污染物测定方法
大气污染物的监测方法

大气污染物的监测方法随着城市化进程的加速,大气污染日益严重,给人们的生活带来了严重的危害。
为了有效的监测大气污染物的浓度,提高治理效果,我们需要了解大气污染物的监测方法。
一、常用的大气污染物监测方法1、直接法:通过使用特定仪器,如气相色谱、质谱仪等,来直接检测空气中的有害气体,例如CO、NOx等。
该方法有高精度和快速响应的优点,但在检测一些低浓度污染物时存在局限性。
2、间接法:该方法利用化学反应的原理,通过将污染物转化为易于测量的物质,在分析、测量中获得污染物的数量。
例如,将SO2氧化后,再利用吸收光谱仪检测SO2转化的SO3的含量。
3、计算法:该方法是通过对环境空气流通、化学反应和物质扩散过程中的数学模型进行计算,获得污染物的数值,如数学模型的模拟、统计模型的拟合等,常常用于模拟健康风险和排放污染物扩散的效果。
二、储备的大气监测设备监测污染物浓度的设备是大气监测的根本。
在我国,国家环境保护局设有大气监测站,在全国范围内布设1500余个从乡镇、村到城镇、城市的不同规模的观测站。
目前,大气污染物监测设备种类已经很丰富,增加了深度和广度。
根据新的标准,其中有自动控制的气相色谱仪、超声波测定仪、电化学分析系统、拉曼分析仪等,都具有高准确性、易操作等优点。
三、现场采样与误差控制样品采集和分析中的误差是影响监测结果和可靠性的主要因素之一,如何有效控制误差是现场采样和分析的重要问题。
1、样品采集:样品采集是检测中的重要环节,只有准确、全面的采样,才能保证得到真实有效的监测结果。
根据监测对象不同,采样时还需进行多种问题的处理,如增温、降温、过滤等。
2、样品处理:样品处理是监测秒变量的有机计量学中最重要的单元之一。
方法有热亚纯化、净化、防扩散等方法,能有效提高分析结果的精度。
以上是大气污染物的监测方法的总结,随着科技的不断发展,监测方法也越来越完善,继续推动大气污染治理和绿色发展的步伐。
大气环境污染物记录和检测方法

大气环境污染物记录和检测方法随着工业化和城市化的快速发展,大气环境污染已成为全球面临的严重问题之一。
大气污染物的监测和记录对于评估环境质量、制定污染控制政策以及保护公众健康至关重要。
本文将介绍大气环境污染物记录和检测的一些方法。
一、大气环境污染物记录方法1. 传感器技术:传感器技术是近年来广泛应用于大气环境污染物监测的方法之一。
通过安装在不同位置的传感器,可以实时记录大气中各种污染物的浓度。
例如,颗粒物传感器可以测量PM2.5和PM10等细颗粒物的浓度。
传感器技术具有实时性强、安装方便等优点,但其准确性还需进一步提高。
2. 监测站点:在城市和工业区建立监测站点,对大气环境进行定期监测记录。
监测站点通常会安装各种仪器,如气象站、气体分析仪等,以记录大气中的污染物种类和浓度。
监测站点的数据可以提供给政府和研究机构,用于环境评估和制定相应的污染防控措施。
3. 无人机监测:近年来,无人机监测技术得到了快速发展。
通过搭载污染物检测设备的无人机,可以对大气中的污染物进行高空、大范围的监测。
无人机监测具有灵活性高、数据准确度较高等优点,可以有效地获取大气环境污染的实时数据。
二、大气环境污染物检测方法1. 气体分析仪:气体分析仪是检测大气环境中气态污染物浓度的常用工具。
不同的气体分析仪适用于不同类型的污染物。
例如,气象球气体分析仪可以测试二氧化硫、氮氧化物等气态污染物的浓度。
气体分析仪通过取样、分析和记录数据,可以快速准确地测量大气污染物的浓度。
2. 颗粒物监测仪:颗粒物监测仪是检测大气环境中颗粒物浓度的常用仪器。
颗粒物监测仪有多种类型,如激光散射式颗粒物监测仪、光学颗粒物计数器等。
这些仪器可以测量不同粒径的颗粒物浓度,提供有关颗粒物污染水平的定量数据。
