基础练习5 变量与函数 一次函数(含答案)

合集下载

一次函数的图象与性质知识讲解及例题

一次函数的图象与性质知识讲解及例题

一次函数的图象与性质(基础)【学习目标】1. 理解一次函数的概念,理解一次函数的图象与正比例函数的图象之间的关系;2. 能正确画出一次函数的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如(,是常数,≠0)的函数,叫做一次函数.要点诠释:当=0时,即,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数,的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数(、为常数,且≠0)的图象是一条直线 ;当>0时,直线是由直线向上平移个单位长度得到的; 当<0时,直线是由直线向下平移||个单位长度得到的.2.一次函数(、为常数,且≠0)的图象与性质:y kx b =+y kx =y kx b =+y kx b =+k b k b y kx b =+y kx =k b y kx b =+k b k b y kx b =+y kx =b b y kx b =+y kx =b y kx b =+k b k3. 、对一次函数的图象和性质的影响:决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.4. 两条直线:和:的位置关系可由其系数确定:(1)与相交; (2),且与平行;要点三、待定系数法求一次函数解析式一次函数(,是常数,≠0)中有两个待定系数,,需要两个独立条件确定两个关于,的方程,这两个条件通常为两个点或两对,的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数中有和两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的k b y kx b =+k y kx b =+b y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l y kx b =+k b k k b k b x y y kx b =+k b k b解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此=2,可以设函数的解析式为,再利用过点(1.5,0),求出相应的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为.它的图象过点(1.5,0),(0,2)∴该函数的解析式为. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 ;提示:设一次函数的解析式为,它的图象与的图象平行,则,又因为一次函数的图象经过(2,1)点,代入得1=2×2+.解得. ∴ 一次函数解析式为.b 2y kx =+k y kx b =+41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴423y x =-+k b 2y x =23y x =-y kx b =+2y x =2k =b 3b =-23y x =-【变式2】已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有,解得∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数.(1)当、是什么数时,随的增大而增大;(2)当、是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求、的取值范围.【答案与解析】解:(1),即>-2,为任何实数时,随的增大而增大;()()243y m x n =++-m n y x m n m n 240m +>m n y x(2)当、是满足即时,函数图象经过原点; (3)若图象经过一、二、三象限,则,即. 【总结升华】一次函数的图象有四种情况:①当>0,>0时,函数的图象经过第一、二、三象限,的值随的值增大而增大;②当>0,<0时,函数的图象经过第一、三、四象限,的值随的值增大而增大;③当<0,>0时,函数的图象经过第一、二、四象限,的值随的值增大而减小;④当<0,<0时,函数的图象经过第二、三、四象限,的值随的值增大而减小.4、已知点A (4,0)及在第一象限的动点P (x ,y ),且x+y=5,0为坐标原点,设△OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=4时,求P 点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x ,再由三角形的面积公式即可得出结论;(2)由点P (x ,y )在第一象限,且x+y=5得出x 的取值范围即可;(3)把S=4代入(1)中的关系式求出x 的值,进而可得出y 的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x ,∴S=×4×(5﹣x )=10﹣2x ;(2)∵点P (x ,y )在第一象限,且x+y=5,∴0<x <5;(3)∵由(1)知,S=10﹣2x ,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).m n 24030m n +≠⎧⎨-=⎩23m n ≠-⎧⎨=⎩24030m n +>⎧⎨->⎩23m n >-⎧⎨<⎩y kx b =+k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三:【变式】函数在直角坐标系中的图象可能是( ).【答案】B ;提示:不论为正还是为负,都大于0,图象应该交于轴上方,故选B.【巩固练习】一.选择题1. 已知一次函数的图象如图所示,那么的取值范围是( )A .B .C .D .2.关于一次函数y=﹣2x+3,下列结论正确的是( )A .图象过点(1,﹣1)B .图象经过一、二、三象限C .y 随x 的增大而增大D .当x >时,y <03. 已知一次函数的图象经过第一、二、三象限,则的取值范围是( )A. B. C. D. 4.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映面积S 与x 之间的函数关系式的图象是( )(0)y kx k k =+≠k k x (1)y a x b =-+a 1a >1a <0a >0a<k x k y +-=)21(k 0>k 0<k 210<<k 21<kA .B .C .D .5.已知直线和直线相交于点(2,),则、的值分别为( ). A .2,3 B .3,2 C .,2 D .,3 6. 如图弹簧的长度与所挂物体的质量关系为一次函数,则不挂物体时,弹簧长度为( ).A .7B .8C .9D .10二.填空题7. 如果直线经过第一、二、三象限,那么 0.8.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是 .9. 已知一次函数的图象与直线平行, 则= .10. 一次函数的图象与轴的交点坐标是_____,与轴的交点坐标是______. 11.已知一次函数y=kx+b (k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则此一次函数的解析式为 .12.一次函数与两坐标轴围成三角形的面积为4,则=________.三.解答题13.已知直线y=kx+3经过点A (﹣4,0),且与y 轴交于点B ,点O 为坐标原点.(1)求k 的值;(2)求点O 直线AB 的距离;(3)过点C (0,1)的直线把△AOB 的面积分成相等的两部分,求这条直线的函数关系式.14.已知与成正比例,且当=1时,= 5y x =12y x b =-+c b c 12-12-cm cm cmcm y ax b =+ab 2y kx =-34y x =+k 113y x =-+x y 2y x b =+b 1-y 1+x x y(1)求与之间的函数关系式;(2)若图象与轴交于A 点,与交于B 点,求△AOB 的面积.15.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元.(1)写出应收门票费(元)与游览人数(人)之间的函数关系式;(2)利用(1)中的函数关系计算:某班54名学生去该风景区游览时,为购门票共花了多少元?【答案与解析】一.填空题1. 【答案】A ;【解析】由题意知.2. 【答案】D ;【解析】解:A 、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B 、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C 、∵﹣2<0,∴y 随x 的增大而减小,故错误;D 、画出草图.∵当x >时,图象在x 轴下方,∴y <0,故正确.故选D .3. 【答案】C ;【解析】由题意知,且>0,解得4. 【答案】C ;【解析】∵点P (x ,y )在第一象限内,且x+y=6,∵y=6﹣x (0<x <6,0<y <6). ∵点A 的坐标为(4,0),∵S=×4×(6﹣x )=12﹣2x (0<x <6).5. 【答案】B ;【解析】点(2,)在直线上,故=2.点(2,2)在直线上,故,解得=3.6. 【答案】D ;【解析】5+=12.5,20+=20,解得=0.5,=10.二.填空题7. 【答案】>【解析】画出草图如图所示,由图象知随的增大而增大,可知>0;图象与轴的交点在轴上方,知>0,故>0.y x x y y x 10,1a a ->>∴120k ->k 210<<k c y x =c 12y x b =-+12b -+=b k b k b k b y x a y x b ab8. 【答案】a >b ;【解析】∵一次函数y=﹣2x +1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为:a >b .9. 【答案】3;【解析】互相平行的直线相同.10.【答案】,【解析】令=0,解得=1;令=0,解得=3.11.【答案】y=x+2或y=﹣x+2.【解析】解:∵一次函数y=kx+b (k≠0)图象过点(0,2),∴b=2,设一次函数与x 轴的交点是(a ,0),则×2×|a|=2,解得:a=2或﹣2.把(2,0)代入y=kx+2,解得:k=﹣1,则函数的解析式是y=﹣x+2; 把(﹣2,0)代入y=kx+2,得k=1,则函数的解析式是y=x+2. 故答案是:y=x+2或y=﹣x+2.12.【答案】;【解析】一次函数与轴交点为,与轴交点为(0,),所以,解得=±4.三.解答题13. 【解析】解:(1)依题意得:﹣4k+3=0,解得k=;(2)由(1)得y=x+3,当x=0时,y=3,即点B 的坐标为(0,3).如图,过点O 作OP ⊥AB 于P ,则线段OP 的长即为点O 直线AB 的距离. ∵S △AOB =AB•OP=OA•OB,∴OP===;k ()3,0()0,1x y y x 4±x ,02b ⎛⎫-⎪⎝⎭y b 1||||422b b -=b(3)设所求过点C(0,1)的直线解析式为y=mx+1.S△AOB=OA•OB=×4×3=6.分两种情况讨论:①当直线y=mx+1与OA相交时,设交点为D,则S△COD=OC•OD=×1×OD=3,解得OD=6.∵OD>OA,∴OD=6不合题意舍去;②当直线y=mx+1与AB相交时,设交点为E,则S△BCE=BC•|x E|=×2×|x E|=3,解得|x E |=3,则x E =﹣3,当x=﹣3时,y=x+3=,即E 点坐标为(﹣3,).将E (﹣3,)代入y=mx+1,得﹣3m+1=,解得m=.故这条直线的函数关系式为y=x+1.14.【解析】解:(1)∵与成正比例,∴当=1时,=5解得=2∴(2)A(),B(0,3) =. 15.【解析】解:(1)由题意,得1-y 1+x ()11y k x -=+x y k 23y x =+3,02-12AOB S OA OB ∆=⨯1393224⨯⨯=25(020,)252010(20)(20,x x x y x x x <≤⎧=⎨⨯+->⎩且为整数且为整数)化简得: (2)把=54代入=10+300,=10×54+300=840(元). 所以某班54名学生去该风景区游览时,为购门票共花了840元.甲由B 地到A 地所用时间是:20÷=20分钟, 设甲由B 地到A 地的函数解析式是:,∵点(24,20)与(44,0)在此函数图象上,∴,解得:,∴甲由B 地到A 地函数解析式是:,(2)乙由A 地到B 地的函数解析式是:,即; 根据题意得:, 解得:, 则经过分钟相遇.25(020,)10300(20,x x x y x x x <≤⎧=⎨+>⎩且为整数且为整数)x y x y 1111212⎛⎫+ ⎪⎝⎭y kx b =+2420440k b k b +=⎧⎨+=⎩144k b =-⎧⎨=⎩44y x =-+711212y x ⎛⎫=- ⎪⎝⎭12y x =4412y x y x =-+⎧⎪⎨=⎪⎩883x =883。

