222222222211112246936236439A BCD x x x V a b c x x x -⎛⎫++-==-≤= ⎪⨯⨯⎝⎭, 所以23A BCD V -≤,当且仅当22122x x =-,即2x =时取等号. 故选:B. 解析二:如图,分别取AB ,CD 的中点E ,F ,连接CE ,DE ,EF ,则有AB CE ^,AB DE ⊥,得AB ⊥平面CDE ,又CE DE =,所以EF CD ⊥,所以222234x DE AD AE =-=-,222232x EF DE DF =-=-,所以1132A BCD V x -=⨯,令t =(t ∈,2262x t =-,()23116263A BCD V t t t t -=-=-+,2()1V t t '=-+,当()0,1t ∈时,()0V t '>,当(t ∈时,()0V t '<,故当1t =,即2x =时,A BCD V -有最大值为12(1)133V =-+=. 故选:B. 【点睛】本题主要考查空间几何体体积的求法,涉及不等式的性质的相关知识,属于中档题. 12.D 【解析】 【分析】由题意可得()()0f x g x -=得,分离参数可得32143(1)(1)1a x x x =-----,设设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点,对()h t 求导,由导数的性质可得()h t 的极大值与极小值,可得实数a 的取值范围. 【详解】解:由题意可得()()0f x g x -=得,32143(1)(1)1a x x x =-----.设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点.2()383h t t t '=--,由()0h t '>得3t >或13t <-;由()0h t '<得133t -<<. 所以()h t 的极大值为114327h ⎛⎫-= ⎪⎝⎭,极小值为()318h =-,又()00h =, 所以当180a -<<或14027a <<时,函数2()(23)1f x ax a x a =--++与1()1g x x =-的图象有三个交点, 故选:D. 【点睛】本题主要考查利用导数求函数的单调性与极值,利用导数求解参数的取值范围,考查学生的综合计算能力,属于中档题. 13.9 【解析】 【分析】先求出a b +rr 与a mb -r r ,然后利用向量垂直的坐标表示列式求解可得m 的值.【详解】解:因为()()a b a mb +⊥-r r r r ,所以()()0a b a mb +⋅-=r r r r,即(3,1)(2,32)0m m ⋅-+=,即63320m m -++=,解得9m =, 故答案为:9. 【点睛】本题主要考查向量的坐标表示及向量垂直的性质,属于基础题型,注意运算准确. 14.80-【解析】 【分析】求出532x x ⎛⎫- ⎪⎝⎭展开式的通项公式,可得展开式为3x 时r 的值,代入可得展开式中3x 项的系数. 【详解】解:532x x ⎛⎫- ⎪⎝⎭展开式的通项公式为()531541552C (2)C rrrr r rr T x xx --+⎛⎫=-=- ⎪⎝⎭, 由1543r -=得3r =,所以532x x ⎛⎫- ⎪⎝⎭的展开式中3x 项的系数为335(2)80C -=-,故答案为:80-. 【点睛】本题主要考查二项展开式的性质及求二项展开式特定项的系数,属于基础题型. 15.2 【解析】 【分析】作出不等式组表示的平面区域,可得目标函数1yz x =+,表示平面区域内的点与()1,0D -连线的斜率,可得当取区域内的点取()0,2A 时斜率最大,可得最大值. 【详解】解:作出不等式组表示的平面区域,如图ABC ∆,目标函数1yz x =+,表示平面区域内的点与()1,0D -连线的斜率,由图可知,区域内的点取()0,2A 时斜率最大,所以max 2020(1)z -==--,故答案为:2. 【点睛】本题主要考查线性规划的基本概念及求线性目标函数的最值问题,属于基础题型,作出不等式组表示的平面区域后利用目标函数1yz x =+的几何意义求解是解题的关键.16.8+ 【解析】 【分析】由()cos (2cos cos )b c A a B C +=--,由正弦定理化简可得sin sin 2sin C B A +=,可得2b c a +=,又b c =,所以ABC ∆为等边三角形,可得21sin 2AOB ABC OACB S S S OA OB AB θ∆∆=+=⋅⋅四边形 ,化简可得8sin 3OACB S πθ⎛⎫=-+ ⎪⎝⎭四边形θ的取值范围,可得四边形OACB 面积的最大值.【详解】解:由()cos (2cos cos )b c A a B C +=--,以及正弦定理得:sin cos sin cos 2sin sin cos sin cos B A C A A A B A C +=--, sin cos sin cos sin cos sin cos 2sin B A A B C A A C A +++=,sin()sin()2sin A B A C A +++=,sin sin 2sin C B A +=由正弦定理得:2b c a +=,又b c =,所以ABC ∆为等边三角形,()2221sin 4sin 2cos 244AOB ABC OACB S S S OA OB AB OA OB OA OB θθθ∆∆=+=⋅⋅+=++-⋅⋅四边形4sin 8sin 3πθθθ⎛⎫=-+=-+ ⎪⎝⎭()0,θπ∈Q ,2,333πππθ⎛⎫∴-∈- ⎪⎝⎭,当且仅当32ππθ-=,即56πθ=时,OACB S 四边形取最大值8+. 【点睛】本题主要考查三角恒等变化及正弦定理、余弦定理解三角形及三角函数的性质,考查学生的综合计算能力,需牢记并灵活运用各定理解题,属于中档题. 17.(1)21n a n =-;(2)证明见解析 【解析】 【分析】(1)设数列{}n a 的公差为d ,由已知列出关于1a 与d 的方程组,解之可得数列{}n a 的通项公式;(2)由(1)可得2122n n n n a n b -==,由裂项相消法可得n T 的表达式,可证明3n T <. 【详解】解:(1)设数列{}n a 的公差为d ,则由已知得112572149a d a d +=⎧⎨+=⎩,解之得,11a =,2d =,所以1(1)21n a a n d n =+-=-.(2)2122n n n n a n b -==, 所以135212482n nn T -=++++L , 1113523212481622n n n n n T +--=+++⋯++, 两式相减得11111111212224822n n n n T -+-=+++++-L ,故212123333222n n n nn n T --+=--=-<. 【点睛】本题主要考查等差数列的基本性质及通项公式的求法、裂项相消法求数列的和,属于基础题型.18.(1)证明见解析;(2)存在,13A D = 【解析】 【分析】(1)易得11A C AC ⊥,同时由直三棱柱的性质可得平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥,故可得1A C ⊥平面1ABC ;(2)分别以AB u u u r ,AC u u u r,1AA u u u r方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -, 设1A D a =()03a ≤≤,则(),4,4D a ,()03a ≤≤,由空间向量法可得a 的值. 【详解】(1)由已知可得四边形11AAC C 为正方形,所以11A C AC ⊥, 因为几何体111ABC A B C -是直三棱柱, 所以平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥, 因为1AC AB A =I ,所以1A C ⊥平面1ABC ,(2)如图,由已知AB ,AC ,1AA 两两垂直,分别以AB u u u r ,AC u u ur ,1AA u u u r 方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -,则()0,0,0A ,()3,0,0B ,()0,4,0C ,设1A D a =()03a ≤≤,则(),4,4D a ,所以(3,0,4)BD a =-u u u r ,(,4,4)CD a =-u u u r,设平面BCD 的一个法向量为(),,n x y z =r,则(3,0,4)(,,)(3)40BD n a x y z a x z ⋅=-⋅=-+=u u u r r,()(,4,4),,440CD n a x y z ax y z ⋅=-⋅=-+=u u u r r,取4x =,得()4,3,3n a =-r,平面11AAC C 的一个法向量为()1,0,0m =r.所以cos,||||2m nm nm n⋅〈〉===r rr rr r解得3a=()0,3a∈,所以3a=-所以线段11A B上存在点D,且13A D=DBC与平面11AAC C所成的锐二面角为45︒.【点睛】本题主要考查线面垂直的判定定理与性质定理及二面角的求法,考查学生的空间想象能力与计算能力,属于中档题.19.(1)能;(2)710;(3)()11E X=,99()20D X=【解析】【分析】(1)计算2K的值,对照临界值表可得答案;(2)由分层抽样的知识可得,其中抽取的5人中,3人喜欢A型车外观设计,2人不喜欢A 型车外观设计,分别计算出从何5人中抽取3人的事件数与3人中至少有2人喜欢该集团A 型车外观设计的事件数,可得其概念;(3)从所有参与调查的人群中随机抽取1人,喜欢A型车外观设计的概率2201140020P==,可得11~20,20X B⎛⎫⎪⎝⎭,可得X的数学期望和方差.【详解】解:(1)22400(10080100120)4004.040 3.84122018020020099K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.05的前提下认为大众对A型车外观设计的喜欢与年龄有关.(2)从所抽取的中年人中利用分层抽样的方法再抽取5人,其中3人喜欢A型车外观设计,2人不喜欢A型车外观设计.记事件C表示选出的3人中至少有2人喜欢A型车外观设计,则()21332335710C C CP CC⨯+==.(III )从所有参与调查的人群中随机抽取1人,喜欢A 型车外观设计的概率2201140020P ==, 则11~20,20X B ⎛⎫ ⎪⎝⎭, 所以11()201120E X =⨯=,111199()201202020D X ⎛⎫=⨯⨯-=⎪⎝⎭. 【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、二项分布的期望与方差,考查学生的综合分析与计算能力,属于中档题.20.(1)24x y =()0y ≠;(2)证明见解析【解析】 【分析】(1)设(,)Q x y (0)y >,由到定点()0,1F 距离比到x 轴的距离大1,可得1y =,化简可得点Q 的轨迹C 的方程;(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立,设()11,A x y ,()22,B x y ,可得12x x +,12x x 的值,又24x y =,所以2x y '=,可得切线1l 的方程,同理可得切线2l 的方程,求出交点坐标,可得其在定直线上. 【详解】解:(1)设(,)Q x y (0)y >,1y =,化简得24x y =()0y ≠, 故轨迹C 的方程为24x y =()0y ≠.(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立得24440x kx k -+-=, 设()11,A x y ,()22,B x y ,则124x x k +=,1244x x k =-, 又24x y =,所以2x y '=, 所以切线1l 的方程为()1112x y x x y =-+, 即21124x x y x =-, 同理切线2l 的方程为22224x x y x =- 联立得1222x x x k +==,1214x x y k ==-. 两式消去k 得220x y --=,当1k =时,2x =,0y =,所以交点M 的轨迹为直线220x y --=,去掉()2,0点.因而交点M 在定直线上.【点睛】本题主要考查轨迹方程的求法,直线与抛物线的位置关系等知识,考查学生的综合计算能力,属于难题.21.(1)1a ≤;(2)2017201820192018<【解析】【分析】(1)求出()f x 的定义域,对其求导,令()0f x '=,得1x a =-,分1a ≤与1a >进行讨论,可得()0f x >恒成立时,a 的取值范围;(2)设ln(1)()x g x x +=(0)x >,对其求导,可得2ln(1)1()x x x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+,可得()g x 在()0,∞+上是减函数,故可得ln(20181)ln(20171)20182017++<,可得答案.【详解】解:(1)()f x 的定义域为1x >-,2211()1(1)(1)a x a f x x x x +-'=-=+++, 令()0f x '=,得1x a =-,①当1a ≤时,()0,x ∈+∞时,()0f x '>,所以()f x 单调递增,则()()00f x f >=, 所以1a ≤时满足条件,②当1a >时,()0,1x a ∈-时,()0f x '<,()1,x a ∈-+∞时,()0f x '>,得(1)(0)0f a f -<=,即存在1x a =-使得()0f x >不成立,故1a >不符合题意,所以满足条件的a 的取值范围为1a ≤.(2)设ln(1)()x g x x+=(0)x >, 则2ln(1)1()x x x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+, 所以当0x >时,()0g x '<,即()g x 在()0,∞+上是减函数,因为20182017>,所以ln(20181)ln(20171)20182017++< 即2017ln 20192018ln 2018<,即12018207l ln 201918n 20<所以2017201820192018<.