3. 样品采集器:样品采集器是一种用于采集大气中污染物样品的设备。
通过样品采集器,可以收集大气中的颗粒物、气态污染物等样品进行后续分析。
常见的样品采集器有高体积采样器、低流量采样器等。
有机污染物的测定

有机污染物的测定有机污染物是指在环境中含有有机物的空气、水和土壤,其影响了环境的质量,并带来许多危害。
为此,有机污染物的测定工作显得尤为重要。
目前,有机污染物的测定主要通过化学分析方法进行,包括原子吸收测定法、薄层色谱法、比色滴定法、气相色谱-质谱联用法、气体-液体萃取-气相色谱法等。
1. 原子吸收测定法。
原子吸收测定法是利用原子吸收光谱仪测定污染物的总量或某一组分的含量。
该方法只适用于质量浓度较高的有机污染物,如芳烃类物质等,可以直接测定一些有机污染物的单组分含量,也可以测定多组分的总含量。
2. 薄层色谱法。
薄层色谱法是利用不同有机污染物在溶剂中运动情况不同而在薄层上形成不同分带现象,然后进行斑点比色,以确定其中各成分的种类及含量。
该方法适用于测定微量的有机污染物,其优点是快速、方便、简便、重复精密度高。
3. 比色滴定法。
比色滴定法是利用某一物质与指示剂在酸碱环境中的发生反应而产生颜色变化,并以此来测定污染物的含量。
该方法可以测定一些有机污染物的总量,也可以测定某一元素的含量。
4. 气相色谱-质谱联用法。
气相色谱-质谱联用法是一种在空气、水和土壤中测定有机污染物的精确方法,可以进行有机污染物的基本结构和组分的分析,确定部分有机污染物的结构。
5. 气体-液体萃取-气相色谱法。
气体-液体萃取-气相色谱法是以沸点或化学性质相似的有机污染物萃取到气体萃取剂中,然后在气相色谱仪上进行测定的。
它可以解决有机污染物的浓度低而质量多种的问题,是一种精确测定有机污染物的分析方法。
以上是有机污染物的测定的主要方法,由于不同的有机污染物对于用于检测它们的仪器和技术有所不同,因此,在测定有机污染物时,应根据测定对象的类型、特性及其他条件确定合适的测定手段,以确保测定的准确性和可靠性。
高效液相色谱法检测环境污染物

高效液相色谱法检测环境污染物随着现代化进程的推进,环境问题得到了人们的广泛关注。
由于人们多年来对环境资源的过度利用和环境污染的加剧,环境已经受到了严重的破坏。
此时,环境保护变得非常关键。
而在进行环境保护工作时,检测污染物是必不可少的一步。
本文介绍一种目前在环境污染物检测中广泛使用的方法——高效液相色谱法(HPLC)。
HPLC方法是一种高效、快速、准确的污染物分析方法,广泛应用于水样、废水、空气、土壤等各种环境样品中重金属、有机污染物的定量检测。
相比于其他的分析方法,HPLC具有分离效果好、灵敏度高、检测量大、精度高等优点。
在HPLC分析中,样品经过一系列的前处理后,通过分离柱分离出需要检测的成分。
由于污染物与其它物质在某些特定的物理化学条件下会有不同的亲和力,因此可通过这种分离方法来分析不同成分。
在实际的检测中,HPLC主要用于有机污染物和重金属元素的分析。
可以测定各种环境样品中的有机物,如恶臭物、酰胺、农药、防腐剂、抗生素、药物、酚类等,以及重金属元素,如铜、锌、铅、铬等。
同时,HPLC方法还可以用于环境样品中多种有机物的混合物检测。
但在实际的应用中,HPLC也存在一些缺点。
首先是设备的费用较高,成本也比较高。
其次,HPLC方法对分析人员的经验要求较高,操作要求严格。
此外,在检索过程中数据分析和解释比较复杂,需要经验丰富的化学分析师进行解释。
因此,如果不能正确理解和掌握HPLC技术,会导致检测结果不准确。
总的来说,HPLC是一种目前被广泛应用于环境污染物检测中的方法。
因其分离效果好、灵敏度高、准确度高等特点,它成为了大多数环境监测机构首选的分析方法之一。
同时,我们也需要认识到,每种分析方法都有它的缺点和不足之处。
