直线相关与回归分析
实训6教学演示:直线相关与回归分析的SPSS软件实现方法

【实训结果】
【结果解释】
实训表29相关分析结果显示,身高与前臂 长两个变量的相关系数为0.795。经检验, P=0.002(P<0.05),有统计学意义,可认为 身高与前臂长之间存在线性相关关系,且为 正相关。
项目二:回归分析
【实训目的】
运用SPSS“分析”菜单中的“回归”选项, 建立回归方程,并检验总体回归系数是否 为0,正确解释SPSS的输出结果。
【实训结果】
【结果解释】
✓ 实训表30为模型摘要表,显示了模型的拟合优度情况, 相关系数为0.795,决定系数为0.633,校正决定系数为 0.596。
✓ 实训表31为回归方程的方差分析表,显示了变异分解情 况,F=17.216,P<0.01,建立的模型具有统计学意义。
✓ 实训表32为回归系数表,给出了回归系数的估计及检验, 回归方程的常数项为10.700,身高的回归系数为0.200。 经回归系数t检验,t=4.149,P<0.01,说明身高与前臂 长之间存在线性回归关系,回归方程:^Y=10.7+0.2X。
项目一:直线相关分析
【实训目的】
运用SPSS“分析”菜单中“相关”选项, 计算相关系数,并检验两变量总体相关系 数是否为0,正确解释SPSS的输出结果。
【实训内容】
✓ 见第十一章例11-1,某医师测量12名20岁健康男大学生 的身高与前臂长,资料见表11-1。试求身高与前臂长的 相关系数。
表11-1 12名20岁健康男大学生身高与前臂长资料
实训6 直线相关与回归分析的SPSS软件实现方166
155
188
190
171
前臂 长 43 45 47 47 44 42 46 44 41 49 50 47 /cm
直线相关与回归分析

三、回归分析之作用: 1、可以找到关键少数“x” 2、可以对“y”进行预测 3、可以对“y”进行优化 4、可确定如何设置“x”以达到优化y的目的
四、直线回归 --是用直线回归方程表示两个数量变量间依存关 系的统计分析方法,属双变量分析的范畴。
五、回归关系的检验
又称回归方程的检验,其目的是检验求得的回 归方程在总体中是否成立,即是否样本代表的总体 也有直线回归关系。方法有以下两种: 1、方差分析 --其基本思想是将总变异分解为 SS回归和SS剩余,然后利用F检验来判断回归方程 是ห้องสมุดไป่ตู้成立。 2、t检验--其基本思想是利用样本回归系数b 与总体均数回归系数进行比较来判断回归方程是否 成立,实际应用中因为回归系数b的检验过程较为复 杂,而相关系数r的检验过程简单并与之等价,故一般用 相关系数r的检验来代替回归系数b的检验。
九、案例分析 某公司测得其产品厚度(X)与抗击力(Y) 的关系有如下数据:
请判定X,Y之间线性关系是否显著?