一次函数练习题(附答案)

一次函数练习题(附答案)

一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。

CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。

12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。

13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。

方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。

22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。

2022年人教版八年级数学下册第十九章-一次函数专题练习试卷(含答案详解)

2022年人教版八年级数学下册第十九章-一次函数专题练习试卷(含答案详解)

人教版八年级数学下册第十九章-一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小赵想应聘超市的牛奶销售员,现有甲、乙两家超市待选,每月工资按底薪加上提成合算,甲、乙两超市牛奶销售员每月工资y(元)与员工销售量x(件)之间的关系如图所示,则下列说法错误的是()A.销量小于500件时,选择乙超市工资更高 B.想要获得3000元的工资,甲超市需要的销售量更少C.在甲超市每销售一件牛奶可得提成3元D.销售量为1500件时,甲超市比乙超市工资高出800元2、关于函数y x,以下说法错误的是()A.图象经过原点B.图象经过第二、四象限C.图象经过点2)D.y的值随x的增大而增大3、一次函数y=2021x﹣2022的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,y甲表示甲的路程,y乙表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有()个A.1 B.2 C.3 D.45、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是().A.-2 B.2C .4D .﹣46、若函数满足0a c +=,a c <,则函数y ax c =+的图象可能是( )A .B .C .D .7、如图,一次函数y =ax +b 的图象交x 轴于点(2,0),交y 轴与点(0,4),则下面说法正确的是( )A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =28、点A (3-,1y )、B (2,2y )都在直线2(1)3y a x =-++上,则1y 与2y 的关系是( )A .12y y ≤B .12y y =C .12y y <D .12y y >9、一次函数y =﹣3x ﹣4的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限10、下列命题中,真命题是( )A .若一个三角形的三边长分别是a 、b 、c ,则有222+=a b cB .(6,0)是第一象限内的点C .所有的无限小数都是无理数D .正比例函数y kx =(0k ≠)的图象是一条经过原点(0,0)的直线第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、先设出_____,再根据条件确定解析式中_____,从而得出函数解析式的方法,叫待定系数法.2、在平面直角坐标系中,A (﹣2,0),B (4,0),若直线y =x +b 上存在点P 满足45°≤∠APB ≤90°且PA =PB ,则常数b 的取值范围是______.3、直线y =2x-3与x 轴的交点坐标是______,与y 轴的交点坐标是______.4、点12021-(,)P 在正比例函数y kx =的图像上,则k =____.5、(1)每一个含有未知数x 和y 的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.(2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.三、解答题(5小题,每小题10分,共计50分)1、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费,每月用电不超过100度,按每度0.48元计算,每月用电超过100度,其中的100度仍按原标准收费,超过部分按每度0.50元计费.(1)设月用电x 度时,应交电费y 元,写出y 与x 的函数关系式,并写出自变量的取值范围.(2)小王家一月份用电130度,应交电费多少元?(3)小王家二月份交电费70元,求小王家二月份用了多少度电?2、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发s,甲提速前的速度是每秒米,m=,n=;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x 的取值范围.3、某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠.乙旅行社提出每人次收350元车费和住宿费,但有3人可享受免费待遇.(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式;(2)如果组织20人的旅行团时,选哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?4、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.(1)小红、小华谁的速度快?(2)出发后几小时两人相遇?(3)A ,B 两地离学校分别有多远?5、已知一次函数的图象过点(-1,5),且与正比例函数y =-12x 的图象交于点(2,a ).求:(1)一次函数表达式;(2)这两个函数图象与x 轴所围成的三角形面积.---------参考答案-----------一、单选题1、D【解析】【分析】根据函数图象分别求得甲、乙两超市每月工资y (元)与员工销售量x (件)之间的函数关系式,根据一次函数的性质逐项分析判断【详解】解:根据函数图性,设甲的解析式为:111y k x b =+,乙的解析式为:222y k x b =+将()()0,1000,500,2500代入111y k x b =+,得 11110005002500b k b =⎧⎨+=⎩解得1131000k b =⎧⎨=⎩∴131000y x =+将()()0,1500,500,2500代入222y k x b =+,得22215005002500b k b =⎧⎨+=⎩解得2221500k b =⎧⎨=⎩ ∴221500y x =+A.根据函数图像可知,当500x <时,12y y <,即选择乙超市工资更高,故该选项正确,符合题意;B.当13000y =时,20003x =,当23000y =时,15007502x ==, 20007503<,即想要获得3000元的工资,甲超市需要的销售量更少,故该选项正确,符合题意; C.根据题意,甲超市的工资为131000y x =+,0x =时,1000y =,即底薪为1000元,当500x =时,2500y =,则()250010005003-÷=,即在甲超市每销售一件牛奶可得提成3元,故该选项正确,符合题意;D.当1500x =时,11000315005500y =+⨯=,22150015004500y =⨯+=,55004500=1000-(元), 即销售量为1500件时,甲超市比乙超市工资高出1000元,故该选项不正确,不符合题意; 故选D【点睛】本题考查了一次函数的应用,根据函数图象求得解析式是解题的关键.2、D【解析】【分析】根据正比例函数的定义与性质判定即可.【详解】解:A、由解析式可得它是正比例函数,故函数图象经过原点,说法正确,不合题意;B、由k<0可得图象经过二、四象限,说法正确,不合题意;C、当x y=﹣2,图象经过点2),说法正确,不合题意;D、由k<0可得y的值随x的增大而减小,说法错误,符合题意;故选:D.【点睛】本题考查正比例函数的图像与性质,充分掌握正比例函数图象性质与系数之间的关系是解题关键.3、B【解析】【分析】根据一次函数y=2021x-2022中k、b的取值特点,判断函数图象经过第一、三、四象限.【详解】解:一次函数y=2021x-2022中,k=2021>0,∴一次函数经过第一、三象限,∵b=-2022<0,∴一次函数与y轴的交点在x轴下方,∴一次函数经过第一、三、四象限,∴一次函数图象不经过第二象限,故选:B .【点睛】本题考查了一次函数的性质,掌握一次函数k 、b 的特点与函数图象的关系是解题的关键.4、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB 段为甲休息的时间即可判断③;设乙需要t 分钟追上甲,10006001006006040t t -=+-,求出t 即可判断④. 【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB 段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确; ∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t 分钟追上甲,10006001006006040t t -=+-, 解得t =7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C .【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.5、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.6、D【解析】【分析】<可得a<0,c>0,根据一次函数的图象与性质即可得解.由0a c+=可得a,c互为相反数,由a c【详解】解:∵0+=,a c∴a,c互为相反数,<,∵a c∴a<0,c>0,=+的图象经过一、二、四象限.∴函数y ax c故选D.【点睛】本题考查了一次函数图象与性质,相反数的性质.对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;当b>0时,图象与y轴正半轴有交点,当b=0时,图象经过原点,当b<0时,图象与y轴负半轴有交点.7、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、D【解析】【分析】根据k<0,得到y随x的增大而减小,即可求解.【详解】解:∵2(1)a -+<0,y 随着x 的增大而减小,32-<∴12y y >故选D【点睛】本题考查了一次函数的性质,掌握“0k <,y 随着x 的增大而减小”是解题的关键.9、A【解析】【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数不经过哪个象限.【详解】解答:解:∵一次函数y =﹣3x ﹣4,k =﹣3,b =﹣4,∴该函数经过第二、三、四象限,不经过第一象限,故选:A .