因此,我们也需要在实际应用中结合不同样品的不同特点,选择不同的分析方法。
只有真正掌握分析技术,并且在不断实践中逐渐提高,才能更好地保障环境的安全,保护大自然的美好。
检测大气金属污染物的五种方法

检测大气金属污染物的五种方法对于重金属污染,由于大气污染物的无形无色,比之水中重金属易被人忽视,但实际上,根据第一次全国污染源普查结果,2007年全国大气中上述铅、汞、镉、铬、砷污染物年排放量已达约9500吨。
这些重金属污染物可能通过呼吸,或迁移至水、土壤后,经食物链进入人体。
在大气颗粒物中金属元素的检测方面,目前国内外并存着原子吸收光谱法(AAS)、电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、X-射线荧光光谱法、中子活化分析法以及质子诱导X射线发射光谱法等检测方法,其中,国内采用较多的有AAS法、ICP-AES法和XRF法。
一、原子荧光光谱法原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。
利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律,通过测定荧光的强度即可求出待测样品中该元素的含量。
原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势,并且克服了这2种方法在某些地方的不足。
该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题。
该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。
二、原子吸收光谱法原子吸收光谱法又称原子吸收分光光度分析法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。
其基本原理是从空心阴极灯或光源中发射出一束特定波长的入射光,通过原子化器中待测元素的原子蒸汽时,部分被吸收,透过的部分经分光系统和检测系统即可测得该特征谱线被吸收的程度即吸光度,根据吸光度与该元素的原子浓度成线性关系,即可求出待测物的含量。
COD及BOD的测定方法

COD及BOD的测定方法
COD和BOD都是水质分析中常用的指标,用来评估水体中有机污染物
的含量和水质的好坏。
COD是化学需氧量的缩写,用于测量含有机物的水
样中氧化剂氧化有机物所需的化学物质的量。
BOD是生化需氧量的缩写,
用于测量微生物在一定时间内分解有机物所需要的氧气量。
以下是COD和BOD测定的方法。
COD测定方法:
1.高温消解法:将水样与氧化剂如K2Cr2O7在高温条件下进行反应,
使有机物氧化为CO2和H2O。
消解后用碘化汞溶液滴定剩余K2Cr2O7来测
定COD值的大小。
2.快速氧化法:利用高氯酸钾(KClO3)作为氧化剂,与水样中的有
机物进行氧化反应。
然后使用无机盐作为指示剂,观察颜色变化并使用色
谱法或分光光度法测定有机物的浓度。
3.光度法:用紫外光或可见光照射水样,测定水样在特定波长处的吸
光度。
吸光度与有机物浓度成正相关,从而可以通过测定吸光度来计算COD值。
BOD测定方法:
1.培养法:将水样与一定浓度的微生物接种在含氧的培养基中,然后
在一定的温度下培养一段时间。
培养结束后,测定培养基中的溶解氧浓度,根据溶解氧的消耗量计算BOD值。
2.引流法:将水样放入密封的容器中,通过容器上的两个气体膜,一个用于出气,一个用于进气,控制水样中的氧气供应。
然后测定容器中进气前后溶解氧浓度的差异,计算得到BOD值。
3.电分析法:利用氧阳极反应原理,通过测量电极系统的电位变化,间接推测出溶液中的溶解氧浓度。
接着根据微生物对溶解氧的消耗来计算BOD值。
