11集合-集合的概念
集合的概念与表示方法

一、集合的概念 一般地, 一定范围内某 些确定的,不同的对象的全 体构成一个集合. 集合中每个对象称为这 个集合的元素.
一、集合的概念
1.集合:用大写字母表示,如A,B 2.元素:用小写字母表示,如a,b 3.元素与集合关系:
…
…
如果a是集合A的元素,就说a 属于集合A,记作a A; 如果a不是集合A的元素,就 说a不属于集合A,记作a A.
(2)平行四边形,四边形;
(3)直角三角形,等边三角形; (4)-3, 2,6,|3|,-6 ;
(5)(2,3),(3,2),(-2,3);
3)无序性:集合中的元素是无先后 顺序的.集合中的任何两个元素都 可以交换位置.
5.集合的分类
⑴有限集:含有有限个元素的集合.
⑵无限集:含有无限个元素的集合.
(六)课堂小结: 1.集合的概念:一定范围内某些确定的、不同对象的 全体构成一个集合.集合通常用大写字母A.B.C……… 表示,如集合A.B集合中的对象称为元素,元素用小写 字母a.b.c表示。元素与集合的关系:从属关系 aA bA 2.集合中元素的性质:确定性 互异性 无序性 3.集合的表示方法 :描述法、列举法、文恩图法 4.集合的分类:有限集、无限集、空集 5.特殊集合的表示:自然数集:N 整数集:Z 有 理数集:Q 实数集:R
例3.已知集合A={ a+2,(a+1)2 ,a2+3a+3}, 若1∈A,求实数a的值.
解:①a+2=1时即a=-1时 A={1,0,1}不满足元素的互异性 ②1=(a+1)2时即a=0或a=-2经检 验a=0符合条件 ③1=a2+3a+3时即a=-1或a=-2 经检验都不符合条件 综上:a=0
11集合(复习课)(共4张PPT)

本 区分元素与集合、集合与集合之间的关系
能区够分找 元出素一与个集集合合、的集子合集与和集真合子之集间的关系 元区素分与 元集素合与的集概合念、及集关合系与集合之间的关系
关 元素与集合的概念及关系
元能素够与 找集出合一的个概集念合及的关子系集和真子集 能区够分找 元出素一与个集集合合、的集子合集与和集真合子之集间的关系
间 区分元素与集合、集合与集合之间的关系
元区素分与 元集素合与的集概合念、及集关合系与集合之间的关系 能够找出一个集合的子集和真子集
的 区能分够元 找素出与一集个合集、合集的合子与集集和合真之子间集的关系
区分元素与集合、集合与集合之间的关系 能够找出一个集合的子集和真子集
基 区元分素元 与素集与合集的合概、念集及合关与系集合之间的关系
集合的含义与表示 集合间的基本关系 集合的基本运算
集
元素与集合的概念及关系
合
的 含
集合中元素的特征
义
与 表
常见数集的记法
示
集合的表示方法
集 合 能 区够分找元出 素一 与个 集集 合合 、的 集子 合集与和 集真 合子 之集 间的关系
区元分素元 与素集与合集的合概、念集及合关与系集合之间的关系 区能分够元 找素出与一集个合集、合集的合子与集集和合真之子间集的关系
系 区分元素与集合、集合与集合之间的关系
判断两个集合的关系
区分元素与集合、集合与集合之 间的关系
能够找出一个集合的子集和真 子集
运用韦恩图表达集合间的关系
集
并集的含义及性质
合
间 的
交集的含义及性质基本来自运补集的含义及性质
算
集合的概念集合的定义是什么

集合的概念集合的定义是什么集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批卓越的科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。
集合的定义是什么?以下是店铺为大家整理的关于集合的定义,欢迎大家前来阅读!集合的定义集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。
最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。
集合里的“东西”,叫作元素。
由一个或多个元素所构成的叫做集合。
若x是集合A的元素,则记作x∈A。
集合中的元素有三个特征:1.确定性(集合中的元素必须是确定的)2.互异性(集合中的元素互不相同。
例如:集合A={1,a},则a不能等于1)3.无序性(集合中的元素没有先后之分。
) 集合的概念集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。
例如全中国人的集合,它的元素就是每一个中国人。
我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。
若x是集合S的元素,则称x属于S,记为x∈S。
若y不是集合S的元素,则称y不属于S,记为y∉S。
一般的我们把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
集合中不同元素的数目称为集合的基数,记作card( )。
当其为有限大时,集合称为有限集,反之则为无限集。
有一类特殊的集合,它不包含任何元素,如,我们称之为空集,记为∅。
设S,T是两个集合,如果S的所有元素都属于T ,即,其中符号称为包含,即表示由左边的命题可以推出右边的命题,则称S是T的子集,记为。
显然,对任何集合S ,都有。
如果S是T的一个子集,即,但在T中存在一个元素x不属于S ,即,则称S是T的一个真子集。
如果两个集合S和T的元素完全相同,则称S与T两个集合相等,记为S=T 。
中职数学课件11集合的概念数集