【点睛】本题考查了一次函数的图象与性质,属于基础题型,熟练掌握一次函数的性质是解题的关键.10、D【解析】【分析】根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.【详解】解:A 、若一个三角形的三边长分别是a 、b 、c ,不一定有222+=a b c ,则原命题是假命题,故本选项不符合题意;B 、(6,0)是x 轴上的点,则原命题是假命题,故本选项不符合题意;C 、无限不循环小数都是无理数,D 、正比例函数y kx =(0k ≠)的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.二、填空题1、 解析式 未知的系数【解析】【分析】根据待定系数法的概念填写即可.【详解】解:先设出函数的解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫待定系数法,故答案为:①解析式 ②未知的系数.【点睛】本题考查了待定系数法的概念,做题的关键是牢记概念.2、2≤b 或﹣﹣4≤b ≤﹣4【解析】利用PA=PB可得点P在线段AB的垂直平分线上,分b>0或b<0两种情况讨论解答:求出当∠APB=90°和∠APB=45°时的b值,结合图象即可求得b的取值范围.【详解】解:∵A(﹣2,0),B(4,0),∴AB=6.∵PA=PB,∴点P在线段AB的垂直平分线上,设线段AB的垂直平分线交x轴于点C,,则点C(1,0),∴OC=1.①当b>0时,设直线y=x+b交x轴于点D,交y轴于点E,则D(﹣b,0),E(0,b).∴OD=b,OE=b.∴∠ODE=∠OED=45°,DC=OD+OC=b+1.当∠APB=90°时,如图,∴∠CPE=∠OED=45°.∴PC=DC=b+1,∵C为斜边AB的中点,AB=3.∴PC=12∴b+1=3.∴b=2.当∠APB=45°时,如图,过点A作AF⊥BP于点F,∵∠APB=45°,∴AF=PF.设AF=PF=x,则PA x,∵PA=PB,∴PB ,∴BF =PB ﹣PF =1)x .∵AF 2+BF 2=AB 2,∴2221)6x x ⎡⎤+=⎣⎦,∴x 2= ∵1122ABP S AB PC BP AF ∆=⋅=⋅,∴6(b +1x •x .∴b =.∵45°≤∠APB ≤90°,∴2≤b +2.②当b <0时,设直线y =x +b 交x 轴于点D ,交y 轴于点E ,则D (﹣b ,0),E (0,b ).∴OD =﹣b ,OE =﹣b .∴∠ODE =∠OED =45°,DC =OD +OC =﹣b ﹣1.当∠APB =90°时,如图,PC∥OE,∴∠CPE=∠OED=45°.∴PC=DC=﹣b﹣1,∵C为斜边AB的中点,AB=3.∴PC=12∴﹣b﹣1=3.∴b=﹣4.当∠APB=45°时,如图,过点A 作AF ⊥BP 于点F ,∵∠APB =45°,∴AF =PF .设AF =PF =x ,则PA x ,∵PA =PB ,∴PB ,∴BF =PB ﹣PF =1)x .∵AF 2+BF 2=AB 2,∴2221)6x x ⎡⎤+=⎣⎦,∴x 2= ∵1122ABP S AB PC BP AF ∆=⋅=⋅,∴6(﹣b ﹣1x •x .∴b=﹣4.∵45°≤∠APB≤90°,∴﹣b≤﹣4.综上,常数b的取值范围是:2≤b+2或﹣b≤﹣4.故答案是:2≤b或﹣b≤﹣4.【点睛】本题主要考查了一次函数的应用,垂直平分线的性质,勾股定理,准确计算是解题的关键.3、(32,0)##(1.5,0)(0,﹣3)【解析】【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x32,故直线与x轴的交点坐标为:(32,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(32,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.4、-2021【解析】【分析】由12021P在正比例函数图像上,将利用正比例函数图像上的点的特征可得:2021=1k -(,)-⨯,解之即可得到k值.【详解】=的函数图像上,P在y kx-12021(,)∴-=⨯,20211k∴=-.2021k故答案为:-2021.【点睛】=是解题的本题主要是考查正比例函数上的点的特征,牢记函数图像上任何一点都满足函数关系式y kx关键.5、y=kx+b(k,b是常数,k≠0) 直线自变量多少交点坐标【解析】【分析】(1)根据一次函数与二元一次方程的关系解答即可;(2)根据一次函数与二元一次方程组的关系解答即可;【详解】(1)一般地,任何一个二元一次方程都可转化为一次函数的形式,∴每个二元一次方程都对应一个一次函数,也对应一条直线,故答案为:y=kx+b(k,b是常数,k≠0);直线(2)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.∴答案为:自变量;多少;交点坐标【点睛】此题考查一次函数与二元一次方程问题,关键是根据一次函数与二元一次方程(组)的关系解答.三、解答题1、(1)y={0.48y(y≤100)0.50y−2(y>100);(2)63元;(3)144度【解析】【分析】(1)根据收费标准,列出分段函数即可解决问题;(2)x=130,代入y=0.50x-2即可;(3)因为70>63,所以把y=70代入y=0.50x-2,解方程即可.【详解】(1)由题意得:y={0.48y(0<y≤100)0.50y−2(y>100);(2)0.50×130-2=63(元),答:小王家一月份用电130度,应交电费63元.(3)∵70>63,∴0.50x-2=70,解得:x=144.答:小王家二月份交电费70元,求小王家二月份用了144度电.【点睛】本题考查了一次函数的应用,解题的关键是学会用用分段函数表示函数关系式,灵活运用所学知识解决问题.2、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.【解析】【分析】(1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程÷速度可求提速后所用时间,即可得到m值,进而得出n的值;(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x 的值;(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可.【详解】解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是4030−10=2(m/s);∵甲出发一段时间后速度提高为原来的3倍,∴甲提速后速度为6m/s,故提速后甲行走所用时间为:400-406=60(s),∴m=30+60=90(s)∴n=400÷36090=400×90360=100(s);故答案为10;2;90;100;(2)设OA段对应的函数关系式为y=kx,∵A(90,360)在OA上,∴90k=360,解得k=4,∴y=4x.设BC段对应的函数关系式为y=k1x+b,∵B(30,40)、C(90,400)在BC上,∴{30y1+y=40 90y1+y=400,解得{y1=6y=−140,∴y=6x-140,由乙追上了甲,得4x=6x-140,解得x=70.答:当x为70秒时,甲追上了乙.(3)由题意可得,|4y−[40+6(y−30)]|=30,解得x=55或x=85,即55≤x≤85时,甲、乙之间的距离不超过30米;当4x=400﹣30时,解得x=92.5,即92.5≤x≤100时,甲、乙之间的距离不超过30米;由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.【点睛】本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题.3、(1)见解析;(2)组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多【解析】【分析】(1)根据甲旅行社的收费方案写出甲的函数关系;根据乙旅行社的收费方案,分x≤3和x>3两种情况写出函数关系式即可;(2)把x=20分别代入函数关系式计算,然后判断即可;根据所需费用一样列出方程,然后求解即可.【详解】解:(1)甲旅行社:y=300x,乙旅行社:x≤3时,y=350x,x>3时,y=350(x-3)=350x-1050;(2)当x=20时,甲:y=300×20=6000元,乙:y=350×20-1050=5950元;所以组织20人的旅行团时,选乙家旅行社比较合算;300x=350x-1050,解得x=21,答:组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家旅行社的收费方法是解题的关键.4、(1)小华的速度快;(2)出发后14h 两人相遇;(3)A 地距学校200m ,B 地距学校500m【解析】【分析】(1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;(2)观察横坐标,可得答案;(3)观察纵坐标,可得答案.【详解】解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),由横坐标看出都用了15min ,小红的速度是200÷15=403(m/min),小华的速度是500÷15=1003 (m/min), 1003>403,小华的速度快. (2)由横坐标看出,出发后14h 两人相遇.(3)由纵坐标看出A 地距学校700-500=200(m),B 地距学校700-200=500(m).【点睛】本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.5、(1)一次函数表达式为y =−2y +3.(2)这两个函数图象与x 轴所围成的三角形面积为34.【解析】【分析】(1)利用正比例函数求出交点坐标,再通过待定系数法求解出一次函数表达式.(2)求出一次函数与x 轴的交点坐标,以该三角形在x 轴上的边为底,交点坐标的纵坐标的绝对值为高,通过三角形面积公式即可求出答案.【详解】(1)解:设一次函数表达式为:y=yy+y,∵正比例函数y=-12x的图象经过点(2,a),∴y=−12×2=−1即该点坐标为(2,-1),∵由题意可知:一次函数的图象过点(-1,5)和(2,-1),∴{5=−y+y−1=2y+y,解得{y=−2y=3,∴一次函数表达式为y=−2y+3.(2)解:如图所示,设两个函数图像的交点为P,即P点坐标为(2,-1),一次函数与x轴的交点为A,∵A点是一次函数与x轴的交点坐标,∴0=−2y+3,解得y=32,即A点坐标为(32,0),∴yy=32,∵P点坐标为(2,-1),∴点P到x轴的距离为1,∴两个函数图象与x轴所围成的三角形面积为:yΔyyy=12×1×yy=34.【点睛】本题主要是考查了待定系数法求解一次函数表达式以及求解与坐标轴的面积,正确利用待定系数法求出一次函数表达式,合理确定坐标轴围成的三角形的底和高,这是解决本题的关键.。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