【点睛】本题主要考查利用导数求函数的单调区间与极值,导数在恒成立求参问题中的应用,考查学生的综合计算能力,属于难题.22.(1)224x y x +=;(2【解析】【分析】(1)将方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得答案;(2))易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立,可得12t t +,12t t 的值,可得12121212121111||||t t t t AM BM t t t t t t +-+=+==-, 代入可得答案.【详解】解:(1)方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得:224x y x +=.(2)易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立得22121422t ⎛⎫⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 整理得230t t --=,所以121t t +=,123t t =-, 所以12121212121111||||t t t t AM BM t t t t t t +-+=+==-,123===. 【点睛】本题主要考查极坐标方程转化为直角坐标方程及简单曲线的极坐标方程的应用,考查学生的计算能力,属于基础题.23.(1){|2}x x >;(2)(,3][1,)-∞-⋃-+∞【解析】【分析】(1)将3a =代入()f x ,分2x -≤,23x -<<,3x ≥进行讨论,可得解不等式的解集; (2)由题意要使得()4f x ≥成立,即|||2|1x a x --+≥,由绝对值不等式的性质可得|||2||()(2)|2x a x x a x a --+≤--+=+,故只需21a +≥,可得a 的取值范围.【详解】解:(1)当3a =时,()3|2|3f x x x =-++-,()0f x <等价于23230x x x ≤-⎧⎨++-+<⎩或233230x x x -<<⎧⎨---+<⎩,或33230x x x ≥⎧⎨--+-<⎩, 解得x ∈∅或23x <<或3x ≥,所以原不等式的解集为{|2}x x >.(2)()4f x ≥成立,即|||2|1x a x --+≥成立. 因为|||2||()(2)|2x a x x a x a --+≤--+=+, 只需21a +≥,即21a +≥或21a +≤-,解得1a ≥-或3a ≤-.所以a 的取值范围是(,3][1,)-∞-⋃-+∞.【点睛】本题主要考查绝对值不等式的解法与性质,体现分类讨论与等价转化的思想,考查了运算求解能力,属于中档题.。
2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题(解析版)

2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题一、单选题1.集合{}2|320A x x x =-+>,则A =R ð( ) A .{|2x x >或1}x < B .{}|12x x << C .{|2x x ≥或1}x ≤ D .{|12}x x ≤≤【答案】D【解析】求出集合A 的值,可得A R ð的值. 【详解】解:由题意:{}{}2|320| 2 1A x x x x x x =-+>=><或,所以{}|12R C A x x =≤≤,故选:D. 【点睛】本题主要考查补集的概念,属于基础题,求出集合A 是解题的关键. 2.已知复数431iz i+=+,则z =( )A .2B .52C D .【答案】A【解析】根据复数的运算,化简复数7122z i =-,再利用复数模的运算公式,即可求解. 【详解】 由题意,复数()()()()43143771111222i i i i z i i i i +-+-====-++-,所以2z ===, 故选A . 【点睛】本题主要考查复数模长的计算,其中解答中根据复数的运算法则进行化简是解决本题的关键,着重考查了运算与求解能力,属于基础题.3.已知n S 为等比数列{}n a 的前n 项和,23a =,313S =,则6a =( )A .243或127B .81或181C .243D .127【答案】A【解析】设数列{}n a 的公比为q ,由23a =,313S =,列出关于1a 与q 的方程组,可得1a 与q 的值,可得答案.【详解】解:设数列{}n a 的公比为q ,则()1213113a q a q q =⎧⎪⎨++=⎪⎩,解之得113a q =⎧⎨=⎩,或1913a q =⎧⎪⎨=⎪⎩ 所以5613243a =⨯=或56119327a ⎛⎫=⨯= ⎪⎝⎭. 故选:A. 【点睛】本题主要考查等比数列基本量的计算及等比数列的性质,属于基础题,求出1a 与q 的值是解题的关键.4.已知P 为椭圆22:19x C y +=上一点,()0,4Q ,则P ,Q 两点间的最大距离是( ) A .3 B .5 C.D.【答案】D【解析】设点()00,P x y ,可得220019x y +=,且011y -≤≤,可得PQ 的距离用0y 表示,由二次函数的性质可得其最大值. 【详解】解:设点()00,P x y ,可得220019x y +=,且011y -≤≤,则PQ ===≤max ||PQ =故选:D. 【点睛】本题主要考查椭圆的简单性质,属于基础题型,设点()00,P x y 并求出0y 的取值范围代入PQ 的距离公式进行计算是解题的关键.5.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为( )A .150B .177.8C .183.3D .200【答案】C【解析】根据中位数两侧的频率相等且为0.5进行计算可得答案. 【详解】解:因有50%的居民用电量小于或等于中位数,居民用电量小于150度的频率为(0.00240.0036)500.30+⨯=,150~200度之间的频率为0.0060500.30⨯=,所以中位数为150~200度之间的23处,即215050183.33+⨯≈. 故选:C. 【点睛】本题主要考查频率分布直方图的性质及中位数的概念与性质,属于基础而题型. 6.已知[]x 表示不超过x 的最大整数,执行如图所示的程序框图,若输入的x 值为2.4,则输出z 的值为( )A .1.2B .0.6C .0.4D .0.4-【答案】D【解析】程序运行时,变量值依次为 2.4,1y x ==,满足0x ≥, 1.2x =,1.2,0y x ==,满足0x ≥,0.6x =,0.6,1y x ==-,不满足0x ≥,执行10.60.4z x y =+=-+=-,故选D .7.某几何体的三视图如图所示,则该几何体的体积为( )A .13B .1C .3D .32【答案】A【解析】由三视图可得几何体的直观图,计算可得其体积. 【详解】解:由三视图知该几何体是高为1的四棱锥,其底面是边长为1的正方形,直观图如图,所以体积2111133V =⨯⨯=. 故选:A. 【点睛】本题主要考查由三视图还原为直观图及空间几何体的体积,其中得出该几何体是底面是边长为1的正方形,高为1的四棱锥是解题的关键.8.已知偶函数()f x 满足(1)(1)f x f x +=-,且当[]0,1x ∈时,()21xf x =-,若函数()y f x kx =-()0k >有六个零点,则( ) A .15k =B .11,75k ⎛⎫∈ ⎪⎝⎭C .11,53k ⎛⎫∈ ⎪⎝⎭D .17k =【答案】B【解析】由已知可得()f x 为周期函数且2T =,作出函数()y f x =与y kx =的图象,由函数()y f x kx =-()0k >有六个零点,数形结合可求出k 的取值范围. 【详解】解:由题意:()f x 为偶函数,故()()f x f x =-,且(1)(1)f x f x +=-, 故可得:(2)[1(1)]()()f x f x f x f x +=-+=-=, ()f x 为周期函数且2T =,由[]0,1x ∈时,()21xf x =-,作出函数()y f x =与y kx =的图象,如图函数()y f x kx =-()0k >有六个零点, 当两图象在区间()5,7上有一个交点时满足条件,故可得:()()550770f k f k ⎧-⎪⎨-⎪⎩><,可得150170k k -⎧⎨-⎩><,1175k <<,所以11,75k ⎛⎫∈ ⎪⎝⎭.故选:B. 【点睛】本题主要考查函数的周期性与函数零点的性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题.9.已知双曲线22:13y C x -=的左右焦点分别为1F ,2F ,过1F 作斜率为k ()0k >的直线l 与双曲线C 的左右两支分别交于A ,B 两点,若22AF BF =,则直线l 的斜率为( ) A .10B 15 C .58D .35【答案】B【解析】因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,由双曲线的性质可得12AF x =-,12BF x =+,222164F M x x =-=-x 的值,可得12tan MF F ∠的值,可得直线l 的斜率.【详解】 解:如图,因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,因为212AF AF -=,则12AF x =-,又因为122BF BF -=,则12BF x =+,11||4AB BF AF =-=,则||||2AM BM ==,则222164F M x x =-=-10x =,所以2121615tan 510F M MF F F M∠===,即直线l 15. 故选:B. 【点睛】本题主要考查双曲线的简单性质,直线与双曲的位置关系,考查了学生的计算能力,属于中档题.10.函数()sin 2321f x x x =++的图象向右平移6π个单位长度后得到函数()g x 的图象,当()0,1a ∈时,方程|()|g x a =在区间[]0,2π上所有根的和为( ) A .6π B .8πC .10πD .12π【答案】C【解析】求出()g x 的解析式,画出函数()y g x =与函数y a =的图象,可得方程|()|g x a =在区间[]0,2π上所有根的和.【详解】解:()sin 23212sin 213f x x x x π⎛⎫=++=++ ⎪⎝⎭,向右平移6π个单位长度后得到()2sin 21g x x =+.画出函数()y g x =与函数y a =的图象如图,共有8个交点,其中交点A ,D 和B ,C 关于34x π=对称,交点E ,H 和F ,G 关于74x π=对称,所以32A D B C x x x x π+=+=,72E HFG x x x x π+=+=,故所有交点横坐标之和为10π,则方程|()|g x a =在区间[]0,2π上所有根的和为10π. 故选:C. 【点睛】本题主要考查三角函数的平移及正弦函数的图像与性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题.11.在四面体A BCD -中,3AC BC AD BD ====,AB CD x ==,则四面体A BCD -体积的最大值为( )A .12B .23C .13D .34【答案】B【解析】根据已知条件的对称性,把四面体放入长方体中,可得2222x a b ==,2262x c -=,故可得4163A BCD V abc abc abc -=-=,由不等式的性质可得其最大值. 【详解】解析一:根据已知条件的对称性,把四面体放入长方体中,如图设OA a =,OB b =,OD c =,则222222233a b xa cb c⎧+=⎪+=⎨⎪+=⎩,所以2222xa b==,2262xc-=,又4163A BCDV abc abc abc-=-=所以()()3222222222211112246936236439A BCDx x x V a b c x x x-⎛⎫++-==-≤=⎪⨯⨯⎝⎭,所以23A BCDV-≤,当且仅当22122x x=-,即2x=时取等号.故选:B.解析二:如图,分别取AB,CD的中点E,F,连接CE,DE,EF,则有AB CE^,AB DE⊥,得AB⊥平面CDE,又CE DE=,所以EF CD⊥,所以222234xDE AD AE=-=-,222232xEF DE DF=-=-,所以2113322A BCDxV x x-=⨯-,令232xt=-(3t∈,2262x t=-,()23116263A BCDV t t t t-=-=-+,2()1V t t'=-+,当()0,1t∈时,()0V t'>,当(3t∈时,()0V t'<,故当1t=,即2x=时,A BCDV-有最大值为12(1)133V=-+=.故选:B.【点睛】本题主要考查空间几何体体积的求法,涉及不等式的性质的相关知识,属于中档题. 12.函数2()(23)1f x ax a x a=--++与1()1g xx=-的图象有三个交点,则实数a的取值范围为()A.()18,0-B.1415,27⎛⎫- ⎪⎝⎭C.1418,27⎛⎫- ⎪⎝⎭D.14(18,0)0,27⎛⎫- ⎪⎝⎭U【解析】由题意可得()()0f x g x -=得,分离参数可得32143(1)(1)1a x x x =-----,设设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点,对()h t 求导,由导数的性质可得()h t 的极大值与极小值,可得实数a 的取值范围. 【详解】解:由题意可得()()0f x g x -=得,32143(1)(1)1a x x x =-----.设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点.2()383h t t t '=--,由()0h t '>得3t >或13t <-; 由()0h t '<得133t -<<. 所以()h t 的极大值为114327h ⎛⎫-= ⎪⎝⎭,极小值为()318h =-,又()00h =, 所以当180a -<<或14027a <<时,函数2()(23)1f x ax a x a =--++与1()1g x x =-的图象有三个交点, 故选:D. 