COD及BOD的测定方法

COD及BOD的测定方法COD(Chemical Oxygen Demand)和BOD(Biological Oxygen Demand)是用于测量水体中有机污染物含量的常用参数。
COD测定方法和BOD测定方法有许多不同的技术和标准。
在本文中,我将详细介绍几种常见的COD和BOD测定方法。
一、COD测定方法:1. 全氧化法(Potassium Dichromate Method):这是最常用的COD测定方法之一、它基于将有机污染物全氧化为二氧化碳和水。
在这种方法中,样品与硫酸铜和硫酸钾二铬酸盐一起加热,在酸性条件下,Cr(Ⅵ)被还原为Cr(Ⅲ)。
Cr(Ⅲ)离子与氧化了的有机物形成颜色深的配合物,可以通过比色法或光度计进行测量。
2. 分段氧化法(Closed Reflux Colorimetric Method):这种方法适用于难以被全氧化的样品。
在这种方法中,样品与硫酸钾二铬酸盐一起在加热的条件下进行氧化。
尽管该方法可能无法完全氧化所有有机物,但可以利用标准曲线来测定所得颜色的对应COD浓度。
3. 快速消解法(Quick Digestion Method):这种方法可以在较短的时间内快速测定COD。
样品与稀硝酸和过硫酸铵一起加热,在高温下进行消解。
消解后,采用标准COD测定方法进行测量。
二、BOD测定方法:1. 标准方法(Standard Method):这是测定BOD的最常用方法之一、在标准方法中,样品在特定温度(通常为20℃)下进行生物降解。
样品与给定浓度的微生物种子(如活性污泥)一起培养在含氧气的环境中,一段时间后测定溶液中溶解氧的浓度变化。
通过测定初始和末端溶解氧浓度的差异,可以计算出BOD。
2. 过氧化氢法(Hydrogen Peroxide Method):这是一种加速BOD 测定过程的方法。
在这种方法中,样品与过氧化氢一起加入到特定的试剂中,并利用催化剂加速氧化反应。
通过测定溶液中溶解氧浓度的变化,可以计算出BOD。
环境污染物的分析方法研究

环境污染物的分析方法研究随着社会经济的不断发展和人们生活水平的不断提高,环境污染已经成为人们关注的重要问题。
环境污染物的种类繁多,来源复杂,如何准确、快速地分析环境污染物已经成为环境保护的重要课题之一。
本文将探讨现代环境污染物的分析方法以及相关的仪器设备。
一、现代环境污染物分析方法1. 色谱分析法色谱分析法是一种基于物质在不同相中分配系数不同而进行物质的分离和定量的方法,其中液相色谱分析法(HPLC)和气相色谱分析法(GC)是常用的分析方法。
在环境污染物的分析中,气相色谱分析法可以快速、准确地分析挥发性有机物(VOCs)和半挥发性有机物(SVOCs),而液相色谱则可以分析水环境中的有机污染物、无机离子和一些有机物。
2. 质谱分析法质谱分析技术是一种精确、灵敏度高的分析方法,其原理是在外加电场的作用下,将物质分子离子化,并利用磁场作分离、选择和计量分析。
现代质谱分析设备种类繁多,包括飞行时间质谱(TOF-MS)、三重四极杆质谱(QQQ)和液质联用质谱(LC-MS)。
在环境污染物的分析中,质谱分析方法可以通过分析化合物的结构和质量以及离子化能力来鉴定复杂的有机污染物。
3. 原子吸收分析法原子吸收分析法是一种定量分析方法,利用可见紫外光谱测定物质的吸收光谱和不同元素对不同波长的吸收能力不同的原理来测定和确定物质的种类和含量。
在环境污染物的分析中,原子吸收分析法可以快速、准确地测定水中的银、铜、锌、铅、镉等元素的含量。
二、现代环境污染物分析仪器设备1. HPLC仪器高效液相色谱仪(HPLC)是一种分离和分析化合物的技术,具有高分辨率、高分离度、高准确度和灵敏度高等优点。
它是一种常用的液相分析技术,可以为环境、生物、制药等领域的分析研究提供有效的方法。