人教版八年级数学下《一次函数》基础练习

人教版八年级数学下《一次函数》基础练习

《一次函数》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列各点中,一定不在正比例函数y=3x的图象上的是()A.(1,3)B.C.(﹣2,﹣6)D.(﹣3,﹣9)2.(5分)对任意非零数m,直线y=mx+2﹣5m,都经过一定点,则定点坐标为()A.(0,2)B.(1,2)C.(5,2)D.(2,﹣2)3.(5分)一次函数的图象过定点A(0,2),且函数值y随自变量x的增大而减小,则函数图象经过的象限为()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限4.(5分)下列函数(1)y=πx,(2)y=2﹣1﹣3x,(3)y=2﹣3x2,(4)y=﹣x+2,(5)y=,是一次函数有()个.A.4个B.3个C.2个D.1个5.(5分)下列函数:(1)y=2x﹣1;(2)y=﹣;(3)y=;(4)y=2﹣1﹣x;(5)y=x2中,一次函数有()个.A.1B.2C.3D.4二、填空题(本大题共5小题,共25.0分)6.(5分)下列函数中,是一次函数的是,是正比例函数的是.(填序号)(1)y=﹣;(2)y=﹣;(3)y=3﹣5x;(4)y=﹣5x2;(5)y=6x﹣;(6)y=x(x﹣4)﹣x2;(7)y=x﹣6.7.(5分)已知一次函数的图象经过点P(﹣3,0),且与两坐标轴截得的三角形面积为4,则此一次函数的解析式为.8.(5分)如图,直线y=x+4与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是.9.(5分)若直线y=x﹣b与坐标轴围成面积是8,则b=.10.(5分)已知函数y=x+m﹣2018(m常数)是正比例函数,则m=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知y﹣3与x成正比例,且x=6,y=15.(1)求y与x之间的函数解析式;(2)当x=9时,求y的值;(3)当y=2时,求x的值;12.(10分)已知2y+1与3x﹣3成正比例,且x=10时,y=4.求y与x之间的函数关系式.13.(10分)已知一次函数y=kx+b,当x=2时,y=2;当x=﹣4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.14.(10分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO(1)求直线AB的关系式;(2)P为x轴上一点,若△ACP的面积是△BOC面积的2倍,求点P的坐标.15.(10分)已知y﹣4与x成正比,当x=1时,y=2(1)求y与x之间的函数关系式,在下列坐标系中画出函数图象;(2)当x=时,求函数y的值;(3)结合图象和函数的增减性,求当y<﹣2时自变量x的取值范围.《一次函数》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列各点中,一定不在正比例函数y=3x的图象上的是()A.(1,3)B.C.(﹣2,﹣6)D.(﹣3,﹣9)【分析】利用一次函数图象上点的坐标特征来验证四个选项中的点是否在正比例函数图象上,此题得解.【解答】解:A、当x=1时,y=3x=3,∴点(1,3)在正比例函数y=3x的图象上,选项A不符合题意;B、当x=时,y=3x=,∴点(,)不在正比例函数y=3x的图象上,选项B符合题意;C、当x=﹣2时,y=3x=﹣6,∴点(﹣2,﹣6)在正比例函数y=3x的图象上,选项C不符合题意;D、当x=﹣3时,y=3x=﹣9,∴点(﹣3,﹣9)在正比例函数y=3x的图象上,选项D不符合题意.故选:B.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.2.(5分)对任意非零数m,直线y=mx+2﹣5m,都经过一定点,则定点坐标为()A.(0,2)B.(1,2)C.(5,2)D.(2,﹣2)【分析】将一次函数解析式变形为y=m(x﹣5)+2,由m为任意数,可代入x =5找出y的值,此题得解.【解答】解:∵y=mx+2﹣5m=m(x﹣5)+2,∴当x=5时,y=2.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.3.(5分)一次函数的图象过定点A(0,2),且函数值y随自变量x的增大而减小,则函数图象经过的象限为()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【分析】根据一次函数的图象过定点A(0,2),可知此函数图象经过第一象限;根据函数值y随自变量x的增大而减小,可知此函数图象经过第二、四象限.【解答】解:∵一次函数的图象过定点A(0,2),∴此函数图象与y轴正半轴相交,图象经过第一象限;又函数值y随自变量x的增大而减小,∴此函数图象从左到右逐渐下降,图象经过第二、四象限;∴此函数图象经过的象限为第一、二、四象限.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,掌握一次函数的性质是解题的关键.4.(5分)下列函数(1)y=πx,(2)y=2﹣1﹣3x,(3)y=2﹣3x2,(4)y=﹣x+2,(5)y=,是一次函数有()个.A.4个B.3个C.2个D.1个【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:(1)y=πx是正比例函数,是特殊的一次函数;(2)y=2﹣1﹣3x=﹣3x,是一次函数;(3)y=2﹣3x2,是二次函数;(4)y=﹣x+2是一次函数,(5)y=是反比例函数,故选:B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,注意正比例函数是特殊的一次函数,一次函数不一定是正比例函数.5.(5分)下列函数:(1)y=2x﹣1;(2)y=﹣;(3)y=;(4)y=2﹣1﹣x;(5)y=x2中,一次函数有()个.A.1B.2C.3D.4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:一次函数有y=2x﹣1;y=2﹣1﹣x;y=﹣;故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.二、填空题(本大题共5小题,共25.0分)6.(5分)下列函数中,是一次函数的是(1)(3)(5)(6)(7),是正比例函数的是(1)(6).(填序号)(1)y=﹣;(2)y=﹣;(3)y=3﹣5x;(4)y=﹣5x2;(5)y=6x﹣;(6)y=x(x﹣4)﹣x2;(7)y=x﹣6.【分析】根据一次函数与正比例函数的定义解答即可.【解答】解:(1)y=﹣是一次函数,也是正比例函数;(2)y=﹣是反比例函数;(3)y=3﹣5x是一次函数;(4)y=﹣5x2是二次函数;(5)y=6x﹣是一次函数;(6)y=x(x﹣4)﹣x2=﹣4x是正比例函数,也是一次函数;(7)y=x﹣6是一次函数.