【点睛】本题主要考查利用导数求函数的单调性与极值,利用导数求解参数的取值范围,考查学生的综合计算能力,属于中档题.二、填空题13.已知向量(2,3)a =r ,(1,2)b =-r ,若()()a b a mb +⊥-r r r r()m R ∈,则m =_____________.【答案】9【解析】先求出a b +rr 与a mb -r r ,然后利用向量垂直的坐标表示列式求解可得m 的值.【详解】解:因为()()a b a mb +⊥-r r r r ,所以()()0a b a mb +⋅-=r r r r,即(3,1)(2,32)0m m ⋅-+=,即63320m m -++=,解得9m =,【点睛】本题主要考查向量的坐标表示及向量垂直的性质,属于基础题型,注意运算准确.14.532 xx ⎛⎫-⎪⎝⎭的展开式中3x项的系数为____________(用数字作答).【答案】80-【解析】求出532xx⎛⎫-⎪⎝⎭展开式的通项公式,可得展开式为3x时r的值,代入可得展开式中3x项的系数.【详解】解:532xx⎛⎫-⎪⎝⎭展开式的通项公式为()531541552C(2)Crrr r r rrT x xx--+⎛⎫=-=-⎪⎝⎭,由1543r-=得3r=,所以532xx⎛⎫-⎪⎝⎭的展开式中3x项的系数为335(2)80C-=-,故答案为:80-.【点睛】本题主要考查二项展开式的性质及求二项展开式特定项的系数,属于基础题型. 15.已知变量x,y满足约束条件10220240x yx yx y--≤⎧⎪+-≥⎨⎪-+≥⎩,则目标函数1yzx=+的最大值为______.【答案】2【解析】作出不等式组表示的平面区域,可得目标函数1yzx=+,表示平面区域内的点与()1,0D-连线的斜率,可得当取区域内的点取()0,2A时斜率最大,可得最大值. 【详解】解:作出不等式组表示的平面区域,如图ABC∆,目标函数1yz x =+,表示平面区域内的点与()1,0D -连线的斜率,由图可知,区域内的点取()0,2A 时斜率最大,所以max 2020(1)z -==--,故答案为:2. 【点睛】本题主要考查线性规划的基本概念及求线性目标函数的最值问题,属于基础题型,作出不等式组表示的平面区域后利用目标函数1yz x =+的几何意义求解是解题的关键. 16.如图,ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足()cos (2cos cos )b c A a B C +=--,b c =,设AOB θ∠=()0θπ<<,24OA OB ==,则四边形OACB 面积的最大值为__________.【答案】83+【解析】由()cos (2cos cos )b c A a B C +=--,由正弦定理化简可得sin sin 2sin C B A +=,可得2b c a +=,又b c =,所以ABC ∆为等边三角形,可得213sin 2AOB ABC OACB S S S OA OB AB θ∆∆=+=⋅⋅四边形 ,化简可得8sin 533OACB S πθ⎛⎫=-+ ⎪⎝⎭四边形θ的取值范围,可得四边形OACB 面积的最大值. 【详解】解:由()cos (2cos cos )b c A a B C +=--,以及正弦定理得:sin cos sin cos 2sin sin cos sin cos B A C A A A B A C +=--, sin cos sin cos sin cos sin cos 2sin B A A B C A A C A +++=,sin()sin()2sin A B A C A +++=,sin sin 2sin C B A +=由正弦定理得:2b c a +=,又b c =,所以ABC ∆为等边三角形,()222133sin 4sin 2cos 244AOB ABC OACB S S S OA OB AB OA OB OA OB θθθ∆∆=+=⋅⋅+=++-⋅⋅四边形4sin 8sin 3πθθθ⎛⎫=-+=-+ ⎪⎝⎭()0,θπ∈Q ,2,333πππθ⎛⎫∴-∈- ⎪⎝⎭,当且仅当32ππθ-=,即56πθ=时,OACB S 四边形取最大值8+. 【点睛】本题主要考查三角恒等变化及正弦定理、余弦定理解三角形及三角函数的性质,考查学生的综合计算能力,需牢记并灵活运用各定理解题,属于中档题.三、解答题17.已知n S 为等差数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式; (2)设2nn n a b =,n T 为数列{}n b 的前n 项和,求证:3n T <. 【答案】(1)21n a n =-;(2)证明见解析【解析】(1)设数列{}n a 的公差为d ,由已知列出关于1a 与d 的方程组,解之可得数列{}n a 的通项公式; (2)由(1)可得2122n n n n a n b -==,由裂项相消法可得n T 的表达式,可证明3n T <. 【详解】解:(1)设数列{}n a 的公差为d ,则由已知得112572149a d a d +=⎧⎨+=⎩,解之得,11a =,2d =,所以1(1)21n a a n d n =+-=-.(2)2122n n n n a n b -==, 所以135212482n nn T -=++++L , 1113523212481622n n n n n T +--=+++⋯++, 两式相减得11111111212224822n n n n T -+-=+++++-L ,故212123333222n n n nn n T --+=--=-<. 【点睛】本题主要考查等差数列的基本性质及通项公式的求法、裂项相消法求数列的和,属于基础题型.18.如图,在直三棱柱111ABC A B C -中,4AC =,3AB =,14AA =,AB AC ⊥.(1)证明:1A C ⊥平面1ABC ;(2)在线段11A B 上是否存在点D ,使得平面DBC 与平面11AAC C 所成的锐二面角为45︒,若存在,求出线段1A D 的长度;若不存在,说明理由.【答案】(1)证明见解析;(2)存在,137A D =【解析】(1)易得11A C AC ⊥,同时由直三棱柱的性质可得平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥,故可得1A C ⊥平面1ABC ;(2)分别以AB u u u r ,AC u u ur ,1AA u u u r 方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -,设1A D a =()03a ≤≤,则(),4,4D a ,()03a ≤≤,由空间向量法可得a 的值. 【详解】(1)由已知可得四边形11AAC C 为正方形,所以11A C AC ⊥, 因为几何体111ABC A B C -是直三棱柱, 所以平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥, 因为1AC AB A =I ,所以1A C ⊥平面1ABC ,(2)如图,由已知AB ,AC ,1AA 两两垂直,分别以AB u u u r ,AC u u ur ,1AA u u u r 方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -,则()0,0,0A ,()3,0,0B ,()0,4,0C ,设1A D a =()03a ≤≤,则(),4,4D a ,所以(3,0,4)BD a =-u u u r ,(,4,4)CD a =-u u u r,设平面BCD 的一个法向量为(),,n x y z =r,则(3,0,4)(,,)(3)40BD n a x y z a x z ⋅=-⋅=-+=u u u r r,()(,4,4),,440CD n a x y z ax y z ⋅=-⋅=-+=u u u r r,取4x =,得()4,3,3n a =-r,平面11AAC C 的一个法向量为()1,0,0m =r. 所以22cos ,||||634m n m n m n a a ⋅〈〉===-+r rr rr r 解得37a =±()0,3a ∈,所以37a =-所以线段11A B 上存在点D ,且137A D =DBC 与平面11AAC C 所成的锐二面角为45︒. 【点睛】本题主要考查线面垂直的判定定理与性质定理及二面角的求法,考查学生的空间想象能力与计算能力,属于中档题.19.新能源汽车正以迅猛的势头发展,越来越多的企业不断推出纯电动产品,某汽车集团要对过去一年推出的四款纯电动车型中销量较低的A 车型进行产品更新换代.为了了解这种车型的外观设计是否需要改进,该集团委托某调查机构对大众做问卷调查,并从参与调查的人群中抽取了400人进行抽样分析,得到如下表格:(单位:人)喜欢不喜欢合计(1)根据表中数据,能否在犯错误的概率不超过0.05的前提下认为大众对A 型车外观设计的喜欢与年龄有关?(2)现从所抽取的中年人中按是否喜欢A 型车外观设计利用分层抽样的方法抽取5人,再从这5人中随机选出3人赠送五折优惠券,求选出的3人中至少有2人喜欢该集团A 型车外观设计的概率;(3)将频率视为概率,从所有参与调查的人群中随机抽取20人赠送礼品,记其中喜欢A 型车外观设计的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(1)能;(2)710;(3)()11E X =,99()20D X =【解析】(1)计算2K 的值,对照临界值表可得答案;(2)由分层抽样的知识可得,其中抽取的5人中,3人喜欢A 型车外观设计,2人不喜欢A 型车外观设计,分别计算出从何5人中抽取3人的事件数与3人中至少有2人喜欢该集团A 型车外观设计的事件数,可得其概念;(3)从所有参与调查的人群中随机抽取1人,喜欢A 型车外观设计的概率2201140020P ==,可得11~20,20X B ⎛⎫ ⎪⎝⎭,可得X 的数学期望和方差.【详解】解:(1)22400(10080100120)4004.040 3.84122018020020099K ⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.05的前提下认为大众对A 型车外观设计的喜欢与年龄有关.(2)从所抽取的中年人中利用分层抽样的方法再抽取5人,其中3人喜欢A 型车外观设计,2人不喜欢A 型车外观设计.记事件C 表示选出的3人中至少有2人喜欢A 型车外观设计,则()21332335710C C C P C C ⨯+==. (III )从所有参与调查的人群中随机抽取1人,喜欢A 型车外观设计的概率2201140020P ==, 则11~20,20X B ⎛⎫ ⎪⎝⎭, 所以11()201120E X =⨯=,111199()201202020D X ⎛⎫=⨯⨯-=⎪⎝⎭. 【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、二项分布的期望与方差,考查学生的综合分析与计算能力,属于中档题.20.已知动点Q 在x 轴上方,且到定点()0,1F 距离比到x 轴的距离大1. (1)求动点Q 的轨迹C 的方程;(2)过点()1,1P 的直线l 与曲线C 交于A ,B 两点,点A ,B 分别异于原点O ,在曲线C 的A ,B 两点处的切线分别为1l ,2l ,且1l 与2l 交于点M ,求证:M 在定直线上.【答案】(1)24x y =()0y ≠;(2)证明见解析【解析】(1)设(,)Q x y (0)y >,由到定点()0,1F 距离比到x 轴的距离大1,可得1y =,化简可得点Q 的轨迹C 的方程;(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立,设()11,A x y ,()22,B x y ,可得12x x +,12x x 的值,又24x y =,所以2xy '=,可得切线1l 的方程,同理可得切线2l 的方程,求出交点坐标,可得其在定直线上.【详解】解:(1)设(,)Q x y (0)y >,1y =,化简得24x y =()0y ≠, 故轨迹C 的方程为24x y =()0y ≠.(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立得24440x kx k -+-=, 设()11,A x y ,()22,B x y , 则124x x k +=,1244x x k =-,又24x y =,所以2x y '=,所以切线1l 的方程为()1112x y x x y =-+, 即21124x x y x =-,同理切线2l 的方程为22224x x y x =-联立得1222x x x k +==,1214x xy k ==-.两式消去k 得220x y --=, 当1k =时,2x =,0y =,所以交点M 的轨迹为直线220x y --=,去掉()2,0点. 因而交点M 在定直线上. 【点睛】本题主要考查轨迹方程的求法,直线与抛物线的位置关系等知识,考查学生的综合计算能力,属于难题.21.已知函数()ln(1)1axf x x x =+-+()a R ∈. (1)若当0x >时,()0f x >恒成立,求a 的取值范围; (2)比较20172019与20182018的大小.【答案】(1)1a ≤;(2)2017201820192018<【解析】(1)求出()f x 的定义域,对其求导,令()0f x '=,得1x a =-,分1a ≤与1a >进行讨论,可得()0f x >恒成立时,a 的取值范围;(2)设ln(1)()x g x x+=(0)x >,对其求导,可得2ln(1)1()xx x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+,可得()g x 在()0,∞+上是减函数,故可得ln(20181)ln(20171)20182017++<,可得答案.