投影与视图(第2课时)

合集下载

人教版九年级数学下册第29章投影与视图 2三视图习题2

人教版九年级数学下册第29章投影与视图 2三视图习题2

三视图一、单选题1.右图是一个由4个相同的正方体组成的立体图形,它的三视图是()2.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥3.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()4.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C.D.5.下图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π6.用6个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为D.A .B.C .7.如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是A.3 B.4 C.5 D.68.如图是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为A. B. C. D.二、填空题9.若干桶方便面摆放在桌子上,如图是它的三视图,则这一堆方便面共有 _____ 桶.10.桌上放着一个长方体和一个圆柱体,说出下面三幅图分别是从哪个方向看到的? 11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.12.下图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是.13.如图是一个正方体纸盒的展开图,其中的四个正方形内标有数字1,2,3和-3.要在其余正方形内分别填上一个数,使得折成正方形后,相对面上的两数均为互为相反数,则A处应填.14.如图是一个包装盒的三视图,则这个包装盒的体积是15.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是.三、解答题16.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?17.某一空间图形的三视图如右图所示,其中主视图:半径为1的半圆以及高为1的矩形;左视图:半径为1的14圆以及高为1的矩形;俯视图:半径为1的圆.求此图形的体积.18.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的主视图、左视图、俯视图.19.如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:20.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积21.已知一个几何体的三视图为一个直角三角形,和两个长方形,有关的尺寸如图所示,描述该几何体的形状,并根据图中数据计算它的表面积.22.在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示。

北师大版九年级数学上册课件:第五章 投影与视图

北师大版九年级数学上册课件:第五章 投影与视图

投影所在的平面叫做 投影面.
获取新知
有时光线是一组互相平行的射线,例如太阳光或探照灯 光的一束光中的光线,由平行光线形成的投影是平行投影.
例如,物体在太阳光的照射下形成的影子(简称日影) 就是平行投影.日影的方向可以反映时间.
我国古代的计时器日晷,就是根据日影来观测时间的.
皮影戏是利用灯光的照射,把影 子的影态反映在银幕(投影面)上的 表演艺术.
如图,把一根直的细铁丝(记为线段AB)放在三个不
同位置; (1)铁丝平行于投影面; (2)铁丝倾斜于投影面; (3)铁丝垂直于投影面(铁丝不一定要与投影面有公 共点).
三种情形下铁丝的正投影各是什么形状?
A
B
A
BA
A1
p
B1 A2
B B2
B3
A
B
A
BA
A1
p
B1 A2
B B2
A3(B3)
通过观察,我们可以发现:

照射光线叫做投影线
影 面
投影所在的平面叫做 投影面.
由同一点(点光源)发出的光线形 成的投影叫做中心投影.
典例剖析
1.投影线的方向如箭头所示,画出图中圆柱体的 正投影:
2.确定图中路灯灯泡所在的位置.
o
小结:
物体上的点以及
它们影子上的对应点
的连线都过光源.
作法:①过一根木杆的顶端及其影子的顶端作一条直线;
• 又如何?如果平行光从上面投射到正方 体上呢?
获取新知
视图的定义:
• 像这样,用正投影的方法绘制的物体在投 影面上的图形,称为物体的视图. • 通常我们把从正面得到的视图叫做主视图, 从左面得到的视图叫做左视图,从上面得到的 视图叫做俯视图.