2. GC-MS仪器气相色谱-质谱联用仪(GC-MS)可用作有机化合物的分离、鉴别和定量分析,同时具有高精度、高灵敏度、高分辨率、多成分分析、样品处理简便等优点,是动态分析实验室不可缺少的主流分析仪器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
来个水厂一般的化验方法目录1、污水COD的测定方法2、污水悬浮物的测定方法3、污水PH值的测定方法4、出水氨氮的测定方法5、污水碳酸氢盐碱度和VFA的测定方法6、污水溶解氧的测定方法7、好氧池出水30分钟沉降比的测定方法8、污水硫酸盐的测定方法9、污水五日生化需氧量10、总悬浮物和挥发性悬浮物的测定11、总固体和挥发性固体的测定12、二氧化硫的测定化学需氧量的测定(COD)1.测定原理在强酸性溶液中,一定量重铬酸钾氧化水样中还原物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴。
根据用量算出水样中还原性物质消耗氧的量。
2.干扰及消除酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族的有机物却不易被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。
氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。
氯离子含量高于2000mg/L的样品应先作定量稀释、使含量降低于2000mg/L 以下,再进行测定。
3.方法的使用范围用0.25moI/L浓度的重铬酸钾溶液可测定大于50mg/L的COD值,用0.025moI/L浓度的重铬酸钾溶液可测定大于5-50mg/L的COD值,但准确度较差。
4 .仪器4.1 回流装置:带250ml锥形瓶的全玻璃回流装置若干套4.2 加热装置:COD加热器4.3 25毫升或50毫升酸式滴定管5.试剂5.1 重铬酸钾标准溶液:12.258克重铬酸钾(120度烘干两小时)溶于1000mI。
5.2 亚铁灵指示剂:邻菲罗啉 1.485克、硫酸亚铁0.695克溶于100毫升水中。
5.3 硫酸亚铁铵标准溶液:39.5克硫酸亚铁铵溶于水,再加入30毫升浓硫酸,冷却后移入1000毫升容量瓶,用前标定。
标定方法:10.00毫升重铬酸钾标准溶液加水稀释至110毫升,加入30毫升浓硫酸,冷却后加3滴是试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定,溶液颜色由黄色经黄绿色至红褐色即为终点。
计算公式C=0.2500*10.00/V5.4 硫酸-硫酸银溶液:5克硫酸银溶于500毫升浓硫酸5.5 硫酸汞:结晶或粉末6.操作步骤6.1 取20.00毫升混合均匀的水样(或稀释后)置于250毫升磨口的回流管中,准确加入10.00毫升重铬酸钾标准溶液及数粒小玻璃珠或沸石,连接磨口回流冷凝管,从冷凝管上口慢慢加入30毫升硫酸-硫酸银溶液,轻轻摇动加热管时溶液混合均匀,加热回流2小时(自开始沸腾计时)。
6.2 废水中氯离子含量超过30mg/L时,应先把0.4克硫酸汞加入到加热管中,再加入20.00毫升废水(或稀释后)摇匀,以下操作同上。
6.3 冷却后,用90ml蒸馏水冲洗冷凝管壁,取下加热管,溶液再度冷却后,加3滴是亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定,溶液颜色由黄色经黄绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。
6.4 测定水样的同时,以20.00ml蒸馏水,按同样操作步骤作空白试验,记录滴定空白时硫酸亚铁铵标准溶液的用量。