故答案为:(1)(3)(5)(6)(7);(1)(6)【点评】本题主要考查了正比例函数与一次函数的定义,解题的关键是掌握一次函数与正比例函数的定义及关系:一次函数不一定是正比例函数,正比例函数是特殊的一次函数.7.(5分)已知一次函数的图象经过点P(﹣3,0),且与两坐标轴截得的三角形面积为4,则此一次函数的解析式为y=x+或y=﹣x﹣.【分析】设一次函数图象与y轴交于点Q(0,m),利用三角形的面积公式结合一次函数图象与两坐标轴截得的三角形面积为4,可求出m的值,再利用待定系数法即可求出此一次函数的解析式.【解答】解:依照题意画出图形,如图所示.设一次函数图象与y轴交于点Q(0,m),=×|﹣3|×|m|=4,则S△POQ∴m=±.设一次函数的解析式为y=kx+b(k≠0).当m=时,将(﹣3,0),(0,)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=x+.当m=﹣时,同理可求出一次函数的解析式为y=﹣x﹣.故答案为:y=x+或y=﹣x﹣.【点评】本题考查了三角形的面积以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.8.(5分)如图,直线y=x+4与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是(﹣3,0),(4﹣8,0).【分析】把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;根据等腰三角形的判定,分两种情况讨论即可求得.【解答】解:当y=0时,x=﹣8,即A(﹣8,0),当x=0时,y=4,即B(0,4),∴OA=8,OB=4在Rt△ABO中,AB==4若AP=AB=4,则OP=AP﹣AO=4﹣8∴点P(4﹣8,0)若AP'=BP',在Rt△BP'O中,BP'2=BO2+P'O2=16+(AO﹣BP')2.∴BP'=AP'=5∴OP'=3∴P'(﹣3,0)综上所述:点P(﹣3,0),(4﹣8,0)故答案为:(﹣3,0),(4﹣8,0)【点评】本题考查了一次函数图象上点的坐标特征,等腰三角形的性质,利用分类思想解决问题是本题的关键.9.(5分)若直线y=x﹣b与坐标轴围成面积是8,则b=±4.【分析】求出直线与两坐标轴的交点坐标,再根据三角形的面积公式计算出b 的值即可.【解答】解:直线y=x﹣b与x轴的交点为:(b,0),与y轴的交点为:(0,﹣b),∴×|﹣b|×|b|=8,解得:b=±4.故答案为:±4.【点评】本题考查了一次函数图象上点的坐标特征,待定系数法求函数的解析式,正确利用点的坐标表示三角形的面积是关键.10.(5分)已知函数y=x+m﹣2018(m常数)是正比例函数,则m=2018.【分析】根据正比例函数的定义,m﹣2018=0,从而求解.【解答】解:根据题意得:m﹣2018=0,解得:m=2018,故答案为:2018.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.三、解答题(本大题共5小题,共50.0分)11.(10分)已知y﹣3与x成正比例,且x=6,y=15.(1)求y与x之间的函数解析式;(2)当x=9时,求y的值;(3)当y=2时,求x的值;【分析】(1)根据y﹣3与x成正比例,利用待定系数法求出解析式即可;(2)把x的值代入解析式求出y的值即可;(3)把y的值代入解析式求出x的值即可.【解答】解:(1)设函数的解析式为y﹣3=kx,∵把x=6,y=15代入解析式中得k=2,∴y﹣3=2x,即y=2x+3;(2)把x=9代入y=2x+3得:y=9×2+3=21;(3)把y=2代入y=2x+3得,2=2x+3,解得:x=﹣.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.12.(10分)已知2y+1与3x﹣3成正比例,且x=10时,y=4.求y与x之间的函数关系式.【分析】可设2y+1=k(3x﹣3),把已知条件代入可求得k的值,则可求得函数解析式,可求得函数类型.【解答】解:设2y+1=k(3x﹣3),∵x=10时,y=4,∴2×4+1=k(3×10﹣3),∴k=,∴2y+1=x﹣1,即y=x﹣1,故y与x之间的函数关系式为y=x﹣1.【点评】本题主要考查待定系数法求一次函数解析式,掌握待定系数法的应用步骤是解题的关键.13.(10分)已知一次函数y=kx+b,当x=2时,y=2;当x=﹣4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.【分析】(1)将已知两对x与y的值代入一次函数解析式即可求出k与b的值即可;(2)根据题意解方程即可得到结论.【解答】解:(1)由题知,解得;(2)由(1)知y=﹣2x+6,当y与x互为相反数时,﹣2x+6=﹣x,解得x=6.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.14.(10分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO(1)求直线AB的关系式;(2)P为x轴上一点,若△ACP的面积是△BOC面积的2倍,求点P的坐标.【分析】(1)利用待定系数法求直线AB的解析式;(2)利用直线AB的解析式确定C点坐标,再计算出S△ACP =2S△BOC=4,设P(t,0),根据三角形面积公式得到•|t+2|×3=4,然后解方程求出即可的P 点坐标.【解答】解:(1)设直线AB的解析式y=kx+b,把点A(1,3),B(0,2)代入解析式得,解得k=1,b=2,∴直线AB的解析式:y=x+2;(2)把y=0代入y=x+2得x+2=0,解得:x=﹣2,则点C的坐标为(﹣2,0),∵S△BOC=2×2×=2,∴S△ACP =2S△BOC=4,设P(t,0),∵•|t+2|×3=4,解得t=或t=﹣,∴P(,0)或(﹣,0).【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.15.(10分)已知y﹣4与x成正比,当x=1时,y=2(1)求y与x之间的函数关系式,在下列坐标系中画出函数图象;(2)当x=时,求函数y的值;(3)结合图象和函数的增减性,求当y<﹣2时自变量x的取值范围.【分析】(1)利用正比例函数的定义可设y﹣4=kx,然后把当x=1时,y=2代入求出k即可得到y与x之间的函数关系式,再利用描点法画出一次函数图象;(2)利用一次函数解析式,计算自变量为﹣对应的函数值即可;(3)利用一次函数图象,写出函数值小于﹣2对应的自变量的范围即可.【解答】解:(1)设y﹣4=kx,∵当x=1时,y=2,∴2﹣4=k,解得k=﹣2,∴y﹣4=﹣2k,∴y与x之间的函数关系式为y=﹣2x+4;如图,(2)当x=﹣时,y=﹣2×(﹣)+4=5;(3)当y<﹣2时自变量x的取值范围为x>3.【点评】本题考查了待定系数法求一次函数解析式:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数的图象和性质.。