2021年秋北师大版九年级数学上册5.2.2直棱柱的三视图教案

2021年秋北师大版九年级数学上册5.2.2直棱柱的三视图教案
活动
三:
开放
训练
表达
应用
活动1直四棱柱三种视图的画法
图5-2-64
画出如图5-2-64所示的直四棱柱的主视图、左视图和俯视图.
处理方式:先由学生想象,然后动手画出四棱柱的主视图、左视图和俯视图,再以小组为单位交流四棱柱的三种视图,看看谁画的最准确,派代表向全班展示,并说明画四棱柱三种视图的考前须知.同时老师要引导学生归纳总结画四棱柱三种视图的考前须知并加以强调:
图5-2-56
2.画出以下几何体的三种视图.
图5-2-57
处理方式:第1题先让学生独立考虑,然后口答;第2题找3名同学板演,其余同学在练习本上完成.学生在画视图时,会出现圆柱的主视图和左视图画得不一样,第二个图形的俯视图没有画圆心,长方体的主视图和左视图画的一样等错误,老师引导学生讨论、补充、修正,共同纠错.
【板书设计】
第2课时直棱柱的三视图
画视图的考前须知:
正三棱柱
四棱柱
练习:
学生活动区
提纲挈领,重点突出.
【教学反思】
①[授课流程反思]
精心设计问题对学生进展启迪,帮助学生跨越思维障碍,获得了比拟理想的效果,整堂课的教学效果比拟好.
②[讲授效果反思]
视图题目多数难度不大,是学业程度考试中的必考内容,同时也是学生的必要得分点,在教学设计上,根据课标和教材的设计要求,结合近几年来中考相关题目的特点,从根本几何体、组合几何体三视图的画图和探究三种视图之间的关系等方面对本节内容展开教学,进而打破难点.
最后学生动手完善画出上述三棱柱的正确的三种视图,如图5-2-61所示.
图5-2-61
板书:
三种视图的分布:
图5-2-62
活动内容2:
假如把上面的正三棱柱换一种摆法(如图5-2-63),那么它的三视图又是怎样的呢?

第二讲-投影体系和基本视图

第二讲-投影体系和基本视图

Z
a'
b' Z
b'
a''(b'')
A
B
W a''(b'')
x
X
0
o
YW
a
a
b
Y
b
YH
• 与直线垂直旳投影面上旳投影积聚成一点。 • 在另外两个投影面上旳投影平行于相应旳投影轴反应真长。
例题2-6:鉴定直线AB、CD旳名称。
a’ X
c’ b’
OX
a
b
c
d’ O
d
2.3.2.4 两直线旳相对位置
(1)平行两直线 (2)相交两直线 (3)交叉两直线 (4)交叉两直线重影点旳可见性鉴别
S
平面P称为投影面,S称为投射中心,
需作出点ABC在平面P上旳图象。
将S与A连成直线,作出SA与平面 P旳交点a ,即为点A旳图象。直线SA 称为投射线,点a称为点A旳投影,这 种产生图象旳措施称为投影法。
A
C
B
a
c
b 投影面 P
投影法分为两类:中心投影法和平行投影法。
(1)中心投影法
前例即是中心投影法,即投射线都从投射中心出发旳,所 得旳投影称为中心投影。
C
Ac
B D
o
a
k
b
d
鉴别措施:
交点是两直线 旳共有点
d’ b’
k’
a’
x c’
o
c b
k a
d
若空间两直线相交,则其同名投影必相交,且交点旳
投影必符合空间一点旳投影规律。
例2-9:过C点作水平线CD与AB相交。

湘教版九年级下册数学精品教学课件 第3章 投影与视图 小结与复习 (2)

湘教版九年级下册数学精品教学课件 第3章 投影与视图 小结与复习 (2)

例8 由一些大小相同的小正方体组成的几何体 三视图如图所示,那么,组成这个几何体的小正方体 的个数是( )
A.7
B.6
C.5
D.4
【解析】C 由主视图和俯视图可知,俯视图右边 两个方格的位置上各放置了一个正方体,所以在这两 个方格里分别填入数字 1 (如图);
由主视图和俯视图又知,俯视图左边一列上两个方
MO OP
即 MA 1.6 , 解得 MA = 5. 20+MA 8
同理,由 △NBD ∽ △NOP,
可得 NB = 1.5.
所以小明的身影变短了 5-1.5 = 3.5 (米).
考点三 圆锥的相关计算 例3 圆锥的侧面积为 6π cm2,底面圆的半径为 2 cm, 则这个圆锥的母线长为___3____cm.
1. 如图,小明与同学合作利用太阳光测量旗杆的高度, 身高 1.6 m 的小明落在地面上的影长为 BC = 2.4 m.
(1) 请你在图中画出旗杆在同一时刻阳光照射下落在地 面上的影子 EG;
(2) 若小明测得此刻旗杆
落在地面的影长 EG = 16 m,
请求出旗杆 DE 的高度.
解: (1) 影子 EG 如图所示. (2) ∵ DG∥AC, ∴∠G =∠C. ∴ Rt△ABC ∽ △Rt△DGE. ∴ AB BC ,即 1.6 2.4, DE EG DE 16
发出的,像这样的光线所形成的投影称为中心投影.
4. 平行投影与中心投影的区别与联系:
平行投影 中心投影
区别
投影线互相平行, 形成平行投影
投影线发自一点, 形成中心投影
联系
都是物体在光线的 照射下,在某个平 面内形成的影子. (即都是投影)
正投影
(1) 概念:投影线垂直于投影面产生的投影叫做正投影. (2) 性质:当物体的某个面平行于投影面时,这个面的