6.5 计算 COD=(V-V1)*C*8*1000/V7.注意事项7.1使用0.4克硫酸汞络合氯离子的最高量可达40 mg,如取用20.00ml水样即最高可络合1000mg/L氯离子浓度的水样,若氯离子浓度较低,也可少加硫酸汞,若出现少量氯化汞沉淀,并不影响测定。
7.2 水样取用体积按表进行调整,可得到满意的结果。
水量取用量和试剂用量表水样体积 0.25moI/L重铬酸钾标准溶液(ml)硫酸-硫酸银溶液(ml )硫酸汞(g)硫酸亚铁铵溶液滴定前总体积(ml)10.0 5.0 15 0.2 0.050 7020.0 10.0 30 0.4 0.100 14030.0 15.0 45 0.6 0.150 21040.0 20.0 60 0.8 0.200 28050.0 25.0 75 1.0 0.250 3507.3对于化学需氧量小于50mg/L的水样,应改用0.025moI/L重铬酸钾标准溶液,回滴时用0.01moI/L硫酸亚铁铵标准溶液。
7.4水样加热回流后,溶液中重铬酸钾剩余量应为加入量的1/5-4/5为宜。
7.5 测定结果应保留三位有效数字。
7.6每次试验时,应对硫酸亚铁铵标准溶液进行标定,室温较高时尤其注意其浓度的变化。
103-105℃烘干的总不可滤残渣(悬浮物)1. 方法原理总不可滤残渣(悬浮物)是指不能通过滤器的固体物,当用滤纸法测定时,由于滤孔大小对测定结果有很大影响,所以报告结果时应注明测定结果。
从总残渣减去总不可滤残渣也可得到总不可滤残渣的量。
滤纸法方法原理:用滤纸过滤水样,经103-105℃烘干后得到总不可滤残渣(悬浮物)含量。
2. 仪器2.1 称量瓶:内径30-50mm。
2.2 孔径为0.45um的滤纸及相应的滤器。
3.操作步骤3.1 将一张滤纸放在称量瓶中,打开瓶盖,每次在103-105℃ 烘干2小时,取出,冷却后盖好瓶盖称重,直至恒重为止(两次称量相差0.0005g)。
3.2 分取除去漂浮物后,振荡均匀的适量水样(使含总不可滤残渣大于2.5mg),通过上面称至恒重的滤纸过滤,用蒸馏水冲洗残渣3-5次。
如样品中含油脂,用10 ml石油谜分两次淋洗残渣。
3.3 小心取下滤纸,放入原称量瓶内,在103-105℃烘箱中,打开瓶盖,每次烘2小时取出,冷却后盖好瓶盖称重,直至恒重为止。
4.计算总不可滤残渣(mg/L)=(A-B)*1000*1000/VA:总不可滤残渣+滤纸及称量瓶(g)B:滤纸及称量瓶重(g)V:水样体积(ml)5.注意事项5.1 树枝、水草、鱼等杂质应从水样中去除。
5.2 废水黏度较高时,可加2-4倍蒸馏水稀释,振荡均匀,待沉淀物下降后再过滤。
5.3 用中速定量滤纸时,用前应先用蒸馏水洗滤纸,以除去可溶性物质,再烘干至恒重。
PH值的测定1. 仪器1.1 PH值计1.2 100ml的烧杯2.操作步骤2.1用蒸馏水仔细冲洗电极,用滤纸擦干电极,将电极侵入水样中,小心摇动使其均匀,待读数稳定后记录PH值。
3.注意事项3.1 电极在使用前应在电极液中浸泡24小时以上,探头保持湿润。
3.2 测定时,玻璃电极的球泡应全部侵泡入溶液中。
3.3 注意电极的出厂日期、存放时间过长的电极将性能变劣。
氨氮的测定1. 原理氨氮以游离氨或铵盐形式存在于水中,两者的组成比取决于水的PH值。
当PH值偏高时,游离氨的比例较高,反之,则铵盐的比例为高。
2. 仪器2.1氨氮测定仪2.2比色管2.3刻度吸管3.操作步骤3.1取3支洗净专用比色管,分别加入5ml待测水样,然后在其中的2支比色管中加入2滴氨氮试剂1号,摇匀后加入3滴氨氮试剂2号。
未加试剂的水样作为空白。
3.2将3支专用比色管擦拭干净后静置5分钟后等待测量。