一次函数(基础篇)专项练习1 含答案

一次函数(基础篇)专项练习1 含答案

一次函数(基础篇)专项练习1一、单选题1.下列图象中,表示y 是x 的函数的是()A .B .C .D .2.在函数1y =x 的取值范围是()A .2x >B .2x ≠C .2x <D .2x ≤3.一次函数y =(k ﹣1)x +3的图象经过点(﹣2,1),则k 的值是()A .﹣1B .2C .1D .04.一次函数y=kx+b 的图像经过点(-1,2),则k-b 的值是()A .-1B .2C .1D .-25.一次函数y =12x ﹣m 的图象上有两点A (﹣2,y 1),B (3,y 2),则y 1,y 2的大小关系为()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定6.如图是一次函数112y x =-的图象,根据图象可直接写出方程1102x -=的解为2x =,这种解题方法体现的数学思想是()A .数形结合思想B .转化思想C .分类讨论思想D .函数思想7.一根蜡烛长30cm ,点燃后每小时燃烧5cm ,燃烧时蜡烛剩余的长度h (cm )和燃烧时间t (小时)之间的函数关系用图像可以表示为中的()A .B .C .D .8.已知一次函数y =﹣2x +4,下列说法错误的是()A .图象经过第一、二、四象限B .图象与x 轴的交点坐标为(4,0)C .y 随x 增大而减小D .该图象可以由y =﹣2x 平移得到9.若关于x 的不等式组2−>0−2≤0有且只有四个整数解,且一次函数y =(k +3)x +k +5的图象不经过第三象限,则符合题意的整数k 有()个.A .4B .3C .2D .110.如图,在平面直角坐标系中,直线1l :152y x =-+与x 轴、y 轴分别交于点A 和点B ,直线2l 经过坐标原点,且21l l ⊥,垂足为C ,则点C 到y 轴的距离为()A .1B .2C .3D .4二、填空题11.已知f (x )=22x x-,那么f (2)=_____.12.如图,在平面直角坐标系中,点A (2,m )在第一象限,若点A 关于x 轴的对称点B 在直线y =﹣x+1上,则m 的值为_____.13.若y=(m ﹣1)x |m|是正比例函数,则m 的值为_____.14.直线2y x b =+(b 为常数)的图象经过第一、三、四象限,则b 的值可以是______(写出一个即可).15.已知正比例函数的图象经过点M (﹣2,1)、A (x 1,y 1)、B (x 2,y 2),如果x 1<x 2,那么y 1_____y 2.(填“>”、“=”、“<”)16.已知一次函数(1)2(1)y m x m m =++-≠-,将该函数图象先向下平移2个单位长度,再向右平移4个单位长度,平移后的函数图象过点(1,2)-,则m 的值为___________.17.已知在正比例函数y =-2mx 中,函数y 的值随x 值的增大而增大,则点P (m ,4)在第______象限.18.若A(x 1,y 1)、B(x 2,y 2)是一次函数2y ax x =+-图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是___.19.一次函数y =2x +4的图象与x 轴、y 轴的交点分别为A ,B ,则线段AB 的长为_____________.20.已知一次函数21y x =-+,若21x -≤≤,则y 的最小值为_________________.21.一次函数2y kx k =+的图象如图所示,当0y >时,则x 的取值范围是_______.22.如图,直线y =,点1A 坐标为()1,0,过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点2021B 的坐标为______.三、解答题23.已知一次函数y =kx +b 的图象经过点A (―1,3)和点B (2,―3).(1)求这个一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积.24.有一个容量为8GB(1GB=1024MB)的U盘,U盘中已经存储了1个视频文件,其余空间都用来存储照片.若每张照片占用的内存容量均相同,照片数量x(张)和剩余可用空间y(MB)的部分关系如表:照片数量100150200400800剩余可用空间56005400520044002800(1)求出y与x之间的关系式.(2)若U盘中已经存入1100张照片,那么最多还能存入多少张照片?25.如图,直线l1经过点A(0,2)和C(6,﹣2),点B的坐标为(4,2),点P是线段AB上的动点(点P不与点A重合),直线l2:y=kx+2k(k≠0)经过点P,并与l1交于点M.(1)求l1的函数表达式;(2)若点M坐标为(1,43),求S△APM;(3)无论k取何值,直线l2恒经过点,在P的移动过程中,k的取值范围是.26.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,问:(1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg?27.直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,直线(y kx b k b =+,是常数,0)k ≠经过点A ,与y 轴交于点C ,且OC OA =.()1求点A 的坐标及k 的值;()2点C 在x 轴的上方,点P 在直线24y x =-+上,若PC PB =,求点P 的坐标.28.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A ,B ,与函数y =x 的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a>2),过点P 作x 轴的垂线,分别交函数12y x b =-+和y =x 的图象于点C ,D(1)求点A 的坐标;(2)若OB =CD ,求a 的值.参考答案1.A【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数.解:A 、对于x 的每一个取值,y 都有唯一确定的值与之对应,故A 正确;B 、对于x 的每一个取值,y 可能有三个值与之对应,故B 错误;C 、对于x 的每一个取值,y 可能有两个值与之对应,故C 错误;D 、对于x 的每一个取值,y 可能有两个值与之对应,故D 错误;故选:A .【点拨】主要考查了函数的定义,在一个变化过程中有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.2.D【分析】根据二次根式的意义,被开方数大于等于0,列不等式求解即可得出结论.解:由题意得:2-x ≥0,解得x ≤2.故选:D .【点拨】本题主要考查了求自变量的取值范围,掌握二次根式的被开方数是非负数是解题的关键.3.B【分析】函数经过点(﹣2,1),把点的坐标代入解析式,即可求得k 的值.解:根据题意得:﹣2(k ﹣1)+3=,解得:k =2.故选B .【点拨】本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上的点一定满足函数解析式.4.D【分析】根据一次函数的性质即可得.解:由题意,将点(1,2)-代入一次函数的解析式得2k b -+=则2k b -=-故选:D .【点拨】本题考查了一次函数的性质,掌握理解一次函数的性质是解题关键.5.C【分析】直接根据一次函数的增减性判断即可.解:∵一次函数y =12x ﹣m 中,k =12>0,∴y 随x 的增大而增大.∵﹣2<3,∴y 1<y 2.故选:C .【点拨】本题主要考查一次函数的性质,熟练掌握函数性质是解题的关键.6.A【分析】根据图像与x 轴交点可得方程的解,体现的是数形结合的思想.解:由图像可知y =0时,与x 轴交于(2,0)点,故1102x -=的解为2x =,这种解题方法体现的是数形结合的数学思想.【点拨】本题主要考查根据函数图像求方程的解,正确理解函数图像各点的含义是解题关键.7.B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.解:由题意,得y=30-5t ,∵y≥0,t≥0,∴30-5t≥0,∴t≤6,∴0≤t≤6,∴y=30-5t 是降函数且图象是一条线段.故选B .【点拨】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.8.B【分析】根据一次函数的解析式中一次项系数20k =-<,40b =>,即可判断经过的象限进而判断A 选项,令0y =即可判断B 选项,根据一次项系数20k =-<,即可判断C 选项,根据一次函数平移的规律可判断D 选项.解:由24y x =-+,20k =-<,40b =>,∴一次函数24y x =-+图象经过第一、二、四象限,故A 选项正确,不符合题意;令0y =,则2x =,∴图象与x 轴的交点坐标为(2,0)故B 选项不正确,符合题意;20k =-<,∴y 随x 增大而减小;故C 选项正确,不符合题意;将一次函数2y x =-图象向上平移4个单位可得24y x =-+,故D 选项正确,不符合题意.故选B【点拨】本题考查了一次函数图象与性质,一次函数图象的平移,一次函数与坐标轴的交点,掌握一次函数的图象与性质是解题的关键.9.D 【解析】试题分析:解不等式组2−>0−2≤0得,2<x≤2,∵不等式组有且只有四个整数解,∴其整数解为:﹣1,0,1,2,∴﹣2≤2<﹣1,即﹣4≤k <﹣2.∵一次函数y=(k+3)x+k+5的图象不经过第三象限,∴+3<0k +5≥0,解得﹣5≤k <﹣3,∴﹣4≤k <﹣3,∴k 的整数解只有﹣4.故选D .【考点】一次函数与一元一次不等式.10.B【分析】先分别求得A ,B 两点坐标,然后利用勾股定理求得AB 的长,结合三角形面积求得OC 的长,再利用勾股定理求得BC ,最后再利用三角形面积求解解:在152y x =-+中,当x =0时,y =5当y =0时,15=02x -+,解得:x =10∴OA =10;OB =5∴在Rt △AOB 中,AB =∵21l l ⊥∴1122AB OC OA OB ⋅=⋅,1151022⨯=⨯⨯,解得:OC =∴在Rt △BOC 中,BC ==过点C 作CD ⊥y 轴∴1122OB CD BC ⋅=⋅,11522CD ⨯=⨯2CD =故选:B【点拨】本题考查一次函数的几何应用及勾股定理解直角三角形,二次根式的乘除运算,利用数形结合思想解题是关键.11.1【分析】把x=2代人f (x )=22x x-,求得答案即可.解:当x =2时,f (2)=2222-=1,故答案为:1.【点拨】考查了函数值的知识,解题的关键是代人后正确的计算,难度不大.12.1【分析】根据关于x 轴的对称点的坐标特点可得B (2,−m ),然后再把B 点坐标代入y =−x +1可得m 的值.解:点A 关于x 轴的对称点B 的坐标为:(2,﹣m ),将点B 的坐标代入直线y =﹣x+1得:﹣m =﹣2+1,解得:m =1,故答案为1.【点拨】此题主要考查了关于x 轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.13.