2022春九年级数学下册 第32章 投影与视图32.2 视图第2课时由三视图到几何体教案冀教版

2022春九年级数学下册 第32章 投影与视图32.2 视图第2课时由三视图到几何体教案冀教版

由三视图到几何体【教学目标】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.经历探索简单的几何体的三视图的还原,进一步发展空间想象能力.3.通过探索由三视图还原几何体或实物的活动,培养动手实践能力,发展学生逆向思维能力.【重点难点】重点:根据三视图描述基本几何体和实物原型.难点:根据三视图想象基本几何体和实物原型的形状.┃教学过程设计┃教学过程设计意图一、复习引入新知1.完成下列练习:如图所示,画出它的主视图、俯视图和左视图.教师出示练习题,学生先做(提醒学生注意三视图的位置与大小关系),然后学生说出答案,教师点拨.2.展示机械制图中三视图与对应立体图形的图片,导入本课. 回忆已学习的相关内容,温故知新. 培养空间观念,为新课的探索做铺垫.二、师生互动,探究新知1.完成教材第100~101页“一起探究”:(1)圆柱、正四棱柱.(2)圆柱、棱柱等;圆柱、球等.(3)两个四棱柱的重叠.2.例题(教材第101页例3).由学生先讨论解答,最后教师出示正确答案. 学生观察、对照图示,结合主视图、俯视图、左视图的位置与大小的对应关系完成由平面视图到几何体的转变,教师适时点拨,最后教师出示立体图片.由视图逐步还原立体图形或实物、发展学生空间想象能力、逆向思维能力.结合视图,对比辨析,找出异同,加深对三视图的理解,弄清三视图中长、宽、高的大小对应关系.三、运用新知,解决问题教材第102页练习第1,2,3题.学生分析解决练习题,教师巡视指导,教师视情况点拨.让学生充分暴露自己对新知识理解存在的问题,“兵”教“兵”、广参与,查漏补缺,巩固提高.四、课堂小结,提炼观点学生回顾总结,归纳本节课所学知识,教师系统归纳.帮助学生归纳总结,巩固新学知识.五、作业布置,巩固提升必做:教材第102~103页A组.选做:教材第104页B组.教师布置作业,学生课后完成.巩固知识.┃教学小结┃【板书设计】视图3由视图还原立体图形。