解:
2、计算--相关系数是x,Y的离均差积和lxy除 以X的离均差平方和lxx与Y的离均差平方和lyy之积的 算术平方根的商。故此相关系数又被称为积差相关 系数。
3、相关关系的检验标准 因变量y与自变量x之间是否存在相关关系,在 求回归方程的过程中并不能回答,因为对任何无规 律的试验点,均可配出一条线,使该线离各点的误 差最小。为检查所配出的回归方程有无实际意义, 可以用相关关系,或称相关系数检验法。 在实际应用中,判断r值与1接近到何程度时, 才认为x与y是相关的,或者说,所配出的回归方程 才是有意义的,需要对照相关系数临界值表来判断, 当计算的相关系数r的绝对值大于表中显著性水平为 0.05和相应的自由度f=n-2下的临界值r0.05,f时,则表 示y与x是显著相关的。如显著性水平取0.01,r计算> r0.01,f时,则表示y与x有非常显著的相关关系。
直线相关和回归分析

第二节 直线回归
一、线性回归的概念
目的:
在因变量Y和自变量X之间建立一个数 学模型,根据这个模型可以根据自变量的变 动预测因变量的变动。
区别于函数关系和统计关系
❖函数关系: 两变量的数量表现在一定条件下是完全确 定的。
如: 圆的面积和半径的关系S r2
❖统计关系(相关关系):两变量的数量表 现尽管存在着密切关系,但却不是完全确 定的。 如:成本和利润的关系
简单线性回归模型
样本线性回归方程
Yˆ a bX
Yˆ 为给定X 时Y 的估计值。
a 为回归直线在 Y 轴上的截距
即x 取0时,y 的平均估计值
➢ a >0,表示直线与纵轴的交点在原点的上方 ➢ a < 0,则交点在原点的下方 ➢ a = 0,则回归直线通过原点
b为回归系数,即直线的斜率
➢ b>0,直线从左下方走向右上方,Y 随 X 增大
16
0.206
0.317 0.400 0.468 0.542 0.590 0.631 0.678
17
0.197
0.308 0.389 0.456 0.529 0.575.378 0.444 0.515 0.561 0.602 0.648
…
…
…
…
…
…
而增大
➢ b<0,直线从左上方走向右下方,Y 随 X 增大
而减小
➢ b=0,表示直线与 X 轴平行,X 与Y 无直线关
系
b 的统计学意义是:X 每增加(减)一个单位,Yˆ
平均改变b个单位
建立 线性回归模型的步骤
1、确定研究的问题
2、设样本回归模型(如: Y a )bx
3、搜集样本资料(数据资料) 4、估计未知参数(计算统计量) 5、得到样本回归方程 6、用模型预测因变量
直线相关与回归分析

第七章 多元回归及相关
第一节 多元线性回归的基本概念
事物间的相互联系往往是多方面的,在很多情 况下对应变量y 发生影响的自变量往往不止一个 。 多元线性回归的目的就是用一个多元线性回归方 程表示多个自变量和1个应变量间的关系。
yˆ b0 b1x1 b2x2 bi xi bmxm
直线回归相关分析的注意事项:
2. 在进行直线回归前应绘制散点图,有直 线趋势时,才适宜作直线回归分析。散 点图还能提示资料有无异常点。
3. 直线回归方程的适用范围一般以自变量 的取值范围为限。
直线回归相关分析的注意事项:
4. 对同一组资料作回归和相关分析, 其相关系数和回归系数的显著性检验结果完 全相同。由于相关系数的显著性检验结果可 直接查表,比较方便;而回归系数的显著性 检验计算复杂,故在实际应用中常用相关系 数的显著性检验结果代替回归系数的显著性 检验。
第六节 多元回归在医学中的应用
1.一。根据较易测得的自变量推算不易测得的应变量 如:用身高, 体重推算体表面积 。
二。确定各自变量xi取不同值时,y的正常值范围 如:建立一个由身高,体重推算心象面积的多元
回归方程,利用此方程就可分别求出身高, 体重取不同 值的组合时,心象面积的正常值范围。
三。预测预报 如:建立心肌梗塞预报方程或脑卒中预报方程。
逐步回归分析方法示意:
X和Y的离均差积和
x x 2 x2 x2 n
X的离均差平方和
相关系数的显著性检验
H0 : 0 H1 : 0
sr
r tr sr
1 r2 n2
df n 2
样本相关系 数的标准误
查t界值表, 得P值
例6.1 极谱法和碘量法测定水中溶解氧的含 量,两法的测得值是否有相关性?