-1【分析】根据正比例函数的定义,令m-1≠0,|m|=1即可.解:由题意得:m−1≠0,|m|=1,解得:m=−1.故答案为−1.【点拨】本题考查正比例函数的定义.14.-1(答案不唯一,b <0即可)【分析】由一次函数图象经过第一、三、四象限,可知k >0,b <0,在范围内确定b 的值即可.解:因为一次函数2y x b =+(b 为常数)的图象经过第一、三、四象限,所以k >0,b <0,所以b 可以取-1,故答案为:-1(答案不唯一,b <0即可)【点拨】此题考查一次函数图象与系数的关系,根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k 的取值范围.15.>【分析】根据正比例函数的性质,解答即可.解:设该正比例函数的解析式为y =kx ,则1=﹣2k ,得k =﹣0.5,∴y =﹣0.5x ,∵正比例函数的图象经过点A (x 1,y 1)、B (x 2,y 2),x 1<x 2,∴y 1>y 2,故答案为:>.【点拨】本题考查了正比例函数的性质,掌握性质是解题的关键.16.52-【分析】根据函数图象平移的规律:“上加下减”“左加右减”的原则即可求得.解:由题意得一次函数y=(m+1)(x-4)+m−2-2(m≠−1)经过点(1,-2)∴(m+1)(1-4)+m−2-2=-2,解得:m=-52,故答案为:-52.【点拨】本题考查一次函数的图象与几何变换,熟知平移的原则是解题的关键.17.二【分析】根据正比例函数y 的值随x 值的增大而增大,可知20m ->,求得0m <,即可判断P (m ,4)在第二象限.解:∵函数y 的值随x 值的增大而增大,∴20m ->,解得0m <,∴点P (m ,4)在第二象限.【点拨】本题考查正比例函数,较容易,熟练掌握正比例函数的性质是顺利解题的关键.18.1a <-【分析】根据一次函数的性质知,当k <0时,判断出y 随x 的增大而减小.解:∵A(1x ,1y )、B(2x ,2y )是一次函数()212y ax x a x =+-=+-图象上的不同的两点,()()1212 0m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴10a +<,解得1a <-.故答案为:1a <-.【点拨】本题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理.19.【分析】由一次函数y =2x +4的图象与x 轴、y 轴的交点分别为A ,B ,可求A (-2,0),B (0,4),在Rt △AOB 中,由勾股定理得AB ==.解:∵一次函数y =2x +4的图象与x 轴、y 轴的交点分别为A 、B ,∴当y =0时,240x +=,解得x =-2,∴A (-2,0),∴当x =0时,y=4,∴B (0,4),∵∠AOB =90°,在Rt △AOB 中,OA =2,OB =4,由勾股定理得AB ===.故答案为:【点拨】本题考查直线与两轴的交点坐标,勾股定理,掌握直线与两轴的交点坐标,勾股定理是解题关键.20.-1【分析】由k =-2<0,可得出y 随x 的增大而减小,结合-2≤x ≤1,即可求出y 的最小值.解:∵k =-2<0,∴y 随x 的增大而减小,∴当x =1时,y 取得最小值,此时y =-2×1+1=-1.故答案为:-1.【点拨】本题考查了一次函数的性质,牢记“k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小”是解题的关键.21.2x >-【分析】根据一次函数2y kx k =+,可以求得0y =时x 的值,然后根据函数图象和一次函数的性质,可以写出当0y >时,x 的取值范围.解:∵()22y kx k k x =+=+,∴当0y =时,2x =-,由图象可知,y 随x 的增大而增大,∴当0y >时,则x 的取值范围是2x >-,故答案为:2x >-.【点拨】本题考查一次函数图象和性质.根据函数图象判断其增减性是解答本题的关键.22.(20202,2【分析】根据题意可以写出A 和B 的前几个点的坐标,从而可以发现各点的变化规律,从而可以写出点A 2021的坐标.解:∵直线y =,点A 1坐标为(1,0),当1x =时,y ==∴点B 1的坐标为(1,在Rt △OA 1B 1中,OA 1=1,A 1B 1∴12OB =,∴点A 2坐标为(2,0),同理,点B 2的坐标为(2,,点A 3坐标为(4,0),点B 3的坐标为(4,,……∴点B n 的坐标为(2n -1,2n ,当n =2021时,点B 2021的坐标为(22020,2,故答案为:(22020,2.【点拨】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.(1)一次函数的表达式是y=-2x+1,(2)所围成的三角形面积为14.【分析】把两点坐标分别代入解析式,再解出k,b 即可求出解析式;(2)先根据解析式先求出直线与坐标轴的交点,再利用三角形面积公式求解.解:(1)依题意得323k b k b -+=⎧⎨+=-⎩解得21k b =-⎧⎨=⎩∴所求一次函数的表达式是y=-2x+1,(2)令x =0,由y=-2x+1得,y =1,令y =0,由y=-2x+1,得x =12,∴直线AB 与坐标轴的交点坐标分别是(0,1)和(102)∴所围成的三角形面积为:1111224⨯⨯=.24.(1)y =-4x +6000;(2)400张【分析】(1)运用待定系数法解答即可;(2)根据(1)结果算出当x =0时y 的值,用总内存减去此时y 的值即可得到视频文件占用的内存然后求出每张照片的内存,由此求解即可;解:(1)设y 与x 之间的关系式为y =kx +b ,根据题意得,10056001505400k b k b +=⎧⎨+=⎩,解得46000k b =-⎧⎨=⎩,故y 与x 之间的关系式为y =-4x +6000;(2)当x =0时,y =6000,此时U 盘没有储存照片,只有一个视频文件,8G=8⨯1024MB=8192MB ,8192-6000=2192(MB )∴U 盘中视频文件的占用内存容量为2192MB ;当x =1100时,y =-4×1100+6000=1600,∴此时U 盘有1600MB 内存,当x =100时,y =5600,∴每张照片的内存为(8192-2192-5600)÷100=4MB ,1600÷4=400(张)∴最多还能存入400张照片.答:最多还能存入400张照片.【点拨】本题主要考查了一次函数的应用,熟练掌握待定系数法求函数关系式是解答本题的关键.25.(1)223y x =-+;(2)56APM S ∆=;(3)1(2,0),13k -≤<.【分析】(1)将点A (0,2)和C (6,﹣2)代入y kx b =+,待定系数法求一次函数解析式即可;(2)根据2y kx k +=过点M 4(1,3求出解析式,求出求S △APM ;(3)2(2)y kx k k x +=+=过定点,分别求出P 在AB 、两点的时的k 即可.解:(1)点A (0,2)和C (6,﹣2)代入,y kx b =+得:262b k b =⎧⎨+=-⎩,解得232k b ⎧=-⎪⎨⎪=⎩223y x ∴=-+.(2)2y kx k + =过M 4(1,)3442,39k k k ∴+==4899y x ∴=+ A (0,2),B (4,2),点P 是线段AB 上的动点2y P ∴=直线l 2:y =kx +2k (k ≠0)经过点P4852992x x =+=5(,2)2P ∴52PA =14(2)23APM S PA ∆∴=⨯⨯-154(2223=⨯⨯-56=56APM S ∆∴=.(3)2(2)y kx k k x +=+ =∴过定点(2,0)-当点P 经过A (0,2)时,代入2y kx k=+22k =,解得1k =当点P 经过B (4,2)时,代入2y kx k=+422k k +=,解得13k =当点P 从点A 到点B 的移动过程中,k 的值在不断变小,点P 不与点A 重合.113k ∴≤<.【点拨】本题考查了,待定系数法求一次函数解析式,一次函数围成的三角形面积,过定点的一次函数,通过数形结合,理解题意,正确的解得一次函数解析式是解题的关键.26.(1)y =20x -300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y =0,求出对应的x 即可.解:(1)设y =kx +b ,代入(20,100),(30,300),得:1002030030k b k b =+⎧⎨=+⎩,解得:20300k b =⎧⎨=-⎩,∴y =20x -300;(2)取y =0,则20x -300=0,解得x =15,∴免费行李的最大质量为15kg .【点拨】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y 的值即可求出x 的值.27.(1) 1k =或1k =-;(2)1 32P ⎛⎫ ⎪⎝⎭,解:分析:(1)令0y =,求得x 的值,即可求得A 的坐标为()20,,由OC OA =得()02C ,或()02-,,然后根据待定系数法即可求得k 的值;(2)由()()0402B C ,,,,根据题意求得P 的纵坐标,代入24y x =-+即可求得横坐标.详解:()1由直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,令0y =,则240x -+=,解得2x =,()20A ∴,,OC OA = ,()02C ,∴或()02-,,直线(y kx b k b =+,是常数,0)k ≠经过点A 和点C ,202k b b +=⎧∴⎨=-⎩或202k b b +=⎧⎨=⎩,解得1k =或1k =-;()()()20402B C ,,,,且PC PB =,P ∴的纵坐标为3,点P 在直线24y x =-+上,把3y =代入24y x =-+解得12x =,132P ⎛⎫∴ ⎪⎝⎭,.点睛:考查了待定系数法求一次函数的解析式以及一次函数的图象与性质.注意待定系数法在求函数解析式中的应用.28.(1)(6,0);(2)4.解:试题分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣12x+b可计算出b=3,得到一次函数的解析式为y=﹣12x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣12a+3),D点坐标为(a,a),所以a﹣(﹣12a+3)=3,然后解方程即可.试题解析:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣12x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣12x+3,把y=0代入y=﹣12x+3得﹣12x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣12x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣12a+3),D点坐标为(a,a)∴a﹣(﹣12a+3)=3,∴a=4.考点:两条直线相交或平行问题.。