成安县第五中学九年级数学上册 第五章 投影与视图2 视图第1课时 物体的三视图教案 北师大版

成安县第五中学九年级数学上册 第五章 投影与视图2 视图第1课时 物体的三视图教案 北师大版

2 视图第1课时物体的三视图【知识与技能】理解并掌握三视图的投影规律——长对正、高平齐、宽相等.【过程与方法】能绘制简单的三视图.【情感态度】通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图的位置关系、大小关系.【教学重点】从投影的角度加深对三视图的理解和会画简单的三视图.【教学难点】简单的三视图的绘制.一、情境导入,初步认识如图,直三棱柱的侧棱与水平投影面垂直.请与同伴一起探讨下面的问题:(1)以水平投影面为投影面,在正投影下这个直三棱柱的三条侧棱的投影是什么图形?(2)画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?【教学说明】先让学生自己独立尝试画图,同时每组两名学生在黑板上画图,教师点评.引出三视图的概念.二、思考探究,获取新知上面的这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常还要选择正面和侧面两个投影面,画出物体的正投影.【归纳结论】从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.主视图、俯视图、左视图三者合在一起叫做三视图.【教学说明】通过活动,让学生成为课堂学习的主人,通过活动,让学生自主学习,合作交流,并能合理清晰地表达自己的思维过程,教师成为真正的组织者、引导者、合作者.三、运用新知,深化理解1.画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:①确定主视图的位置,画出主视图;②在主视图正下方画出俯视图,注意与主视图“长对正”;③在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:2.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?解答:分别是从上面,正面,侧面看到的.3.如图所示,右面水杯的俯视图是(D)4.图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是(A)A.②B.③C.④D.⑤【教学说明】让学生感受从空间物体到平面图形的转换过程,让同学们学会识别三视图.培养学生的画图能力,在巡视过程中遇见问题当场解决.四、师生互动,课堂小结在画三视图时,三个视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等.1.布置作业:教材“习题5.3”中第1题.2.完成练习册中相应练习.本节课让学生主体参与,探索新知,充分体现了以学生为主体的新理念.让学生感受到数学和生活的联系,感受到数学确实就在我们的身边.第2课时列一元二次方程解决利润问题1.通过分析实际问题中的数量关系,建立方程解决利润问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程.2.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型.3.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.重点列一元二次方程解决利润问题.难点寻找实际问题中的等量关系.一、复习导入1.列方程解决实际问题的一般步骤是什么?审:审清题意,已知什么,求什么,已知与未知之间有什么关系;设:设未知数,语句要完整,有单位(统一)的要注明单位;列:找出等量关系,列方程;解:解所列的方程;验:是否是所列方程的根;是否符合题意;答:答案也必需是完整的语句,注明单位且要贴近生活.2.列方程解决实际问题的关键是什么?3.请同学们回忆并回答与利润相关的知识?进价:有时也称成本价,是商家进货时的价格;标价:商家在出售时,标注的价格;售价:消费者购买时真正花的钱数;利润:商品出售后,商家所赚的部分;打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售.二、探究新知课件出示:(1)新华商场销售某种冰箱,每台进价为2 500元,销售价为2 900元,那么卖一台冰箱商场能赚多少钱?(2)新华商场销售某种冰箱,每台进价为2 500元.调查发现:当销售价为 2 900元时,平均每天能售出8台;那么商场平均每天能赚多少钱?(3)新华商场销售某种冰箱,每台进价为2 500元.调查发现:当销售价为 2 900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5 000元,每台冰箱的定价应为多少元?(本题在教材的基础上做了改动,降低难度)分析:本例中涉及的数量关系较多,学生在思考时可能会有一定的难度.所以,教学时采用列表的形式分析其中的数量关系.本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000元.如果设每台冰箱降价x元,那么每台冰箱的定价应为(29-x)元.每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后填完上表后,就可以列出一个方程,进而解决问题了.当然,解题思路不应拘泥于这一种,在利用上述方法解完此题后,可以鼓励学生自主探索,找寻其他解题的思路和方法.如求定价为多少,直接设每台冰箱的定价应为x元,应如何解决?三、举例分析例某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10 000元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?请你利用方程解决这一问题.解:设这种台灯的售价应定为x元.根据题意得[600-10(x-40)](x-30)=10 000.解这个方程得x1=50,x2=80(舍去).600-10(x-40)=600-10×(50-40)=500(个).答:台灯的售价应定为50元,这时应购进台灯500个.四、练习巩固1.教材第55页“随堂练习”.2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 200元,每件衬衫应降价多少元?五、小结通过这两节课的学习,你能简要说明利用方程解决实际问题的关键和步骤吗?有哪些收获?解决实际问题的关键:寻找等量关系.步骤:①整体地、系统地审清问题;②寻找问题中的“等量关系”;③正确求解方程并检验根的合理性.六、课外作业教材第55页习题2.10第1~4题.设未知数(未知量成了已知量),带着未知量去“翻译”题目中的有关信息,然后将这些含有的量表示成等量关系,就是实际问题的解题策略.无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.随机事件与概率一、知识点1.事件的类型及其概率2.概率及公式定义:表示一个事件发生的可能性大小的数.概率公式:P(A)=mn(m表示试验中事件A出现的次数,n表示所有等可能出现的结果的次数).二、标准例题:例1:下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块【答案】B【解析】A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B. 抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C. 抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.总结:此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.例2:下列说法正确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 【答案】D【解析】A. 是随机事件,错误;B. 中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C. 明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D. 正确。