统计学中直线相关与回归的区别与联系

统计学中直线相关与回归的区别与联系在统计学中,直线相关和回归是两个相关的概念,但又有一些区别和联系。
区别:
1. 定义:直线相关是指两个变量之间的线性关系,即随着一个变量的增加,另一个变量也以一定的比例增加或减少。
回归分析是一种统计方法,用于建立一个或多个自变量与因变量之间的关系模型。
2. 目的:直线相关主要关注变量之间的关系和相关程度,通过相关系数来衡量。
而回归分析旨在通过建立数学模型来预测或解释因变量的变化,以及评估自变量对因变量的影响。
3. 变量角色:在直线相关中,两个变量没有明确的自变量和因变量的区分,它们之间的关系是对称的。
而在回归分析中,通常有一个或多个自变量作为预测因变量的因素。
联系:
1. 线性关系:直线相关和回归分析都假设变量之间存在线性关系,即可以用直线或线性模型来描述它们之间的关系。
2. 相关系数:直线相关中使用相关系数来度量变量之间的相关程度。
回归分析中也使用相关系数,但更多地关注回归模型的参数估计和显著性检验。
3. 数据分析:直线相关和回归分析都是常用的数据分析方法,在实际应用中经常同时使用。
直线相关可以帮助我们了解变量之间的关系和趋势,而回归分析可以进一步建立模型和进行预测。
总之,直线相关和回归分析是统计学中两个相关但又有区别的概念。
直线相关关注变量之间的线性关系和相关程度,而回归分析则更关注建立模型和预测变量之间的关系。
在实际应用中,它们常常相互补充使用,以帮助我们理解和解释数据。
[课件]第八章 直线回归与相关分析PPT
![[课件]第八章 直线回归与相关分析PPT](https://img.taocdn.com/s3/m/48735145f5335a8102d2207a.png)
(2)F检验:
U 176 . 4 F ( n 2 ) ( 5 2 ) 4 . 96 Q 106 . 6
因为 F , 4 . 96 F 10 . 13 0 . 05 ( 1 , 3 ) .05 。说明小白鼠体重和日龄间 所以, p 0 的直线关系不显著。
相关分析(correlation analysis)3
研究“一因一果”,即一个自变量与一个依 变量的回归分析称为一元回归分析;
直线回归分析 曲线回归分析
研究“多因一果”,即多个自变量与一个依 变量的回归分析称为多元回归分析。
多元线性回归分析
多元非线性回归分析
第二节:直线回归
Linear Regression
回归和相关分析结果仅适用于自变量的试验取值 范围。
9
2. 进行直线回归分析时应符合的基本条件 (基本假定) (1)x是没有误差的固定变量;而y是随机 变量,具有随机误差。 (2)x的任一值都对应着一个y的总体,且 呈正态分布。
(3)随机误差是相互独立的,且呈正态分
布。
10
对两个变量间的线性关系的显著性进行检验时, 采用的方法是 F 检验或 t 检验。 直线回归中,只有一个自变量,所以回归平方和 的自由度为1,离回归平方和的自由度为n-2 。 1. 计算回归平方和U和离回归平方和Q:
序号 日龄 x 体重 y 1 6 12 2 9 17 3 12 22 4 15 25 5 18 29
13
(一)求回归方程: (1)由观测值计算6个一级数据
n 5
x 6 9 12 15 18 60 x 6 9 12 15 18 810
第十五章--直线相关与直线回归分析

n
5
Lyy
2
Y Y
Y2
Y 2 =27.86-112 =3.66
n
5
Lxy
X X
Y Y
XY
25 6
❖ 1.绘制散点图 有相关关系,再作回归分析 ❖ 2.计算回归系数
41
❖ (1)编制回归系数计算表:求基础数据
X 75
Y 11
X 2 1375
Y 2 27.86
XY 194.25
42
(2)计算离均差平方和及离均差积和
Lxx
2
XX
X2
X 2 =1375-752 =250
tr
r
n2 1-r 2
=n-2=12-2=10 t=7.73,查t值表P436, t0.05(10) 2.228
上述计算t=7.73>2.228,由t所推断的P值小于0.05,按
=0.05水准拒绝H0 ,接受H1, r为正值,说明唾液
药物浓度与血液药物浓度存在正相关关系。
23
相关一定有内在联系吗?