【详解】解:(1)()f x 的定义域为1x >-,2211()1(1)(1)a x af x x x x +-'=-=+++, 令()0f x '=,得1x a =-,①当1a ≤时,()0,x ∈+∞时,()0f x '>,所以()f x 单调递增,则()()00f x f >=, 所以1a ≤时满足条件,②当1a >时,()0,1x a ∈-时,()0f x '<,()1,x a ∈-+∞时,()0f x '>, 得(1)(0)0f a f -<=,即存在1x a =-使得()0f x >不成立,故1a >不符合题意, 所以满足条件的a 的取值范围为1a ≤. (2)设ln(1)()x g x x+=(0)x >, 则2ln(1)1()xx x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+, 所以当0x >时,()0g x '<,即()g x 在()0,∞+上是减函数, 因为20182017>,所以ln(20181)ln(20171)20182017++<即2017ln 20192018ln 2018<,即12018207l ln 201918n 20< 所以2017201820192018<.【点睛】本题主要考查利用导数求函数的单调区间与极值,导数在恒成立求参问题中的应用,考查学生的综合计算能力,属于难题.22.已知极坐标系的极点与直角坐标系的原点重合,轴与x 轴的正半轴重合.曲线C 的极坐标方程:4cos ρθ=,直线l的参数方程22112x y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于不同的两点A ,B ,()2,1-M ,求11||||AM BM +的值.【答案】(1)224x y x +=;(2)3【解析】(1)将方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得答案;(2))易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立,可得12t t +,12t t 的值,可得12121212121111||||t t t t AM BM t t t t t t +-+=+==-, 代入可得答案. 【详解】解:(1)方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得:224x y x +=.(2)易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立得2212142222t t ⎛⎫⎛⎫⎛⎫-+-+=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭整理得230t t --=, 所以121t t +=,123t t =-,所以12121212121111||||t t t t AM BM t t t t t t +-+=+==-,12===.【点睛】本题主要考查极坐标方程转化为直角坐标方程及简单曲线的极坐标方程的应用,考查学生的计算能力,属于基础题.23.已知函数()3|2|||f x x x a =-++-a R ∈. (1)当3a =时,解不等式()0f x <;(2)若存在实数x ,使得()4f x ≥成立,求a 的取值范围. 【答案】(1){|2}x x >;(2)(,3][1,)-∞-⋃-+∞【解析】(1)将3a =代入()f x ,分2x -≤,23x -<<,3x ≥进行讨论,可得解不等式的解集;(2)由题意要使得()4f x ≥成立,即|||2|1x a x --+≥,由绝对值不等式的性质可得|||2||()(2)|2x a x x a x a --+≤--+=+,故只需21a +≥,可得a 的取值范围. 【详解】解:(1)当3a =时,()3|2|3f x x x =-++-,()0f x <等价于23230x x x ≤-⎧⎨++-+<⎩或233230x x x -<<⎧⎨---+<⎩,或33230x x x ≥⎧⎨--+-<⎩, 解得x ∈∅或23x <<或3x ≥, 所以原不等式的解集为{|2}x x >.(2)()4f x ≥成立,即|||2|1x a x --+≥成立. 因为|||2||()(2)|2x a x x a x a --+≤--+=+, 只需21a +≥,即21a +≥或21a +≤-, 解得1a ≥-或3a ≤-.所以a 的取值范围是(,3][1,)-∞-⋃-+∞. 【点睛】本题主要考查绝对值不等式的解法与性质,体现分类讨论与等价转化的思想,考查了运算求解能力,属于中档题.第 21 页共 21 页。
2019年全国I卷理科数学高考真题答案及解析

2019年全国I 卷理科数学高考试题答案及解析一、选择题:本题共12小题,第小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合},06|{},24|{2<--=<<-=x x x N x x M 则=⋂N M ________。
A. }34|{<<-x x B. }24|{-<<-x x C. }22|{<<-x x D. }32|{<<x x 解析:对于N 集合,0)2)(3(62<+-=--x x x x ,可知不等式的解为}32|{<<-x x ,对于M 和N 取交集,可以画图示意,左边-2与-4,取大的-2,右边2与3取小的2,也即交集为}22|{<<-x x ,即C 。
点评:本题是考查集合的运算题,考生要对集合的交集、并集比较熟悉,对于不等式的解也要很熟练,对于N 集合用十字交叉法比较好,可以轻松地解出-2和3两个特征解,然后进行交集运算即可,同学们对这种十字交叉解不等式,平时多积累一些分解方法,如-6=-2*3=-3*2=-1*6=-6*1,这样可以积省不少时间,这种送分题要快要准,高考比能力也比速度,成绩稍好一点的同学30秒内要把这个答案看出来。
2、设复数z 满足|z-i|=1,z 在复平面内对应的点(x,y ),则_______。
A. 1)1(22=++y x B.1)1(22=+-y x C.1)1(22=-+y x D.1)1(22=++y x解析:设z=a+bi,代入原等式中,|a+bi-i|=|a+(b-1)i |=1,对于复数来说运算符号“| |”是指模长,也就是1)1(22=-+b a ,换成任意数x,y 即可,正确答案C 。
点评:把题是把复数与复平面结合起来,实际上复数是很抽象的,但把它放在复平面内就很好理解,复平面类似于直角坐标系,实部代表X 轴,虚部代表Y 轴,直角坐标系的结论都可以拿来用。
百校联盟2019届TOP20三月联考(全国I卷)理科数学

百校联盟2019届TOP20三月联考(全国I 卷)理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}|ln 320A x x =-<,{}2|20B x x x =-≤,则( )A .AB = B .A B ⊆C .A B ⊇D .A B =∅I2.设复数z 满足()112z i i +=-+,则z =( )A .1i +B .1i -+C .1i --D .1i -3.下列函数是奇函数,且在区间()0,+∞上是增函数的是( )A .ln ||y x =B .2y x -=C .1y x x=+ D .x x y e e -=- 4.已知双曲线1C :22221x y a b-=(0a >,0b >)的右焦点为F ,以F 为圆心,a 为半径的圆与双曲线C 的渐近线相切,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±5. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .23π+B .23π+C .2π+D .423π+ 6. 已知曲线22||||x y x y +=+所围成的区域记为1,曲线221x y +=所围成的区域记为II ,曲线221x y +=与坐标轴的交点分别为A ,B ,C ,D 四边形ABCD 所围成的区域记为III ,在区域I 中随机取一点,此点取自区域II ,的概率分别记为1p ,2p ,则( )A .12p p =B .121p p +=C .121p p +>D .121p p +<7. 在平面直角坐标系xOy 中,已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点(),4P x -(0x ≠),且cos 5x α=,则sin 22πα⎛⎫+ ⎪⎝⎭的值为( )A .725- B .725 C .1225 D .1225±8.如图所示的程序框图所表示的算法的功能是( )A .计算数列(){}12n n -的前2019项和B .计算数列(){}12n n -的前2018项和C .计算数列(){}112n n +-的前2019项和D .计算数列(){}112n n +-的前2018项和9.已知212cos sin 2433ππαα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则sin 23πα⎛⎫-= ⎪⎝⎭( )A.3- B.3 C .23- D .2310.若x ,y 满足约束条件10220,x y x y y mx +-≥⎧⎪-+≥⎨⎪≥⎩且2z x y =+的最大值为4,则实数m 的值为()。
百校联盟2019届高中三年级TOP20十二月联考(全国Ⅰ卷)数学(理)试题

百校联盟2019届高三TOP20十二月联考(全国Ⅰ卷)数学(理)试题一、选择题(本大题共12小题)1.已知集合A={A|A=√2−A},A={A|A=1+A A},则A∩A=()A. [2,+∞)B. (−∞,2]C. [1,2]D. (1,2]【答案】D【解析】解:∵集合A={A|A=√2−A}={A|A≤2},A={A|A=1+A A}={A|A>1},∴A∩A={A|1<A≤2}=(1,2].故选:D.先分别求出集合A,B,由此能求出A∩A.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.已知复数z满足A⋅(1−A)=A+2A,若z是纯虚数,则实数m的值为()A. 1B. −1C. 2D. −2【答案】C【解析】解:A⋅(1−A)=A+2A,∴A⋅(1−A)(1+A)=(A+2A)(1+A)∴2A=A−2+(A+2)A,∴A=A−22+A+22A,则{A+2≠0A−2=0,故A=2,故选:C.利用复数的运算法则、共轭复数的定义即可得出本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.自宋朝以来,折扇一直深受文人雅士的喜爱,在扇面(折扇由扇骨和扇面组成)上题字作画是生活高雅的象征,现有一位折扇爱好者准备在如图所示的扇面上题字,由于突然停电,不慎将一滴墨汁落入折扇所在区域,则墨汁恰好落入扇面部分的概率为(). . .第2页,共16页A. 47B. 34C. 1649D. 4049【答案】D【解析】解:A大扇形=12AA 2,A 小扇形=12AA 2, ∵A =14,A =6,∴墨汁恰好落入扇面部分的概率为:A =A 2−A 2A2=1−36196=1−949=4049.故选:D .A 大扇形=12AA 2,A 小扇形=12AA 2,由此能求出墨汁恰好落入扇面部分的概率.本题考查概率的求法,考查扇形面积、几何概型等基础知识,考查运算求解能力,考查数形结合思想,是基础题.4. 记等比数列{A A }的前n 项和为A A ,若A 3=74,A 2=12,则数列{A A }的公比A =()A. 2B. 12C. 2或12D. 2或1【答案】C【解析】解:由题意,A 3=A 1+A 2+A 3=74;A 2=12,A2A =A 1,A 2A =A 3即12+12A +12A =74; 解得:A =2或A =12 故选:C .根据A 3=A 1+A 2+A 3,结合通项公式可得公比q ;本题主要考查等比数列的应用,根据等比通项建立条件关系求出公比是解决本题的关键.5. 已知函数A (A )是定义在R 上的偶函数,且在(−∞,0)上单调递减,则A (A )的解析式可能为( )A. A (A )=A A −A −AB. A (A )=lg 1|A | C. A (A )=|sin A | D. A (A )=2√A 2+1【答案】D【解析】解:根据题意,依次分析选项:对于A,A(A)=A A−A−A是奇函数,不符合题意;对于B,A(A)=lg1|A|,其定义域不是R,不符合题意;对于C,A(A)=|sin A|,在(−∞,0)上不具有单调性,不符合题意;对于D,A(A)=2√A2+1,是定义在R上的偶函数,且在(−∞,0)上单调递减,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题.6.若a是常数,(A−2A)7(1+A)4的展开式中各项系数和为−16,则A4A2的系数为()A. 560B. −1680C. 336D. 3360【答案】D【解析】解:依题意令A=A=1得(A−2)7(1+1)4=−16,解得A=1,∴(1−2A)7(1+A)4的展开式中,A4A2的系数为:A74(−2)4A42=3360,故选:D.令A=A=1可得展开式中各项系数和,解得A=1,再用通项公式可得.本题考查了二项式定理,属中档题.7.如图,网格纸上小正方形的边长为1,粗线部分是某几何体的三视图,则该几何体的表面积为()A. 76+4√3+4√6B. 76+4√3+2√6C. 74+2√3+4√6D. 74+2√3+2√6【答案】C【解析】解:将三视图还原,可知几何体由一个棱长为4的正方体截去两个三棱锥得到,如图所示,该几何体的表面积A=16×6−12×2×2×3−12×2×4×2−12×4×4+√3 4×8+12×4√2×2√3=74+2√3+4√6. . .第4页,共16页故选:C .将三视图还原,可知几何体由一个棱长为4的正方体截去两个三棱锥得到,利用几何体的特征可得几何体的表面积本题考查了常见几何体的三视图和结构特征,属于基础题.8. 运行如图所示的程序框图,则输出k 的值为( )A. 3B. 4C. 5D. 6【答案】B【解析】解:当A =1,A =23时,满足|AA −89|≥19,故A =23,A =2,A =89 当A =23,A =89时,满足|AA −89|≥19,故A =89,A =3,A =89 当A =89,A =89时,满足|AA −89|≥19,故A =89,A =4,A =6481 当A =89,A =6481时,不满足|AA −89|≥19, 故输出的k 值为4, 故选:B .