人教版九年级下册数学作业课件 第二十九章 投影与视图 投影 第2课时 正投影

人教版九年级下册数学作业课件 第二十九章 投影与视图 投影 第2课时 正投影
第2课时 正投影
知识点一 正投影的概念
1.底面与投影面平行的圆锥体的正投影是( A )
ቤተ መጻሕፍቲ ባይዱ
A.圆
B.三角形
C.矩形
D.正方形
2.把一个正六棱柱如图摆放,光线由上向下照射此正 六棱柱时的正投影是( A )
3.正方形的正投影不可能是( D )
A.线段
B.矩形
C.正方形
D.梯形
知识点二 正投影的性质与计算
4.当棱长为 20 cm 的正方体的某个面平行于投影面时,
这个面的正投影的面积为( C )
A.20 cm2
B.300 cm2
C.400 cm2
D.600 cm2
5.一根笔直的小木棒(记为线段 AB),它的正投影为线
段 CD,则下列各式中一定成立的是( D )
A.AB=CD B.AB≤CD
C.AB>CD
∴V=1×π×32×4=12π(cm3), 3
S 侧=π×3×5=15π(cm2).
7.在太阳光下转动一个正方体,观察正方体在地上投
下的影子,那么这个影子最多可能是几边形( C )
A.四边形
B.五边形
C.六边形
D.七边形
8.如图,正三棱柱的面 EFDC∥平面 R 且 AE=EF= AF=2, AB=6, 正三棱柱在平面 R 上的正投影是 矩形 (填形状),正投影的面积为 12 .
9.把一个正三棱柱如图摆放,按要求画出其正投影.
(1)投影线由物体前方射到后方; (2)投影线由物体左方射到右方; (3)投影线由物体上方射到下方. 解:如图.
(1)
(2) (3)
10.(教材 P93 习题 T4 变式)一个圆锥的轴截面平行于 投影面,圆锥的正投影是△ABC.已知 AB=AC=5 cm, BC=6 cm,求圆锥的体积和侧面积. 解:如图,过点 A 作 AD⊥BC 于点 D. ∵AB=AC,∴BD=CD=3 cm. 则 AD= 52-32=4(cm).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D A D A D1 A1 (1) B C1 B1 C D A B D2 A2 (2) B2 C2 D3C3) A3(B3) (3)
11
C
B
C
Q
当物体的某个面平行于投影面时, 当物体的某个面平行于投影面时,这个面的正投影与这个面的 形状、大小完全相同. 形状、大小完全相同.
人们经常根据上述规律绘制图形
16
投影线的方向如箭头所示,画出图中圆柱体的正投影: 投影线的方向如箭头所示,画出图中圆柱体的正投影:
14
5. 如果在阳光下你的身影的方向为北偏东 °方向,你能说出太阳相 如果在阳光下你的身影的方向为北偏东60°方向, 对于你的方向吗? 对于你的方向吗?
西