5
第一节 直 线 相 关 分 析
Linear Correlation
6
1.直线相关概念
❖ 概念:描述和推断两个(事件、现象)正态 变量(x、y)总的变化趋势上协同变化规律性 的密切程度和方向(但又非确定的函数关系) 的统计分析方法。
❖ 协同变化:同增同减,此增彼减
7
2.直线相关的特点:
❖ 两变量同时进入数据分析; ❖ 两变量不区别为原因变量和结果变量,
20
(3)直 线 相 关 系 数 的 假 设 检 验
❖ 上例中的相关系数r等于0. 9256,说明了12名癫痫病人的唾 液药物浓度与血液药物浓度之间存在相关关系。但是,这12 名癫痫病人只是总体中的一个样本,由此得到的相关系数会 存在抽样误差。
直线相关与回归分析的区别和联系

直线相关与回归分析的区别和联系
1、区别
(1)资料要求不同相关要求两个变量是双变量正态分布;回归要求因变量Y服从正态分
布,而自变量X是能精确测量和严格控制的变量。
(2)统计意义不同相关反映两量变间的伴随关系,这种关系是相互的、对等的,不一定
有因果关系;回归则反映两变量间的依存关系,有自变量和因变量之分,一般将“因”
或较易测定、变异较小者定为自变量。
这种依存关系可能是因果关系,也可能是从属关系。
(3)分析目的不同相关分析的目的是把两变量间直线关系的密切程度及方向用一统计
指标表示出来;回归分析的目的则是把自变量与因变量的关系用函数公式定量表达出来。
2、联系
(1)变量间关系的方向一致对同一资料,其r与b的正负号一致。
(2)假设检验等价对同一样本,而这的概率值相同
(3)r与b值可相互转换。
(4)用回归解释相关相关系数的平方成为决定系数,是回归平方和与总的离均差平均和之比,故回归平方和是引入相关变量后总平方和减少的部分,其大小取决
于r2。
回归平方和越接近总平方和,则r2越接近1,说明引入相关的效果越好;
反之,则说明引入相关的效果不好或意义不大。
第 1 页共1 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏相关系数可从简单相关系数计算得到,也要作显 著性检验。
第五节 多元相关系数及决定系数
在多元回归中可算得一个多元相关系数,用R表示,它 是y与 之间的简单相关系数,也可理解为y与自变量组合 之间的相关系数。
直线回归相关分析的注意事项:
5. 在资料要求上:
相关分析要求两个变量服从双变量正态分布。
回归分析要求因变量服从正态分布,自变量可 以是精确测量和严格控制的变量。如两个变量服 从双变量正态分布,则可以作两个回归方程,用 X推算Y,或用Y推算X。
第五节 过定点的直线回归
医学研究中在拟合直线时,除了要求与观察点 尽量接近外,还常常要求必须经过某定点(m,n)。例 如在光电比色、荧光分析、火焰光度测定以及同位 素测定等实验方法绘制标准直线时就常有这样的要 求。
ห้องสมุดไป่ตู้
二. 逐步回归分析的计算方法
在供选的自变量Xi中,按其对y的作用大小, 由大到小地把自变量逐个引入方程, 每引入一个 自变量就对它作显著性检验,显著时才引入,而 当新的自变量进入方程后, 对方程中原有的自变量 也要作检验,并把作用最小且退化为不显著的自 变量逐个剔出方程。因此,逐步回归的每一步( 引入一个变量或剔除一个变量都称为一步)前后 都要作显著性检验,以保证每次引入新变量前方 程中只包含作用显著的自变量。这样一步步进行 下去, 直至方程中所含自变量都显著而又没有新的 作用显著的自变量可引入方程为止。
此定点也可以是(m,0),(0,n)或(0,0)等,尤以 (0,0)为最常见。