(word完整版)一次函数习题集锦(含答案),推荐文档

(word完整版)一次函数习题集锦(含答案),推荐文档

2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。

最新华东师大版下册数学八年级《变量与函数》课时练习(内附有答案).docx

最新华东师大版下册数学八年级《变量与函数》课时练习(内附有答案).docx

(新课标)华东师大版八年级下册第十七章第一节17.1变量与函数课时练习一、单选题(共15题)1.一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R(欧)表示为温度t(℃)的函数关系式为()A.R=0.008t B.R=0.008t+2 C.R=2.008t D.R=2t+0.008 2答案:B解析:解答:依题意有:R=0.008t+2选B分析: 在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,温度为t℃,相对于0℃增加了t℃,那么电阻就在2的基础上增加了0.008t2.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积答案:A解析:解答:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.选:A.分析: 函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量3.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C、R是变量C.2是常量,R是变量D.2是常量,C、R是变量答案:B解析:解答: ∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π选B.分析: 根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.4.某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中,下列说法正确的是()A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是常量答案:C解析:解答: 某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中:η和t是变量,零件的个数100是常量选C.分析: 常量是在某个过程中不变的量,变量就是在某个过程中可以取到不同的数值,变化的量.5.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A.明明B.电话费C.时间D.爷爷答案:B解析:解答: ∵电话费随着时间的变化而变化,∴自变量是时间,因变量是电话费.选B.分析:常量是在某个过程中不变的量,变量就是在某个过程中可以取到不同的数值,变化的量6.当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积答案:D解析:解答: 雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,选D.分析: 根据函数的关系,可得答案.7.下列四个关系式:①y=x;②y=x2;③y=x3;④|y|=x,其中y 不是x的函数的是()A.①B.②C.③D.④答案:D解析:解答: 根据对于x的每一个取值,y都有唯一确定的值与之对应,①y=x,②y=x2,③y=x3满足函数的定义,y是x的函数,④|y|=x,当x取值时,y不是有唯一的值对应,y不是x的函数选:D.分析: 根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定不是函数的个数8.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5xC.y=100x D.y=0.05x+100答案:B解析:解答:y=100×0.05x,即y=5x.选B.分析: 每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升9.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A.y=-12x B.y=12x C.y=-2x D.y=2x答案:D解析:解答: 依题意有:y=2x选:D.分析: 根据总价=单价×数量得出y与x之间的函数关系式10.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤答案:A解析:解答: ①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确选:A.分析: 根据一次函数的定义可知,x为自变量,y为函数,也叫因变量;x取全体实数;y随x的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法.11.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30 B.y=40x C.y=10+30x D.y=20x 答案:A解析:解答: 一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30选:A.分析: 根据师生的总费用,可得函数关系式12.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t 小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是()A.s=10+60t B.s=60t C.s=60t-10 D.s=10-60t 答案:A解析:解答:s=10+60t选:A.分析:根据路程与时间的关系,可得函数解析式13.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为()A.y=40x B.y=32x C.y=8x D.y=48x答案:B解析:解答: 依题意得y=40×80%×x=32x.选:B.分析:等量关系是:总价=单价×80%×数量.14.某地的地面温度为21℃,如果高度每升高1千米,气温下降3℃,则气温T(℃)与高度h(千米)之间的表达式为()A.T=21-3h B.T=3h-21 C.T=21+3h D.T=(21-3)h答案:A解析:解答:∵当高度为h时,降低3h,∴气温T℃与高度h(千米)之间的关系式为T=21-3h选:A.分析:气温=地面温度-降低的气温,把相关数值代入15.已知一个长方形的周长为24cm,其中一条边长为xcm(x>0),面积为ycm2,则y与x的关系为()A.y=x2 B.y=(12-x)2C.y=(12-x)x D.y=2(12-x)解析:解答:∵长方形的周长为24cm,其中一边为x(其中x>0),∴长方形的另一边长为12-x,∴y=(12-x)•x选:C.分析: 先根据周长表示出长方形的另一边长,再根据面积=长×宽列出函数关系式二、填空题(共5题)16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是________,因变量是温度___. 答案:时间|温度解析:解答: “早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是:时间,因变量是:温度.分析: 根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量17.圆的面积S与半径R之间的关系式是S=πR2,其中自变量是__________.解析:解答: 根据函数的定义:对于函数中的每个值R,变量S 按照一定的法则有一个确定的值S与之对应可知R是自变量,π是常量分析:根据函数的定义来判断自变量、函数和常量18.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是_________.答案:时间解析:解答:∵骆驼的体温随时间的变化而变化,∴自变量是时间分析: 因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间19.日出日落,一天的气温随时间的变化而变化,在这一问题中,自变量是_____.答案:时间解析:解答:日出日落,一天的气温随时间的变化而变化,温度随时间的变化而变化,气温是时间的函数,时间是自变量分析:根据函数的定义来判断自变量、函数和常量20.林老师骑摩托车到加油站加油,发现每个加油器上都有三个量,其中一个表示“元/升”其数值固定不变的,另外两个量分别表示“数量”、“金额”,数值一直在变化,在这三个量当中元/升是常量,________是变量答案:数量、金额解析:解答: 在这三个量当中元/升是常量,数量、金额是变量分析: 常量就是在变化过程中不变的量,变量是指在程序的运行过程中随时可以发生变化的量三、解答题(共5题)21.齿轮每分钟120转,如果n表示转数,t表示转动时间.(1)用n的代数式表示t;n答案:t=120解答: 由题意得:n;120t=n,t=120(2)说出其中的变量与常量.答案:解答:变量:t,n 常量:120分析: (1)根据题意可得:转数=每分钟120转×时间;(2)根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得x、y是变量22.根据下列情境编制一个实际问题,说出其中的常量与变量小王春节骑车去看望爷爷,小王家与爷爷家相距10千米,小王骑车的速度为每小时12千米答案:解答: 设小王与爷爷家的距离为s,出发时间为t,则s=-12t+10,-12与10是常量,s与t是变量解析:分析:根据函数的定义,需要有两个变量,可以从小王与爷爷家的距离和时间考虑求解23.我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?答案:解答:由题意得,常量为数值始终不变的量,有:2,0.5;变量为数值发生变化的量,有:x,y分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量24.阅读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500米赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20米/分的速度跑了10分时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10米/分的速度匀速爬向终点.40分后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30米/分的速度跑向终点时,它比乌龟足足晚了10分答案:解答:500米、乌龟的速度10米/分等在整个变化过程中是常量,兔子的速度是变量.分析: 根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题25.指出下面关系式中的常量与变量.运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步速度v(m/s)之间的函数关系式为t=400v答案:解答:运动员在400m一圈的跑道上训练,他跑一圈所用,的时间t(s)与跑步速度v(m/s)之间的函数关系式为t=400v常量是400m,变量是v、t.分析: 根据常量是变化过程中保持不变的量,变化过程中变化的量是变量,可得答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础练习5 变量与函数 一次函数
学号 姓名 得分
一、选择题:(每小题4分,共32分)
1.下列关系式中,y 不是x 的函数的是 ( D )
A .y=|x|
B .y=x
C .y=-x
D .y=±x
2.下列函数即是一次函数又是正比例函数的是 ( D )
A .y=
B .y=
C .y=5x-4
D .y= -3x
3.函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( D )
A .0<k
B .1>k
C .1≤k
D .1<k
4.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是 ( C )
A .
B .
C .
D .
5.已知等腰三角形的周长为20cm ,将底边长y(cm)表示成腰长x(cm)的函数关系式是 y=20-2x ,则其自变量x 的取值范围是 ( C )
A .0<x <10 B.一切实数 C .5<x <10 D .x >0
6.直线a x y +-=2经过),3(1y 和),2(2y -,则1y 与2y 的大小关系是 ( B )
A . 21y y >
B .21y y <
C .21y y =
D .无法确定
7.如图,线段AB 对应的函数表达式为 ( B )
A .y=-32x +2
B .y=-23
x +2(0≤x≤3) C .y=-23x +2 D .y=-23
x +2(0<x <3) 8.若点P (a ,b )在第二象限内,则直线y=ax+b 不经过 ( C )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
二、填空题:(每小题4分,共32分)
9.一次函数y=-2x +4的图象与x 轴交点坐标是(2,0),与y 轴交点坐标是(0,4) 。

10.直线y=2x 向上平移3个单位得到的直线解析式是 y =2x +3 。

11.已知函数1)1(2
++=m x m y 是一次函数,则m = 1 。

12.函数12-+=x x y 中自变量x 的取值范围是 x ≥-2且x ≠1 。

13.已知直线经过点A (2,3),B (-1,-3),则直线解析式为y =2x -1。

14.若一次函数y =(2-m )x +m 的图像不经过第三象限,则m 的取值范围是m >2。

15.点M (-2,k )在直线y=2x +1上,M 到x 轴的距离d = 3 。

16.若一次函数y =2x +b 的图像与坐标轴围成的三角形的面积是9,则b= ±6 。

三、解答题:(每题12分,共36分)
17.如图,在边长为2的正方形ABCD 的一边BC 上,一点P 从B 点运动到C 点,设BP=x ,
四边形APCD 的面积为y 。

①写出y 与x 之间的函数关系式及x 的取值范围;
②说明是否存在点P ,使四边形APCD 的面积为1? 解:①()122242y x x =-+⨯=-⎡⎤⎣⎦,即y =4-x (0≤x <2) ②不存在,理由如下:
当y =1时,4-x =1,x =3,而0≤x <2,
故不存在点P ,使四边形APCD 的面积为1。

18.已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数y=12 x 的图象相交于点
(2,a),求①a 的值;②k ,b 的值;③这两个函数图象与y 轴所围成的三角形面积。

解:①由题意a =12
×2=1; ②因y=kx+b 的图象经过点(-1,-5),(2,1)
故521k b k b -+=-⎧⎨+=⎩,解得23k b =⎧⎨=-⎩ ③设两直线交点为A 点,则A (2,1), 直线y =2x -3与y 轴交于B 点,则B (0,-3)
∴S △AOB =12 ×3×2=3, 即这两个函数图象与y 轴所围成的三角形面积为3。

19.小明同学骑自行车去郊外春游,下图表示他离家的距离s (km )
与所用的时间t (h )之
间关系的函数图像.
(1)根据图像回答:小明到达离家最远的地方需几小时?此时离家多远?
(2)求小明出发2.5h 离家多远。

(写出计算过程)
(3)求小明出发多长时间距家12km 。

(写出计算过程)
解:(1)小明到达离家最远的地方需3小时?此时离家30米。

(2)设直线CD 的解析式为s =kt +b 则215330k b k b +=⎧⎨+=⎩,解得1515
k b =⎧⎨=-⎩ 故直线CD 的解析式为s =15t -15
当t =2.5时,s =15×2.5-15=22.5
所以小明出发2.5h 离家22.5千米。

(3)设直线AB 的解析式为s =at
直线EF 的解析式为s =mt +
n
B P

15
430
60
a
m n
m n
=


+=

⎪+=

解得
15
15
90
a
m
n
=


=-

⎪=

故直线AB的解析式为s=15t
直线EF的解析式为s=-15t+90
当离开家时距家12千米,则12=15t,得t=4 5
小时=48分钟,
当返回家时距家12千米,则12=-15t+90,
得t=
1
5
5
小时=5小时12分钟
所以,当小明出发48分钟或5小时12分钟时,距家12千米。

相关文档
最新文档