15
6. 下面图中是光线由上到下照射一个五棱柱时的正投影,你能分别指出五 下面图中是光线由上到下照射一个五棱柱时的正投影, 棱柱的各个面的正投影是什么吗? 棱柱的各个面的正投影是什么吗?
A1
A
路 灯 杆
C
B
B1
C1
5
CA与 CA与C1A1所在的直线相交于一点
即路灯的位置
图中表示一块三角尺在光线照射下形成投影,其中图( )与图( ) 图中表示一块三角尺在光线照射下形成投影,其中图(1)与图(2) )(3) (3)的投影线有什么区别?图(2)( )的投影线与投影面的位置 )的投影线有什么区别? )( 关系有什么区别? 关系有什么区别?
1
灯光与影子 灯光可以看成点束光线。 灯光可以看成点束光线。
中心投影: 中心投影: 探照灯、手电筒、路灯和台灯的 探照灯、手电筒、 光线看成是从一点发出的, 光线看成是从一点发出的,像这 样的光线所形成的投影叫做中心 投影。 投影。
2
复习: 复习:
太阳光线是平行光线。 太阳光线是平行光线。
A1
同一时刻旗杆和人 在太阳下的影子 旗 杆
10
C
B
C
通过观察、测量可知: 通过观察、测量可知: (1)当纸板P平行于投影面 时,P的正投影与 的_________________; )当纸板 平行于投影面Q时 的正投影与P的 形状、大小一样 ; 形状、 平行于投影面 的正投影与 倾斜于投影面Q时 的正投影与P的形状、大小发生变化 ; 形状、 (2)当纸板 倾斜于投影面 时,P的正投影与 的___________________; )当纸板P倾斜于投影面 的正投影与 垂直于投影面Q时 的正投影成为_______________. (3)当纸板 垂直于投影面 时,P的正投影成为 一条线段 )当纸板P垂直于投影面 的正投影成为 .
A

B C B1 C1
3
△ABC∽△A1B1C1 ∽
想一想: 想一想:
已知在路灯下树和人的影子, 已知在路灯下树和人的影子, 你能找出灯的具体位置吗? 你能找出灯的具体位置吗? A1
A
路 灯 杆
C
B C1Βιβλιοθήκη B1CA与 CA与C1A1所在的直线相交于一点
即路灯的位置 4
想一想: 想一想:
已知在路灯下树和 人的影子, 人的影子,你能找出 灯的具体位置吗? 灯的具体位置吗?
6
在实际制图中,人们经常采用正投影. 在实际制图中,人们经常采用正投影.
P108 中心投影、平行投影、正投影
中心投影 平行投影
平行投影 正投影
7
P109 把一根直的细铁丝(记为线段AB)放在三个不同的位置:
B A B A
A
B A1 B1
P
A2
B2
A3(B3)
(1)铁丝平 (2)铁丝倾 (3)铁丝垂 行于投影面。 斜于投影面。 直于投影面。
(1)
(2)
(3)
中心投影; 图(1)中的投影线集中于一点,形成中心投影; )中的投影线集中于一点,形成中心投影 )(3) 投影线互相平行,形成平行投影 平行投影; 图(2)( )中,投影线互相平行,形成平行投影;图(2)中, )( ) 投影线斜着照射投影面; 投影线斜着照射投影面; ),我们也称 (3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称 )中投影线垂直照射投影面(即投影线正对着投影面), 这种情形为投影线垂直于投影面.像图( )这样, 这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影 面产生的投影叫做正投影 正投影. 面产生的投影叫做正投影.
8
A B A B A
B A1 B1 A2 B2
p
A3(B3)
通过观察,我们可以发现: 通过观察,我们可以发现: 平行于投影面P时 它的正投影是线段A (1)当线段 平行于投影面 时,它的正投影是线段 1B1,线段与它 )当线段AB平行于投影面 的投影的大小关系为AB_____A1B1; 的投影的大小关系为 = 倾斜于投影面P时 它的正投影是线段A (2)当线段 倾斜于投影面 时,它的正投影是线段 2B2,线段与它 )当线段AB倾斜于投影面 的投影的大小关系为AB______A2B2; 的投影的大小关系为 > 垂直于投影面P时 它的正投影是一个________ (3)当线段 垂直于投影面 时,它的正投影是一个 点A3(B3) )当线段AB垂直于投影面
12
P110 例 画出如图摆放的正方体在投影面P上的正投影。 (1)正方体的一个面ABCD平行于投影面P; (2)正方体的一个面ABCD倾斜于投影面P,上底面 ADEF垂直于投影面P.
A*
D*
F*
A*
D*
B* A D
C* E F A
G* D H P G B C
B*
C*
B
C
P
从正面看
从正面看
13
lianxi 练 习
9
P110 如图,把一块正方形硬纸板P(例如正方形ABCD)放 在三个不同的位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。 三种情况的正投影各是什么形状?
D A D A D* A* Q (1) (2) B C* B* C D A B D* A* B* C* D*(C*) A*(B*) (3)
相关文档
最新文档