计算公式和实例见第116页。
第六节 直线相关与回归的SAS程序
SAS的CORR过程可用于求变量之间的线性 相关系数及偏相关系数。;
SAS的REG过程可用于各种线性回归分析, 包括多元回归(见第七章),逐步回归和最优 子集回归(见第八章)等。
逐步回归分析方法示意:
y
方程外:
x1、x2 、 x3 、…… xm
方程内自变量 中选择对y作
用最小的xi
剔除
作用最大的自变量
xj
:
引入方程
Xj是否显著
结束
第三节 最优子集回归
回归方程优劣的评价:(P为选入方程的自变量数) 1. 剩余标准差最小: 2. 变异系数最小: 3. 复相关系数最大: 4. 校正R2最大: 5. cp统计量最小
四。回顾推断 如:推断死亡时间。
第七节 多元回归及相关的SAS程序
求偏相关系数用CORR过程。 求多元回归及相关用REG过程。
第八章 逐步回归及最优子集回归
第一节 逐步回归分析
一.逐步回归分析的基本概念 逐步回归分析的目的是建立“最优”回归方
程。 “最优”回归方程是指包含所有对y有显著作
用的自变量,而不包含对y作用不显著的自变量的 方程。
第二节 相关系数
相关分析的目的在于通过相关系数r来描述和度 量两变量线性联系的程度和方向。
r>0 正相关 图例1 r<0 负相关 图例2 r=0 零相关 图例3
零相关即两变量间无关。
样本相关系数不等于零,并不表示总体相关系 数不等于零,还要作显著性检验。
next
回
r=0.7495
回
r=-0.83597
第六节 多元回归在医学中的应用
1.一。根据较易测得的自变量推算不易测得的应变量 如:用身高, 体重推算体表面积 。
二。确定各自变量xi取不同值时,y的正常值范围 如:建立一个由身高,体重推算心象面积的多元
回归方程,利用此方程就可分别求出身高, 体重取不同 值的组合时,心象面积的正常值范围。
三。预测预报 如:建立心肌梗塞预报方程或脑卒中预报方程。
第三节 最优子集回归
把一切可能自变量组合的方程都求出来,然后选出一个符 合最优标准的回归方程。这个方法称为最优子集回归。
y ~x1 y ~x2 y ~x3 y~ x1、x2 y~ x1、x3
y~ x2、x3 y~ x1、 x2 、 x3
最优回归准则: (1)R2最大:只能用于相同个数自变量方程间的比较。 (2)校正R2最大:能用于不同个数自变量方程间的比较。 (3)最小的cp统计量:能用于不同个数自变量方程间的比较。
y
x
最小
回归系数的显著性检验
从样本资料中算得的回归系数b,也有抽样误 差,因此需作显著性检验,检验其是否是回归系 数为零的总体中抽得的。
H0:β=0 H1:β≠0。 当拒绝H0时,可认为x与y间的直线回归方程 有统计学意义。
显著性检验可有两种方法:t 检验法和方差 分析法。
t 检验法:
样本回归系 数的标准误
回归系数b表示x每改变一个单位,y平均改变b 个单位。
Y=10x+5
=4.22+0.20x
体重
心脏横径
设有n对x,y的观察值,先在直角坐标系中 作散点图,如果散点的分布呈直线趋势,则可设法 求出直线方程。
通常用最小二乘法,依据:各点与该直线的 纵向距离的平方和为最小
先由(6.3)式求得b,再由(6.4)式求得a,就得出 直线回归程。
直线相关与回归分析
第一节 概述
分析两个变量间的关系常用回归及相关分析的统 计方法。
如两个变量间的关系是线性的,可用直线相关与 回归分析;如两个变量间的关系是非线性的需用非线 性(曲线)回归。
回归分析适用于分析变量间的因果关系;用一个 自变量的值来估计另一个应变量的值。