01
集合与数集概述
集合定义及表示方法
集合定义
集合是具有某种特定性质的事物 的总体,事物称为元素。
表示方法
集合通常用大写字母A、B、C等 表示,元素用小写字母a、b、c等 表示。如果a是集合A的元素,则 记作a∈A。
谢谢聆听
集合的基本概念
集合是由具有某种共同特征的对象所组成的 整体,这些对象称为集合的元素。
集合的表示方法
列举法、描述法和图像法。
集合间的关系
包含关系、相等关系和互异关系。
02
01
集合的运算
并集、交集、补集和差集。
03 04
拓展延伸相关知识点
数集的概念
数集是按照某种规则或标准将 数字分类形成的集合,如自然 数集、整数集、有理数集和无
3 < x < 5 }$,$A cup B = { x | x in mathbb{R} }$。
03
数轴与实数集
数轴定义及性质
定义:数轴是一条直线,其上每 一个点都与一个实数对应,且满
足以下性质
在数轴上选取一点作为原点,用 0表示;
在原点的右侧标出正方向,用箭 头表示;
数轴定义及性质
• 选取一个单位长度,作为数轴上每一点到原点的距 离。
举例2
函数$y=frac{1}{x}$的定义域和值域 分析。
定义域
由于分母不能为0,因此函数的定义 域为$(-infty,0)cup(0,+infty)$。
值域
由于函数在定义域内可以取到任意 非零实数,因此函数的值域为$(infty,0)cup(0,+infty)$。
集合的概念 定理

集合的概念定理集合的概念和定理集合是数学中一个基本的概念,它指的是具有某种特定性质的对象的总体。
这些对象可以是任何东西,比如数字、字母、几何图形等等。
集合论是数学的一个重要分支,它研究集合及集合之间的关系和运算。
1. 集合的定义集合可以用描述法或列举法来定义。
描述法是指通过一定的条件来描述集合中的元素。
例如,{x x是自然数,1≤x≤4}表示的就是自然数中小于等于4的子集。
列举法是指直接列举集合中的元素。
例如,{1, 2, 3, 4}表示的也是自然数中小于等于4的子集。
集合的基本符号有三种:1)属于符号(∈),用于表示某个元素属于某个集合。
例如,a∈A表示a是集合A的一个元素;2)不属于符号(∉),用于表示某个元素不属于某个集合。
例如,b∉A表示b不是集合A的一个元素;3)等于符号(=),用于表示两个集合完全相等。
例如,集合A={1, 2, 3},集合B={1, 2, 3},则A=B。
2. 集合的运算集合之间可以进行的基本运算有并集、交集、差集和补集等。
并集运算:设A和B是两个集合,它们的并集(A∪B)定义为包含所有属于A 或属于B或同时属于A和B的元素的集合。
例如,集合A={1, 2, 3},集合B={3, 4},则A∪B={1, 2, 3, 4}。
交集运算:设A和B是两个集合,它们的交集(A∩B)定义为包含所有既属于A又属于B的元素的集合。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。
差集运算:设A和B是两个集合,它们的差集(A-B或A\B)定义为包含所有属于A但不属于B的元素的集合。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A-B={1}。
补集运算:设U是一个给定的全集,A是U的一个子集,那么相对于全集U,A的补集(A')定义为包含所有属于全集U但不属于A的元素的集合。
例如,如果全集U是自然数的集合,集合A是正整数的集合,那么A'就是非正整数的集合。
集合的概念

一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A =B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A⊆A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A∪B。
复习课件11集合的概念及其基本运算