根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量k 的值,模拟程序的运行过程,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.. . .9. 已知函数A (A )=2cos (A 2−A )cos (A 3+A )+√32在区间[−A6,A ]上单调递增,则实数t 的取值围为( )A. (0,A12]B. (−A 6,A12]C. (−A 6,A2]D. (0,A2]【答案】B【解析】解:依题意,A (A )=2sin A (12cos A −√32sin A )+√32=sin A cos A −√3sin 2A +√32=12sin 2A −√3×1−cos 2A 2+√32=sin (2A +A3), 当A ∈[−A 6,A ]时,2A +A3∈[0,2A +A 3]因为A =sin A 在[−A 2,A2]上单调递增,且A (A )在[−A 6,A ]上单调递增,所以[0,2A +A 3]⊆[−A 2,A 2],即{A >−A62A +A 3≤A 2, 解得−A 6<A ≤A 12故选:B .先化简A (A )为sin (2A +A3),再根据正弦函数的增区间可解得. 本题考查了正弦函数的单调性.属中档题.10. 已知抛物线A =14A 2的焦点F ,直线l 过点F 且与抛物线相交于M ,N 两点,M ,N两点在y 轴上的投影分别为C ,D ,若|AA |≤8√3,则直线l 斜率的最大值是( )A. √3B. 2C. 3D. 3√3【答案】A【解析】解:因为抛物线A 2=4A 的焦点A (0,1), 所以设直线方程为A =AA +1, 由{A =AA +1A 2=4A,解得A 2−4AA −4=0,设A (A 1,A 1),A (A 2,A 2),所以|AA |=|A 1−A 2|=|A (A 1−A 2)|=|A |√(A 1+A 2)2−4A 1A 2=|A |⋅√16A 2+16≤8√3, 解得−√3≤A ≤√3,所以直线l 斜率的最大值是√3,第6页,共16页故选:A .设直线方程为A =AA +1,由{A =AA +1A 2=4A,解得A 2−4AA −4=0,根据韦达定理和弦长公式,即可求出.本题考查了直线和抛物线的位置关系,考查了弦长公式,属于中档题11. 已知奇函数A (A )和其导函数A′(A )的定义域均为R ,当A ∈(0,+∞)时,3A (A )+AA′(A )<0,则不等式(A −1)3A (A −1)−8A 3A (2A )<0的解集为( )A. (−∞,−1)B. (−1,13)C. (−∞,−1)∪(0,13)D. (−1,0)∪(13,+∞)【答案】B【解析】解:令A (A )=A 3A (A ),A ∈(0,+∞)时,A′(A )=A 2[3A (A )+AA′(A )]<0,故函数A (A )是(0,+∞)上的减函数, ∵A (A )是奇函数, ∴A (A )是偶函数,由不等式(A −1)3A (A −1)−8A 3A (2A )<0, 得A (A −1)<A (2A ),故|A −1|>|2A |,解得:−1<A <13, 故选:B .令A (A )=A 3A (A ),求出函数的导数,得到函数A (A )的单调性和奇偶性,得到关于x 的不等式,解出即可.本题考查了函数的单调性,奇偶性问题,考查导数的应用以及转化思想,是一道中档题.12. 已知各项均不为0的数列{A A }满足A 1=−199,A A +1(2A A +1)=A A ,若A A =1A 2A −1A 2A−1A 2A A 2A +1,则当数列{A A }的前n 项和取得最大值时,n 的值是( )A. 24B. 25C. 32D. 33【答案】B【解析】解:由A A +1(2A A +1)=A A ,可得:A A +1=A A 2A A+1,两边取倒数可得:1A A +1=2+1A A,即1AA +1−1A A=2,1A 1=−99.∴数列{1A A}为等差数列,公差为2,首项为−99.∴1A A=−99+2(A −1)=2A −101.. . .∴A A =1A 2A −1A 2A−1A 2A A 2A +1=(4A −2−101)(4A −101)−(4A −101)(4A +2−101)=−4(4A −101)=−16A +404.令A A =−16A +404≥0,解得A ≤25+14. ∴当数列{A A }的前n 项和取得最大值时,n 的值是25. 故选:B .由A A +1(2A A +1)=A A ,可得:A A +1=A A2A A+1,两边取倒数可得:1AA +1=2+1A A,即1AA +1−1A A=2,1A1=−99.利用等差数列的通项公式可得1A A.代入A A =1A2A −1A 2A−1A 2A A 2A +1,再利用等差数列的通项公式与单调性即可得出. 本题考查了数列递推关系、等差数列的通项公式与单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13. 已知A ⃗⃗⃗⃗ 是单位向量,若A ⃗⃗⃗⃗ ⋅(A ⃗⃗⃗⃗ −A ⃗⃗⃗⃗ )=0,(2A ⃗⃗⃗⃗ +A ⃗⃗⃗⃗ )⋅(2A ⃗⃗⃗⃗ −A ⃗⃗⃗⃗ )=0,则A ⃗⃗⃗⃗ 与A⃗⃗⃗⃗ 的夹角为______. 【答案】A 3【解析】解:∵A⃗⃗⃗⃗ 是单位向量; ∴A ⃗⃗⃗⃗ ⋅(A ⃗⃗⃗⃗ −A ⃗⃗⃗⃗ )=A ⃗⃗⃗⃗ 2−A ⃗⃗⃗⃗ ⋅A ⃗⃗⃗⃗ =1−A ⃗⃗⃗⃗ ⋅A⃗⃗⃗⃗ =0; ∴A ⃗⃗⃗⃗ ⋅A⃗⃗⃗⃗ =1 又(2A ⃗⃗⃗⃗ +A ⃗⃗⃗⃗ )⋅(2A ⃗⃗⃗⃗ −A ⃗⃗⃗⃗ )=4A ⃗⃗⃗⃗ 2−A ⃗⃗⃗⃗ 2=4−A ⃗⃗⃗⃗ 2=0 ∴|A ⃗⃗⃗⃗ |=2; ∴cos <A ⃗⃗⃗⃗ ,A⃗⃗⃗⃗ >=A ⃗⃗⃗⃗ ⋅A ⃗⃗⃗⃗ |A⃗⃗⃗⃗ ||A ⃗⃗⃗⃗ |=12;又0≤<A ⃗⃗⃗⃗ ,A ⃗⃗⃗⃗ >≤A ; ∴A ⃗⃗⃗⃗ ,A ⃗⃗⃗⃗ 的夹角为A 3. 故答案为:A3.根据A ⃗⃗⃗⃗ 是单位向量,进行数量积的运算即可求出A ⃗⃗⃗⃗ ⋅A ⃗⃗⃗⃗ =1,|A ⃗⃗⃗⃗ |=2,从而可求得cos <A ⃗⃗⃗⃗ ,A ⃗⃗⃗⃗ >=12,这样即可得出A ⃗⃗⃗⃗ ,A⃗⃗⃗⃗ 的夹角. 考查数量积的运算,以及向量夹角的余弦公式.14. 已知实数x ,y 满足不等式组{A −A ≤0A +A −4≤02A −A +4≥0,则A =2A +A −6A −3的取值围是______.【答案】[0,187]【解析】解:由题意,作出可行域.可行域的顶点A(2,2),A(−4,−4),A(0,4)的三角形区域,A=2A+A−6A−3=2+AA−3,AA−3表示可行域的点与A(3,0)连线的斜率,过A AA≤AA−3≤A AA,得:−2≤AA−3≤47,故0≤A≤187.故答案为:[0,187].作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用z的几何意义以及斜率的计算,通过数形结合是解决本题的关键.15.双曲线C:A 2A2−A2A2=1(A>0,A>0)的左右焦点分别为A1,A2,点A为双曲线C右支上一点,直线AA1与y轴交于点B,且|A1A|=3|AA|,AA1⊥AA2,则双曲线C的离心率为______.【答案】√3+√6【解析】解:设AA=A.AA2=A,则AA1=3A.∵△A1AA∽△A1AA2,∴A3A =4A2A⇒A2=6A2,A=√6A6.又4A−A=2A,∴A=2√6A3−2A,又(4A)2+A2=4A2⇒A2−2√6AA+3A2=0.⇒A2−2√6A+3=0.∴A=√6±√3,∵A>1,∴A=√6+√3,故答案为:√6+√3.设AA=A.AA2=A,则AA1=3A.⇒A2=6A2.A=√6A6,又4A−A=2A,(4A)2+A2=4A2⇒A2−2√6AA+3A2=0⇒A2−2√6A+3=0,即可求解.本题考查双曲线的定义、方程和性质,主要考查离心率的求法,运用直角三角形的勾股定理是解题的关键.16.如图,在三校锥A−AAA中,AA⊥平面ABC,AA=4,cos∠AAA=13,若三棱锥A−AAA外接球的表面积为52A,则三棱锥A−AAA体积的最大值为______.第8页,共16页【答案】32√23【解析】解:设三棱锥A−AAA的外接球的球心为O,半径为R,△AAA的外接圆半径为r,则4AA2=52A,得A=√13,又A2=A2+(AA2)2,∴13=A2+4,即A=3.又AAsin∠AAA=2A,∴AA=6sin∠AAA=4√2.∴32=AA2+AA2−2AA⋅AA⋅cos∠AAA=AA2+AA2−23AA⋅AA,则AA⋅AA≤24.三棱锥A−AAA体积A=13⋅A△AAA⋅AA≤13×12×24×2√23×4=32√23.∴三棱锥A−AAA体积的最大值为32√23.故答案为:32√23.设三棱锥A−AAA的外接球的球心为O,半径为R,△AAA的外接圆半径为r,由已知求得R,再由A2=A2+(AA2)2求解r,利用正弦定理求得AB,再由余弦定理及基本不等式求得AA⋅AA的最大值,则三棱锥A−AAA体积的最大值可求.本题考查三棱锥体积最值的求法,考查正弦定理及余弦定理的应用,是中档题.三、解答题(本大题共7小题,共82.0分)17.在△AAA中,角A,B,C所对的边分别为a,b,c,A为锐角,且△AAA的面积为A24.(Ⅰ)若A sin A=A sin A,求A;(Ⅱ)求A2+A2AA的取值围.【答案】解:(Ⅰ)∵A△AAA=A24,∴12AA sin A=A24∴A2=2AA sin A,由正弦定理得A sin A=2A sin A sin A,∵A sin A=A sin A,∴sin A=12,又∵0<A<A2,∴A═A6;(Ⅱ)由余弦定理得A2=A2+A2−2AA cos A,∴A2+A2=A2+2AA cos A=2AA sin A+2AA cos A,∴A2+A2AA =2sin A+2cos A=2√2sin(A+A4),. . .∵0<A<A2,∴A4<A+A4<3A4,∴√2 2<sin(A+A4)≤1,∴2<2√2sin(A+A4)≤2√2.∴A2+A2AA的取值围为(2,2√2].【解析】(Ⅰ)由三角形面积公式与正弦定理可得sin A=12,又A是锐角,可得A═A6;(Ⅱ)由余弦定理与A2=2AA sin A把A2+A2AA 化为2√2sin(A+A4),进一步由A的围求出整个式子的围.本题考查了正弦定理、余弦定理、三角形面积公式,考查了推理能力与计算能力,属于中档题.18.为调查某校学生每周体育锻炼落实的情况,采用分层抽样的方法,收集100位学生每周平均锻炼时间的样本数据(单位:A).根据这100个样本数据,副制作出学生每周平均锻炼时间的频率分布直方图(如图所示).(Ⅰ)估计这100名学生每周平均锻炼时间的平均数A和样本方差A2(同一组中的数据用该组区间的中点值作代表);(Ⅱ)由频率分布直方图知,该校学生每周平均锻炼时间Z近似服从正态分布A(A,A2),其中A近似为样本平均数A,A2近似为样本方差A2.(Ⅰ)求A(0.8<A<8.3);(Ⅱ)若该校共有5000名学生,记每周平均锻炼时间在区间(0.8,8.3)的人数为A,试求A(A).附:√6.16≈2.5,若A~A(A,A2),则A(A−A<A<A+A)=0.6827,A(A−2A<A<A+2A)=0.9545【答案】解:(Ⅰ)这100名学生每周平均锻炼时间的平均数A═1×0.05+3×0.2+5×0.30+7×0.25+9×0.15+11×0.05=5.8;A2=(−4.8)2×0.05+(−2.8)2×0.24+0.82×0.3+1.22×0.25+3.22×0.15+5.22×0.05=6.16;(Ⅱ)(A)由(Ⅰ)知X服从正态分布A(5.8,6.16),且A=≈2.5,∴A(0.8<A≤8.3)=12×0.9545+12×0.6827=0.8186;第10页,共16页(AA )由(A )知每周平均锻炼时间在区间(0.8,8.3)的概率为0.8186, 依题意A 服从二项分布,即A~A (5000,0.8186), ∴A (A )=5000×0.8186=4093.【解析】(Ⅰ)直接由频率分布直方图结合公式求得样本平均数和样本方差A 2; (Ⅱ)(A )利用正态分布的对称性即可求得A (0.8<A ≤8.3);(AA )由(A )知学生假期日平均数学学习时间位于(0.8,8.3)的概率为0.8186,且A 服从二项分布,由二项分布的期望公式得答案.本题考查频率分布直方图、二项分布、正态分布,着重考查运算求解能力以及数据处理能力,是中档题.19. 如图所示,直三棱柱AAA −A 1A 1A 1的底面为等腰直角三角形,其中AA =AA =12AA 1=1,点D 是线段AA 1的中点.(Ⅰ)若点Q 满足AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,且AA ⊥AA 1,求A 的值; (Ⅱ)求二面角A −A 1A −A 1的余弦值.【答案】解:(Ⅰ)∵在侧面AAA 1A 1中,AA =12AA 1,AA 1⊥AA ,点D 是线段AA 1的中点.∴∠A 1AA 1=45∘,∠AAA =45∘,则A 1A ⊥AA . ∵AA ⊥平面A 1AA , ∴AA ⊥A 1D .由AA ∩AA =A ,得A 1A ⊥平面BCD , ∴A 1A ⊥AA .又∵AA ⊥AA 1,A 1A ∩AA 1=A 1, ∴AA ⊥平面AAA 1, ∴AA ⊥AA .在AA △AAA 中,∠AAA =90∘,AA =1,AA =√2,AA =√3, 则AA =√63.∴AA =23√3,AA =√33.又∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , ∴A =2;(Ⅱ)以C 为坐标原点,CA ,CB ,AA 1分别为x ,y ,z 轴建立空间直角坐标系, 则A (0,1,0),A (1,0,1),A 1(0,1,2),A 1(0,0,2),∴AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,−1,2),AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,−1,1),A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,−1,0),A 1A ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,−1,−1),设平面AA 1A 的一个法向量为A⃗⃗⃗⃗ =(A 1,A 1,A 1),则{A ⃗⃗⃗⃗ ⋅AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0A ⃗⃗⃗⃗ ⋅AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,∴{A 1−A 1+A 1=0−A 1+2A 1=0,令A 1=1,得A ⃗⃗⃗⃗ =(1,2,1), 设平面A 1A 1A 的一个法向量为A ⃗⃗⃗⃗ =(A 2,A 2,A 2), 则{A ⃗⃗⃗⃗ ⋅A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0A ⃗⃗⃗⃗ ⋅A 1A ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,∴{A 2−A 2−A 2=0−A 2=0,令A 2=1,得A ⃗⃗⃗⃗ =(1,0,1), 设二面角A −A 1A −A 1的平面角为A , 则cos A =cos <A ⃗⃗⃗⃗ ⋅A⃗⃗⃗⃗ >=A ⃗⃗⃗⃗ ⋅A ⃗⃗⃗⃗ |A ⃗⃗⃗⃗ ||A⃗⃗⃗⃗ |=√6×√2=√33.∴二面角A −A 1A −A 1的余弦值为√33.【解析】(Ⅰ)由已知可得A 1A ⊥AA ,再利用线面垂直的判定可得AA ⊥AA ,在AA △AAA 中,求出CQ 的值,再结合已知条件即可求A 的值;(Ⅱ)以C 为坐标原点,CA ,CB ,AA 1分别为x ,y ,z 轴建立空间直角坐标系,分别求出平面AA 1A 与平面A 1A 1A 的一个法向量,由两法向量所成角的余弦值可得二面角A −A 1A −A 1的余弦值.本题考查空间中直线与直线位置关系的判定,考查空间想象能力与思维能力,训练了利用空间向量求解二面角,是中档题.20. 已知椭圆C :A 2A2+A 2A2=1(A >A >0)的左、右焦点分别为A 1,A 2,点A (1,√22)是椭圆C 上一点且△AA 1A 2的面积为√22. (Ⅰ)求椭圆C 的方程;(Ⅱ)记椭圆C 的左顶点为A ,过点A 作直线A 1,A 2分别交椭圆C 于点P ,A (异于点A ),当A 1⊥A 2时,求证:直线PQ 过定点.【答案】解:(Ⅰ)设椭圆的焦距为2c ,则△AA 1A 2的面积为12×2A ×√22=√22A =√22,解得A =1,所以,椭圆的焦点分别为A 1(−1,0)、A 2(1,0),由椭圆的定义得2A =|AA 1|+|AA 2|=√(1+1)2+(32)2+√(1−1)2+(32)2=4,所以,A =2,则A =√A 2−A 2=√3, 因此,椭圆C的方程为A24+A 23=1;(Ⅱ)由题意得A (−√2,0),设A (A 1,A 1)、A (A 2,A 2),设直线PQ 的方程为A =AA +A ,代入椭圆方程并整理得(A 2+2)A 2+2AAA +A 2−2=0,∴△=(2AA )2−4(A 2+2)(A 2−2)>0,即A 2−A 2+2>0,由韦达定理可得A 1+A 2=−2AAA 2+2,A 1A 2=A 2−2A 2+2,∵A 1⊥A 2,而AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(A 1+√2,A 1)=(AA 1+A +√2,A 1),同理可得AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 2+A +√2,A 2),所以,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1+A +√2)(AA 2+A +√2)+A 1A 2=(A 2+1)A 1A 2+A (A +√2)(A 1+A 2)+(A +√2)2=(A 2+1)(A 2−2)A 2+2−A (A +√2)⋅2AAA 2+2+(A +√2)2=3A 2+4√2A +2A 2+2=0,解得A =−√23或A =−√2(舍去)! 故直线PQ 过定点(−√23,0).【解析】(Ⅰ)先利用△AA 1A 2的面积为√22,求出A =1,从而得出椭圆的焦点坐标,然后利用椭圆定义求出2a ,再利用a 、b 、c 之间的关系求出b 的值,从而得出椭圆的标准方程;(Ⅱ)设直线PQ 的方程为A =AA +A ,设点A (A 1,A 1)、A (A 2,A 2),将直线PQ 的方程与椭圆的方程联立,列出韦达定理,利用AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0结合韦达定理计算出n 的值,从而得出直线PQ 所过定点的坐标.本题考查直线与椭圆的综合问题,考查韦达定理在直线与椭圆综合中的应用,考查计算能力与推理能力,属于难题.21. 已知函数A (A )=A ln AA+AA +2,曲线A =A (A )在点A (1,A (1))处的切线方程是5A −2A −2=0. (Ⅰ)求实数a ,b 的值;(Ⅱ)若函数A (A )=AA (A )−2有两个不同的零点A 1,A 2,求证:A 1+A 2>6. 【答案】解:(Ⅰ)根据题意,曲线A =A (A )在点A (1,A (1))处的切线方程是5A −2A −2=0,则切线的斜率A =52,切点为(1,32)A (A )=A ln AA+AA +2,其导数A′(A )=A −A ln AA 2+A ,则有A (1)=A +2=32,A′(1)=A +A =52, 解可得:A =3,A =−12; (Ⅱ)证明:由(Ⅰ)的结论,A (A )=3ln A A −12A +2,则A (A )=AA (A )−2=3ln A −12(A −2)2, 则A′(A )=3A −(A −2)=−(A +1)(A −3)A,分析可得:在区间(0,3)上,A′(A )>0,A (A )为增函数, 在(3,+∞)上,A′(A )<0,A (A )为减函数, 则当A =3时,A (A )取得极大值, 又有A (1)<0,A (3)>0,A (6)<0,则函数A (A )有2个不同的零点A 1,A 2,设A 1<A 2, 则有0<A 1<3<A 2<6,设A (A )=A (A )−A (6−A )(0<A <6),即A (A )=3ln A −12(A −2)2−3ln (6−A )−12(4−A )2, 其导数A′(A )=3A +36−A −2=2(A −3)2A (6−A ); 当A ∈(0,6)时,A′(A )≥0,A (A )为增函数, 又由0<A 1<3,则A (A 1)<A (3)=0,即A (A 1)−A (6−A 1)<0,即A (A 1)<A (6−A 1), 又有A (A 1)=A (A 2)=0,则A (A 2)<A (6−A 1), 又由0<A 1<3,则3<6−A 1<6,而3<A 2<6,且函数A (A )在(3,+∞)上为减函数, 则有A 2>6−A 1, 变形可得A 1+A 2>6.【解析】(Ⅰ)根据题意,由曲线的切线方程可得切线的斜率和切点的坐标,求出函数的导数,由导数的几何意义和切线的性质分析可得A (1)=A +2=32,A′(1)=A +A =52,解可得a 、b 的值,即可得答案;(Ⅱ)由(Ⅰ)的结论,可得A (A )=3ln A A −12A +2,进而可得A (A )=AA (A )−2=3ln A −12(A −2)2,求出A (A )的导数,由函数的导数与函数单调性的关系分析可得在区间(0,3)上,A (A )为增函数,在(3,+∞)上,A (A )为减函数,结合函数的零点判定定理可得函数A (A )有2个不同的零点A 1,A 2,设A 1<A 2,则有0<A 1<3<A 2<6;再设A (A )=A (A )−A (6−A )(0<A <6),求出A (A )的导数A′(A )=3A +36−A−2=2(A −3)2A (6−A );分析可得A (A )的单调性,进而可得A (A 1)<A (3)=0,即A (A 1)<A (6−A 1),进而可得A (A 2)<A (6−A 1),结合A (A )的单调性分析可得A 2>6−A 1,变形可得结论.本题考查函数导数的应用,涉及利用导数分析函数的单调性以及切线方程的计算,属于综合题.22. 在平面直角坐标系xOy 中,直线l 的参数方程为{A =1−√32AA =1+12A(A 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为A =2cos A .(Ⅰ)求直线l 的极坐标方程和曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于M ,N 两点,求∠AAA 的大小. 【答案】解:(Ⅰ)直线l 的参数方程为{A =1−√32AA =1+12A(A 为参数).转换为直角坐标方程为:A +√3A =1+√3,所以转换为极坐标方程为:A cos A +√3A sin A −1−√3=0.曲线C 的极坐标方程为A =2cos A . 转换为直角坐标方程为:A 2+A 2=2A . (Ⅱ)设M 、N 的极坐标分别为(A 1,A 1),(A 2,A 2), 则:∠AAA =|A 1−A 2|,由{A (cos A +√3sin A )=1+√3A =2cos A, 消去A 得到:cos 2A +√3sin 2A =√3,即:sin (2A +A 6)=√32, 不妨设:A ∈(0,A 2),所以:2A +A 6∈(A 6,7A6), 所以:2A +A 6=A 3或2A3, 即:{A 1=A12A 2=A4或{A 1=A 4A 2=A 12,所以::∠AAA =|A 1−A 2|=A 6.【解析】(Ⅰ)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换. (Ⅱ)利用(Ⅰ)的结论,进一步利用三角函数关系式的恒等变变换和方程组的应用求出结果.1本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23. 已知函数A (A )=|A +4|+|A −4|.(Ⅰ)求不等式A (A )>3A 的解集;(Ⅱ)设函数A (A )的最小值为z ,正实数m ,n 满足AA −2A −A =A ,求证:A +A ≥2√10+3.【答案】解:(Ⅰ)A (A )>3A ,即|A +4|+|A −4|>3A ;①当A <−4,时,不等式可化为−A −4+4−A >3A ,解得A <−4; ②当−4≤A ≤4时,不等式可化为A +4+4−A >3A ,解得−4≤A <83; ③当A >4时,不等式可化为A +4+A −4>3A ,无解,综上所述:原不等式的解集为{A |A <83};(Ⅱ)证明:由绝对值不等式性质得:|A +4|+|A −4|≥|A +4−A +4|=8, ∴A =8,得AA −2A −A =8, 所以(A −1)(A −2)=10,所以A +A =(A −1)+(A −2)+3≥2√10+3, 当且仅当A =√10+1,A =√10+21时取等. 所以原不等式成立.【解析】(Ⅰ)对x按照3种情况讨论去绝对值分别解出不等式后,结果再相并;(Ⅱ)先由绝对值不等式求出A=8,然后变形后用基本不等式求出最小值可证.本题考查了绝对值不等式的解法.属中档题.。
2019-2020学年河南省百校联盟高三(上)9月联考数学试卷试题及答案(理科)

2019-2020学年河南省百校联盟高三(上)9月联考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|340}M x x x =--<,1{|0}3N x x=>-,则M N 等于( )A .{|43}x x -<<B .{|13}x x -<<C .{|34}x x <<D .{|13}x x <<2.设复数z 满足2zi z =+,则2z +在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知2log 6a =,5log 3b =,0.82c =,则( ) A .b a c <<B .a c b <<C .c a b <<D .b c a <<4.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为( )A .13B .23C .14D .345.函数2(1)()||ln x f x x -=的图象大致是( )A .B .C .D .6.521(2)(1)x x-+的展开式中2x 的系数为( ) A .15- B .5- C .10 D .157.已知非零向量a ,b 满足||||a k b =,且(2)b a b ⊥+,若a ,b 的夹角为23π,则实数k 的值为( ) A .4B .3C .2D .128.《周髀算经》向来被认为是中国最古老的天文学及数学著作,《周髀算经》的内容是以商高与周公的问答形式陈述而成,主要阐明当时的盖天说、四分历法.由《周髀算经》中关于影长的问题,可以得到从冬至起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长依次构成等差数列,若冬至的日影长为13.5尺,现在我们用如图所示的程序框图来求解这十二个节气日影长的和,执行该程序框图,则输出的结果是( )A .94尺B .95尺C .96尺D .97尺9.在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,E ,F 分别为棱PB ,PC 的中点,过E ,F 的平面分别与棱AB ,AC 相交于点D ,G ,给出以下四个结论: ①//EF DG ;②//PA ED ;③ED DG ⊥;④AC FG ⊥. 则以上正确结论的个数是( ) A .1B .2C .3D .410.已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为1F ,2F ,点A 是椭圆上一点,线段1AF 的垂直平分线与椭圆的一个交点为B ,若23AB F B =,则椭圆C 的离心率为( )A .13BC .23D11.关于函数()cos |||cos |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间(2π-,0)上单调递增;③()f x 在[π-,]π上有4个零点;④()f x 的最大值为2.