3.3首先取没加试剂作为空白的专用比色管插入测定仪的比色孔,盖好遮光帽,按测定仪的“功能”键加4,显示“P”,输入曲线编号后按“确定”,进入水样测量状态,如果显示E10说明曲线丢失,需要重新校准或输入曲线。
正常应显示“AO”,按“确定”键开始清零,显示:A=0.000,稳定后按“确定”键,仪器显示“N1”。
3.4取另外2支装有水样的专用比色管中的一支,放入比色孔中按“确定”,仪器显示:A=0.000,稳定几秒钟后按“确定”键,显示C=*.***,数值即时为第一个水样的氨氮数值,然后再按“确定”键,显示“N2”;放入第二个水样其它操作与第一个水样,仪器显示“N3”后按“.”结束测量。
将两个水样的测量值取平均,即为水样的氨氮测量结果。
VFA的测定方法1. 原理水样先以0.1000moI/L的盐酸标准滴定至PH=3,在这一PH值下,所有HCO3﹣被完全转化为H2CO3 ,VFA也几乎完全的转化为其非离子形式。
此后,已被滴定至PH=3的水样在带有回流冷凝器的烧杯中煮沸,所有转化为H2CO3 的HCO3﹣将分解为CO2和H2O ,其中CO2 完全由其中逸出,而VFA则因为有回流冷凝器而保留在水样中。
然后水样以0.1000moI/L的氢氧化钠标准溶液滴定至PH=6.5,在这一PH值下,所有的VFA和其他弱酸将被转化为其离子形式。
由使用的盐酸和氢氧化钠标准溶液的量,即可计算出VFA的浓度。
2. 药品和仪器2.1 0.1000moI/L的盐酸标准溶液2.2 0.1000moI/L的氢氧化钠标准溶液2.3 250ml烧瓶,250ml烧杯、移液管2.4 回流冷凝装置2.5 电子酸度计3.操作步骤3.1 安装酸度计3.2 将水样离心(或过滤),准确取上清液Vml加入到250ml烧杯中。
3.3 在PH计上滴定水样至PH=3,消耗的0.1000moI/L的HCL标准溶液计作Zml。
3.4 将此水样转移至磨口烧瓶,加入沸石或玻璃珠少许,并安装回流冷凝器。
开冷却水,加热沸腾并维持3分钟以上,撤离酒精灯并等待2分钟,将溶液转移回250ml烧杯。
3.5 以0.1000moI/L的氢氧化钠标准溶液滴定至PH=6.5。
消耗的溶液计作bml。
4. 计算结果VFA=(b*0.1000/v)*1000碳酸氢盐碱度=(z-b)*1000/v污水溶解氧的测定方法1. 膜电极法的方法原理氧敏感薄膜电极由两个与支持电解质相接触的金属电极及选择性薄膜组成。
薄膜只能透过氧和其他气体,水和可溶解物质不能透过。
透过膜的氧气在电极上还原,产生微弱的扩散电流,在一定温度下其大小和水样溶解氧含量成正比。
2.仪器溶解氧测定仪3.步骤3.1 测试前的准备使用仪器时按说明书装配探头,并加入所需电解质。
使用过的探头,要检查探头膜内是否有气泡或铁锈状物质。
必要时,需取下薄膜重新装配。
3.2 水样的测定将探头侵入水体中,尽可能避免探头上的盖膜碰到溶液中的尖锐物,以免割破盖膜.不要让气泡出现在探头周围.待仪器稳定后读数即可。
污水30分钟沉降比的测定方法1. 仪器100ml量筒定时器2. 操作步骤取均匀的水样100ml,倒入干净的量筒中静止30分钟,30分钟后观察水样的沉淀情况,污泥沉淀的刻度,即为此水样的30分钟沉降比。
污水硫酸盐的测定方法1. 方法原理硫酸盐在盐酸溶液中,与加入的氯化钡形成硫酸钡沉淀,通过光波检测,测定污水中硫酸盐含量。
2. 仪器硫酸盐测定仪3. 试剂硫酸盐试剂4.操作步骤准确量取水样10mL,注入比色瓶中,放入仪器比色管中,打开仪器开关,按清零,取出比色瓶加入硫酸根试剂一包,盖好瓶盖,振摇一分钟,再次放入仪器比色管中,消解5分钟后测定,直接读取结果。
污水五日生化需氧量的测定方法1.方法原理生化需氧量是指在规定条件下,微生物分解存在水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量。