变式训练 2 设 A={x|x2+4x=0},B={x|x2+2(a+1)x +a2-1=0}, (1)若 B⊆A,求 a 的值; (2)若 A⊆B,求 a 的值.
解 (1)A={0,-4},
①当 B=∅时,Δ=4(a+1)2-4(a2-1)=8(a+1)<0,
解得 a<-1;
②当 B 为单元素集时,a=-1,此时 B={0}符合题意;
Hale Waihona Puke 变式训练 3 (2010·重庆)设 U={0,1,2,3},A={x∈U|x2 +mx=0},若∁UA={1,2},则实数 m=__-__3____.
解析 ∵∁UA={1,2},∴A={0,3},∴0,3 是方程 x2+mx =0 的两根,∴m=-3.
易错警示 1.忽略空集致误
试题:(5 分)已知集合 A={-1,1},B={x|ax+1=0}, 若 B⊆A,则实数 a 的所有可能取值的集合为____. 学生答案展示
正确答案 {-1,0,1}
批阅笔记 本题考查的重点是集合的关系以及集合元素
的特征.在解答本题时,存在两个突出错误.一是极易 忽略集合 B 为∅的情况;二是忽视对 B 中的元素-1a的值 为 1 或-1 的讨论.在解决类似问题时,一定要注意分 类讨论,避免误解.
思想方法 感悟提高
方法与技巧 1.集合中的元素的三个性质,特别是无序性和互异性
则实数 a 的取值范围是_a_≤__0__.
题型分类 深度剖析
题型一 集合的基本概念 例 1 定义集合运算:A⊙B={z|z=xy(x+y),x∈A,
y∈B},设集合 A={0,1},B={2,3},则集合 A⊙B 的 所有元素之和为________. 思维启迪 集合 A⊙B 的元素:z=xy(x+y).求出 z 的 所有值,再求其和.
高一数学上册集合的概念

高一数学上册集合的概念高一数学上册集合的概念概念1.集合的定义:集合是由确定的对象所组成的一个整体,这些对象称为集合的元素。
2.元素与集合的关系:一个元素可以属于一个集合,也可以不属于一个集合。
3.集合的表示方法:常用的表示方法有列举法和描述法。
4.集合的基本运算:包括并集、交集、补集和差集等运算。
5.集合的关系:集合之间可以有包含关系、相等关系和不相交关系等。
6.子集和真子集:如果一个集合的所有元素都属于另一个集合,则称该集合为另一个集合的子集;如果一个集合是另一个集合的子集,并且两个集合不相等,则称该集合为另一个集合的真子集。
相关内容1.集合的运算法则:并集运算满足交换律和结合律;交集运算满足交换律和结合律;补集运算满足对偶律和恒等律;差集运算满足补集定律和恒等律。
2.集合的属性:空集是任意集合的子集;任意集合是自身的子集;全集是包含所有元素的集合;两个集合相等当且仅当它们的元素完全相同。
3.集合的应用:集合的概念在数学中具有广泛的应用,例如概率论、离散数学、集合论等领域。
总结集合是数学中的基本概念之一,它描述了确定的对象所组成的一个整体。
通过集合的定义和基本运算,我们可以进行集合的操作和研究集合之间的关系。
集合的概念在数学的各个领域都有应用,是数学学习的重要基础。
继续介绍集合相关的内容:集合的定义集合是由确定的对象所组成的一个整体,这些对象称为集合的元素。
集合可以用大写字母A、B、C等表示,元素可以用小写字母a、b、c等表示。
元素与集合的关系一个元素可以属于一个集合,也可以不属于一个集合。
如果元素a属于集合A,我们可以用符号a ∈ A表示;如果元素a不属于集合A,我们可以用符号a ∉ A表示。
集合的表示方法常用的表示方法有列举法和描述法: - 列举法:将集合的元素一一列举出来,用花括号{}括起来。
例如,集合A = {1, 2, 3}。
- 描述法:通过描述元素的性质或特点来表示集合。
例如,集合B是所有大于0且小于10的整数的集合,可以表示为B = {x | 0 < x < 10, x ∈ Z}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1集合-集合的概念
(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示
一些简单的集合
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是
因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+
(3)整数集:全体整数的集合记作Z ,
(4)有理数集:全体有理数的集合记作Q ,
(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括
数0
(2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,
或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含( A )
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z, b∈Z)的数,求证:
(1) 当x∈N时, x∈G;
(2) 若x∈G,y∈G,则x+y∈G,而不一定属于集合G
证明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0,
则x= x+0*= a+b∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵=
且不一定都是整数,
∴=不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
七、课后记:。