其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③12.已知四棱锥P ABCD -的五个顶点都在球O 的球面上,AB AD CD ==,//BC AD ,60ABC ∠=︒,PAB ∆是等边三角形,若四棱锥P ABCD -体积的最大值,则球O 的表面积为( ) A .56πB .54πC .52πD .50π二、填空题:本大题共4小题,每小题5分.13.曲线(21)y x lnx =+在点(1,0)处的切线方程为 .14.若x ,y 满足约束条件4302901x y x y x -+⎧⎪+-⎨⎪⎩………,则32z x y =-的最小值为 .15.《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词,寻文化基因,品生活之美”为宗旨.每一期的比赛包含以下环节:“个人追逐赛”、“攻擂资格争夺赛”和“擂主争霸赛”,其中“擂主争霸赛”由“攻擂资格争夺赛”获胜者与上一场擂主进行比拼.“擂主争霸赛”共有九道抢答题,抢到并答对者得一分,答错则对方得一分,率先获得五分者即为该场擂主.在《中国诗词大会》的某一期节目中,若进行“擂主争霸赛”的甲乙两位选手每道抢答题得到一分的概率都是为0.5,则抢答完七道题后甲成为擂主的概率为 .16.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(,0)F c ,离心率为32,直线:)l y x c =-与C 交于A ,B 两点(其中点A 在x 轴上方),OAF ∆和OBF ∆的面积分别记为1S 和2S ,则12S S = . 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且525S =,2a 是1a 和5a 的等比中项. (1)求数列{}n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,若不等式4n k T <对任意的*n N ∈都成立,求整数k 的最小值.18.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2202A CB cos +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A =C ,且ABC ∆的面积为,求ABC ∆的周长.19.如图,在直三棱柱111ABC A B C -中,1AB AC ==,且AB AC ⊥,点M 在棱1CC 上,点N 是BC 的中点,且满足1AM B N ⊥.(1)证明:AM ⊥平面11A B N ;(2)若1CM C M =,求二面角111A B N C --的正弦值.20.已知抛物线2:2(0)C y px p =>的焦点为F ,直线:1l y x =+与抛物线C 相切于点P ,过点P 作抛物线C 的割线PQ ,割线PQ 与抛物线C 的另一交点为Q ,A 为PQ 的中点.过A 作y 轴的垂线与y 轴交于点H ,与直线l 相交于点N ,M 为线段AN 的中点. (1)求抛物线C 的方程;(2)在x 轴上是否存在一点T ,使得当割线PQ 变化时,总有||||MT MH -为定值?若存在,求出该点的坐标;若不存在,请说明理由.21.已知函数1()(1)()2f x x ax lnx a R =--∈. (1)当12a =-时,求()f x 的单调区间;(2)若()f x 存在两个极值点1x ,2x ,且12x x >,证明:1212()()144f x f x a x x -<--.22.随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢,创新已经成为烘焙作品的衡量标准.某“网红”甜品店生产有几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:(利润率是指:一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值.) (1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率; (2)从该甜品店的五种“网红甜品”中随机选取2种不同的甜品,求这两种甜品的单价相同的概率;(3)假设每类甜品利润率不变,销售一份A 甜品获利1x 元,销售一份B 甜品获利2x 元,⋯,销售一份E 甜品获利5x 元,依据上表统计数据,随机销售一份甜品获利的期望为()E x ,设123455x x x x x x ++++=,试判断()E x 与x 的大小2019-2020学年河南省百校联盟高三(上)9月联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|340}M x x x =--<,1{|0}3N x x=>-,则M N 等于( )A .{|43}x x -<<B .{|13}x x -<<C .{|34}x x <<D .{|13}x x <<【解答】解:{|14}M x x =-<<,{|3}N x x =<, {|13}MN x x ∴=-<<.故选:B . 2.设复数z 满足2zi z =+,则2z +在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解答】解:由2zi z =+,得2z iz i =+,则22(1)11(1)(1)i i i z i i i i +===-+--+, 21z i ∴+=+,则2z +在复平面内对应的点的坐标为(1,1),位于第一象限.故选:A .3.已知2log 6a =,5log 3b =,0.82c =,则( ) A .b a c <<B .a c b <<C .c a b <<D .b c a <<【解答】解:22log 6log 42>=,550log 3log 51<<=,00.81222=<<, b c a ∴<<.故选:D .4.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为( )A .13B .23C .14D .34【解答】解:设事件A 为居民没有垃圾分类和未投放到指定垃圾桶内,则A 事件个数为3个,所有基本事件个数为4个,P ∴(A )34=,即居民会被罚款和行政处罚的概率为34. 故选:D .5.函数2(1)()||ln x f x x -=的图象大致是( )A .B .C .D .【解答】解:由210x ->且0x ≠得1x >或1x <-,2(1)()()||ln x f x f x x --==,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,C当x →+∞,()0f x >, 排除A , 故选:D . 6.521(2)(1)x x -+的展开式中2x 的系数为( ) A .15- B .5- C .10 D .15【解答】解:523452211(2)(1)(2)(1510105)x x x x x x x x-+=-+++++, 故它的的展开式中2x 的系数为521015-⨯=-, 故选:A .7.已知非零向量a ,b 满足||||a k b =,且(2)b a b ⊥+,若a ,b 的夹角为23π,则实数k 的值为( ) A .4 B .3C .2D .12【解答】解:||||a k b =,2,3a b π<>=,且(2)b a b ⊥+, ∴2222(2)||||cos 22032kb a b a b b b b π+=+=-+=,且20b ≠, ∴202k-+=,解得4k =. 故选:A .8.《周髀算经》向来被认为是中国最古老的天文学及数学著作,《周髀算经》的内容是以商高与周公的问答形式陈述而成,主要阐明当时的盖天说、四分历法.由《周髀算经》中关于影长的问题,可以得到从冬至起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长依次构成等差数列,若冬至的日影长为13.5尺,现在我们用如图所示的程序框图来求解这十二个节气日影长的和,执行该程序框图,则输出的结果是( )A .94尺B .95尺C .96尺D .97尺【解答】解:由程序图可知13.5 2.513.512.511.5 2.512962S +=+++⋯+=⨯=. 故选:C .9.在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,E ,F 分别为棱PB ,PC 的中点,过E ,F 的平面分别与棱AB ,AC 相交于点D ,G ,给出以下四个结论: ①//EF DG ;②//PA ED ;③ED DG ⊥;④AC FG ⊥.则以上正确结论的个数是( ) A .1B .2C .3D .4【解答】解:E ,F 分别为棱PB ,PC 的中点,可得//EF BC ,BC ⊂/平面EFGD ,可得//BC 平面EFGD ,平面ABC ⋂平面EFGD DG =,可得//BC DG ,即有//EF DG ;由于D ,G 不一定为AB ,AC 的中点,可得//PA ED 不成立;由PA ⊥底面ABC ,可得PA BC ⊥,而AB BC ⊥,可得BC ⊥平面PAB , ED ⊂平面PAB ,可得BC ED ⊥,又//BC DG ,可得ED DG ⊥;若AC FG ⊥,由AC PA ⊥,在同一平面PAC 内,可得//PA FG ,即G 为AC 的中点, 这与G 不一定为中点矛盾,故AC FG ⊥不成立. 则①③正确;②④错误. 故选:B .10.已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为1F ,2F ,点A 是椭圆上一点,线段1AF 的垂直平分线与椭圆的一个交点为B ,若23AB F B =,则椭圆C 的离心率为( )A .13B C .23D 【解答】解:如图所示,线段1AF 的垂直平分线与椭圆的一个交点为B ,连接1BF . 则1||||AB BF =.23AB F B =,12||||2BF BF a +=, 2||2aBF ∴=,2||AF a =. ∴点A 是椭圆短轴的一个端点,不妨设为上端点.作BC x ⊥轴,垂足为点C . 则22AOF BCF ∆∆∽.∴2222||||||1||||||2CF BF BC AO OF AF ===. 12B y b ∴=-,21||2CF c =.3(,)22c b B ∴-. 代入椭圆方程可得:2291144c a +=,解得2213c a =.c e a ∴==故选:B .11.关于函数()cos |||cos |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间(2π-,0)上单调递增;③()f x 在[π-,]π上有4个零点;④()f x 的最大值为2.其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③【解答】解:由0x …时,cos ||cos x x =;0x <时,cos ||cos()cos x x x =-=, 可得()cos |||cos |f x x x =+,即为()cos |cos |f x x x =+,当cos 0x …时,()2cos f x x =;当cos 0x <时,()0f x =. 由()cos()|cos()|cos |cos |()f x x x x x f x -=-+-=+=,且定义域为R ,关于原点对称,可得()f x 为偶函数; 当(2x π∈-,0)时,cos (0,1)x ∈,()2cos f x x =单调递增;当[x π∈-,][22ππ-,]π时,cos [1x ∈-,0],()0f x =,即()f x 的零点有无数个;由0,cos 0()2cos ,cos 0x f x x x <⎧=⎨⎩…,可得cos 1x =即2x k π=,k Z ∈时,()f x 取得最大值2.综上可得①②④正确;③错误. 故选:A .12.已知四棱锥P ABCD -的五个顶点都在球O 的球面上,AB AD CD ==,//BC AD ,60ABC ∠=︒,PAB ∆是等边三角形,若四棱锥P ABCD -体积的最大值,则球O 的表面积为( ) A .56πB .54πC .52πD .50π【解答】解:四棱锥P ABCD -的五个顶点都在球O 的球面上,如图:四棱锥P ABCD -体积的最大值PAB 与底面ABCD 垂直,并且底面ABCD 面积取得最大值时,几何体的体积最大,因为AB AD CD ==,//BC AD ,60ABC ∠=︒,可得ABCD 是正六边形的一半,设AB AD CD a ===,则四棱锥的体积的最大值为:1332a ⨯=,解得a =此时,底面ABCD 的外心为E ,外接球的球心为O ,外接球的半径为R ,所以R ==所以外接球的表面积为:2452ππ⨯=. 故选:C .二、填空题:本大题共4小题,每小题5分.13.曲线(21)y x lnx =+在点(1,0)处的切线方程为 330x y --= . 【解答】解:由(21)y x lnx =+,得: 122y lnx x'=++,f ∴'(1)3=,即曲线(21)y x lnx =+在点(1,0)处的切线的斜率为3,则曲线(21)y x lnx =+在点(1,0)处的切线方程为03(1)y x -=⨯-, 整理得:330x y --=. 故答案为:330x y --=.14.若x ,y 满足约束条件4302901x y x y x -+⎧⎪+-⎨⎪⎩………,则32z x y =-的最小值为 5- .【解答】解:画出变量x ,y 满足约束条件4302901x y x y x -+⎧⎪+-⎨⎪⎩………,可行域如图阴影区域,目标函数32z x y =-可看做3122y x z =-,即斜率为32, 截距为12z -的动直线,数形结合可知,当动直线过点B 时,z 最小, 由1290x x y =⎧⎨+-=⎩得(1,4)B ,∴目标函数32z x y =-的最小值为31245z =⨯-⨯=-.故答案为:5-.15.《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词,寻文化基因,品生活之美”为宗旨.每一期的比赛包含以下环节:“个人追逐赛”、“攻擂资格争夺赛”和“擂主争霸赛”,其中“擂主争霸赛”由“攻擂资格争夺赛”获胜者与上一场擂主进行比拼.“擂主争霸赛”共有九道抢答题,抢到并答对者得一分,答错则对方得一分,率先获得五分者即为该场擂主.在《中国诗词大会》的某一期节目中,若进行“擂主争霸赛”的甲乙两位选手每道抢答题得到一分的概率都是为0.5,则抢答完七道题后甲成为擂主的概率为128. 【解答】解:抢答完七道题后甲成为擂主是指前六道题中甲四胜两负,第七题甲胜, ∴抢答完七道题后甲成为擂主的概率为:442611115()()()222128P C ==. 故答案为:15128. 16.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(,0)F c ,离心率为32,直线:)l y x c =-与C 交于A ,B 两点(其中点A 在x 轴上方),OAF ∆和OBF ∆的面积分别记为1S 和2S ,则12S S 7. 【解答】解:离心率32c e a ==,可设3c t =,2a t =,(0)t >,则b ==, 直线:)l y x c =-即3x y t =+, 双曲线方程即为2225420x y t -=,联立直线l 的方程和双曲线的方程,消去x 可得227750y t +-=, 解得A y =,B y =- 由于直线l 经过右焦点,可得121||1217||2A A B Bc y S y S y c y ===-, 故答案为:17. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且525S =,2a 是1a 和5a 的等比中项. (1)求数列{}n a 的通项公式; (2)设数列11{}n n a a +的前n 项和为n T ,若不等式4n k T <对任意的*n N ∈都成立,求整数k 的最小值.【解答】解:(1)公差d 不为0的等差数列{}n a 的前n 项和为n S ,525S =,2a 是1a 和5a 的等比中项,可得151025a d +=,2215a a a =,即2111()(4)a d a a d +=+, 解得11a =,2d =, 则12(1)21n a n n =+-=-; (2)111111()(21)(21)22121n n a a n n n n +==--+-+, 可得前n 项和为111111111(1)(1)233521212212n T n n n =-+-+⋯+-=-<-++,由不等式4n kT <对任意的*n N ∈都成立, 可得142k …,即2k …, 整数k 的最小值为2.18.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2202A CB cos +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A =C ,且ABC ∆的面积为,求ABC ∆的周长.【解答】解:(1)ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2202A CB cos +-=.cos 1B B +=, 故2sin()16B π+=,由于0B π<<.解得23B π=. (2)由于2sin 2sin sin B A =C ,所以22b ac =, 且ABC ∆的面积为,故1sin 2ac B =,解得16ac =,所以2232b ac ==,解得b =.利用余弦定理2222cos b a c ac B =+-,整理得22232162()a c c a +=++=+,解得a c +=.故ABC ∆的周长为a c b ++=+19.如图,在直三棱柱111ABC A B C -中,1AB AC ==,且AB AC ⊥,点M 在棱1CC 上,点N 是BC 的中点,且满足1AM B N ⊥.(1)证明:AM ⊥平面11A B N ;(2)若1CM C M =,求二面角111A B N C --的正弦值.【解答】解:(1)证明:直三棱柱111ABC A B C -中,1AA AB ⊥,AB AC ⊥,1AC AA A =,AB ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,AB AM ∴⊥, 11//AB A B ,11A B AM ∴⊥,又1AM B N ⊥,1111A B B N B =,AM ∴⊥平面11A B N .(2)解:以AB ,AC ,1AA 分别作为x ,y ,z 轴正方向建立空间直角坐标系, 设1AA a =,则(0A ,0,0),(1B ,0,0),(0C ,1,0), 1(1B ,0,)a ,(0M ,1,)2a ,11(,22N ,0),(0AM =,1,)2a ,111(,22B N =-,)a -,1AM B N ⊥,∴211022a AM B N =-=,解得1a =,即11AA =, 1(1B ∴,0,1),(0M ,1,1)2,1(0C ,1,1),(0AM =,1,1)2,111(,22B N =-,1)-,111(,,1)22C N =--,设平面11B NC 的法向量(n x =,y ,)z ,则111102211022n B N x y z n C N x y z ⎧=-+-=⎪⎪⎨⎪=--=⎪⎩,取1x =,得(1n =,1,0),由(1)由知(0AM =,1,1)2是平面11A B N 的一个法向量,cos ,||||n AMn AM n AM ∴<>===.∴二面角111A B N C --=.20.已知抛物线2:2(0)C y px p =>的焦点为F ,直线:1l y x =+与抛物线C 相切于点P ,过点P 作抛物线C 的割线PQ ,割线PQ 与抛物线C 的另一交点为Q ,A 为PQ 的中点.过A 作y 轴的垂线与y 轴交于点H ,与直线l 相交于点N ,M 为线段AN 的中点. (1)求抛物线C 的方程;(2)在x 轴上是否存在一点T ,使得当割线PQ 变化时,总有||||MT MH -为定值?若存在,求出该点的坐标;若不存在,请说明理由. 【解答】解:(1)由212y x y px=+⎧⎨=⎩得2220y py p -+=依题意有,△2480p p =-=, 解得2p =.∴抛物线C 的方程为24y x =;(2)由2440y x -+=可得2y =,代入直线l 得1x =, ∴点(1,2)P ,设(,)Q m n ,则24n m =, ∴点12(,)22m n A ++,依题意,将22n y +=代入直线l ,得2(,)22n n N +, AN ∴的中点为12(,)42m n n M +++, 又24n m =,∴221241()442m n n n n +++⨯=++=, AN ∴的中点M 在抛物线C 上,由抛物线的定义可知,当T 为抛物线24y x =的焦点(1,0)时,||MT 等于M 到抛物线准线1x =-的距离,||||1MT MH ∴-=,∴存在点(1,0)T ,使得||||MT MH -恒为定值1.21.已知函数1()(1)()2f x x ax lnx a R =--∈. (1)当12a =-时,求()f x 的单调区间;(2)若()f x 存在两个极值点1x ,2x ,且12x x >,证明:1212()()144f x f x a x x -<--.【解答】解:(1)()f x 的定义域为(0,)+∞, 当12a =-时,211()24f x x x lnx =+-,21112(2)(1)()2222x x x x f x x x x x +-+-'=+-==,令()0f x '=,则1x =.当1x >时,()0f x '>,当01x <<时,()0f x '<, 所以()f x 的单调增区间为(1,)+∞,单调减区间为(0,1); (2)因为2111()(1)222f x x ax lnx x ax lnx =--=--, 所以21122()22ax x f x ax x x-+'=--=,因为()f x 存在两个极值点,所以2220ax x -+=在(0,)+∞上有两个不同实根.且1212x x a +=,121x x a =,所以01160a a >⎧⎨=->⎩,所以 0 116a <<,因为22121212121212121211()()()()()1224x x a x x lnx lnx f x f x lnx lnx x x x x x x -------==----, 要证1212()()f x f x x x -- 144a <-,只需证121212()()24f x f x a x x x x ->=-+, 即证1121222(1)1x x x lnx x x ->+, 令121x t x =>,只需证2(1)1t lnt t ->+, 令2(1)()1t g t lnt t -=-+,g (1)0=, 所以2214(1)()0(1)(1)t g t t t t t -'=-=++…,所以()g t 在(1,)+∞上单调递增, 因为1t >,所以()g t g >(1), 即2(1)01t lnt t -->+,所以1212()()144f x f x a x x -<-- 22.随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢,创新已经成为烘焙作品的衡量标准.某“网红”甜品店生产有几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:(利润率是指:一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值.) (1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率; (2)从该甜品店的五种“网红甜品”中随机选取2种不同的甜品,求这两种甜品的单价相同的概率;(3)假设每类甜品利润率不变,销售一份A 甜品获利1x 元,销售一份B 甜品获利2x 元,⋯,销售一份E 甜品获利5x 元,依据上表统计数据,随机销售一份甜品获利的期望为()E x ,设123455x x x x x x ++++=,试判断()E x 与x 的大小【解答】解:(1)由题意知,本月共卖出3万份甜品,利润率高于0.2的是A 甜品和D 甜品.共有1万份.设“这份甜品的利润率高于0.2”为事件A . 则P (A )13=;(2)用销售总额处于销售量得到甜品的销售单价,可知A 甜品与C 甜品的销售单价为20元.从五种“网红甜品”中随机抽取2种不同的甜品共有2510C =种不同的方法. 设“两种甜品的单价相同”为事件B .则P (B )2225110C C ==;(3)由题意可知,x 可能取的值为8,5,3,10. 51(8)306P X ===,21(5)3015P X ===,1083(3)305P X +===,51(10)306P X ===, 因此113177()853*********E X =⨯+⨯+⨯+⨯=,又8531032955x ++++==, 所以()E X x <.。
2019届百校联盟TOP20十二月联考(全国Ⅰ卷)理科数学试题(带答案解析)

(Ⅱ)由频率分布直方图知,该校学生每周平均锻炼时间 近似服从正态分布 ,其中 近似为样本平均数 , 近似为样本方差 .
(i)求 ;
(ii)若该校共有5000名学生,记每周平均锻炼时间在区间 的人数为 ,试求 .
A. B.2C.3D.
11.已知奇函数 和其导函数 的定义域均为 ,当 时, ,则不等式 的解集为()
A. B.
C. D.
12.已知各项均不为0的数列 满足 , ,若 ,则当数列 的前 项和取得最大值时, 的值是()
A.24B.25C.32D.33
13.已知 是单位向量,若 , 则 , 的夹角为__________.
A. B. C. D.
4.记等比数列 的前 项和为 ,若 , ,则数列 的公比 ()
A.2B. C. 或 D.2或1
5.已知函数 是定义在 上的偶函数.且在 上单调递减,则 的解析式可能为()
A. B. C. D.
6.若 是常数, 的展开式中各项系数和为-16,则 的系数为()
A.60B. 1680C.336D.3360
5.D
【解析】
【分析】
由函数 的性质,即定义在 上的偶函数,且在 上单调递减,逐个排除即可得解.对A, ,不符;对B, ,不符;对C,在 上不单调,即可得解.
【详解】
函数 Байду номын сангаас奇函数,
的定义域不是 ,
函数 在 上不具有单调性,
函数 在 上单调递减且是偶函数.
故选:D.
【点睛】
本题考查了函数的奇偶性和单调性,考查了函数基本性质的识记和理解,属于简单题.
2019届高三数学9月份联考试题 文(含解析)

h2019 届高三数学 9 月份联考试题 文(含解析)一、选择题 1. 已知集合 为( ) 【答案】B 【解析】∵集合, ,,则中的元素的个数∴,即,∴中的元素的个数为 1 个故选:BA.0B.1C.22. 已知,为虚数单位,【答案】A【解析】因为D.3,则(),所以,则,应选答案 A。
A.B.0C.D.13. 已知幂函数的图象过点 ,则函数在区间 上的最小值是( ) 【答案】B【解析】由题设,故在 上单调递增,则当 时取最小值,应选答案 B。
A.B.0C.D.4. 已知,,A.B.【答案】C【解析】因为答案 C。
,这三个数的大小关系为( )C.D.,所以,应选hh5.的内角的对边分别是 ,已知A. 2 B. 3 【答案】BC. 4D. 5【解析】由余弦定理得,即,,,则 等于( ),所以 ,应选答案 B。
6. 设 满足约束条件,则A. 3 B. 【答案】AC. 1 D.的最大值为( )【解析】画出不等式组表示的区域如图,则问题转化为求动直线在 上的截距的最小值的问题,结合图形可知:当动直线经过点 时,应选答案 A。
7. 已知函数的最大值为 3,邻两条对称轴间的距离为 2,与 轴的交点的纵坐标为 1,则 ( )A. 1 B. 【答案】DC.D. 0, 的图象的相hh【解析】由题设条件可得,则,所以代入可得,即,又所以,应选答案 D。
8. 执行如图所示的程序框图,若输入,则输出的结果为( ),将点 ,A. 80 B. 84 C. 88 D. 92【答案】A【解析】由题设可知当时,,程序运算继续执行,程序运算继续执行,程序运算继续执行,故此时运算程序结束,输出,应选答案 A。
9. 在正三棱锥中,,,则该三棱锥外接球的直径为( )A. 7 B. 8 C. 9 D. 10【答案】A【解析】由题设底面中心到顶点的距离为,故正三棱锥的高为,设外接球的球心到底面的距离为 ,则由勾股定理可得,解之得 ,所以外接球的直径为,应选答案 A。