相关分析用于分析两变量间相互联系的密切程度 及相关方向。
剩余标准差
估计误差平方和
方差分析法:
Y的总变异
X和Y的线性关系引起的变异 误差引起的变异
回归平方和 误差平方和
总的自由度:n-1
回归自由度:1
误差自由度:n-2 )
(总例数减1) (自变量个数) (总的自由度减去回归自由度
df1=1, df2=n-2 查方差分析用的F界值表,得P值
例6.2 研究正常男性年龄与运动后最大心率 的关系,求直线回归方程。
第四节 偏相关系数
相关系数r应称为简单相关系数,因为它只考虑了x1和 x2 之间的相互影响,而未注意到其他变量对x1和x2可能有的影响 。
事实上,客观事物间的关系是错综复杂的,变量之间的相 互影响也往往是多种多样的。例如,当存在x1 ,x2 ,x3三个变量时 ,如果我们不考虑x3 ,而只对x1 ,x2计算其相关系数r,则这r的 大小往往不反映客观真实情况;如r很大,可能意味着x1 ,x2之 间的关系很密切,但也可能实际上x1 ,x2之间并无什么关系, 而x3却对x1 ,x2能同时发挥很大的影响,我们所看到的较大r值 不过是x3对x1的作用和x3对x2的作用的客观表现而已。反之, x1 ,x2之间算得的一个小r值,也不一定就意味着x1 ,x2之间的关 系确实薄弱,也有可能x1 ,x2之间虽有关联,但此关联性却被 x3对它们的作用所抵消,以致被掩盖了。
因此在较单纯的情况下,如果x1 ,x2与周围其他变量没 什么关系的话,则用简单相关系数来表示x1 ,x2之间的相 关性是可行的;如果存在着对x1 ,x2关系密切的其他变量 ,则r就不能确切地表示x1 ,x2之间的真实关系,这就需要用 到偏相关系数。
所谓偏相关系数指的是当把x1 ,x2以外的其他变量对 它们的影响都扣除掉(或平衡掉)以后, x1 ,x2之间的相关系 数。
多元线性回归的应用条件:
1. 独立性:各观察对象间相互独立。 2. 线性:自变量与应变量间的关系为线性。 3. 正态性:自变量取不同值时,应变量的分布为
正态。 4. 方差齐性:自变量取不同值时,应变量的总体
方差相等。 当不符合条件时,可对自变量进行变换。 如:
第二节 多元回归的计算
1. 计算截距和各偏回归系数。 2. 多元回归方程的显著性检验: (1)整个方程的显著性检验:用方差分析。
相关系数的计算:
X和Y的离均差积和 X的离均差平方和
相关系数的显著性检验
样本相关系 数的标准误
查t界值表, 得P值
例6.1 极谱法和碘量法测定水中溶解氧的含 量,两法的测得值是否有相关性?
两法的测得值有相关(P<0.01)
第三节 直线回归方程
目的:找出描述x与y依存关系的直线方程。
Y为应变量(dependent variable) X为自变量(independent variable) A为截距(intercept) b为回归系数(regression coefficient)
(2) 对各偏回归系数的显著性检验: F检验:去掉xj后回归平方和的减少是否显著。 t检验:回归系数除以它的标准误。
第三节 标准偏回归系数
要比较各个自变量对于应变量的作用大小,不能用偏回 归系数,因为各偏回归系数的单位不同。必须把偏回归系 数标准化,化成没有单位的标准偏回归系数,公式为:
消除不同单位的影响后,标准偏回归系数的绝对值 越大,该自变量对于应变量的作用越大,但该差别是否 有统计意义,也必须经过检验。
第七章 多元回归及相关
第一节 多元线性回归的基本概念
事物间的相互联系往往是多方面的,在很多情 况下对应变量y 发生影响的自变量往往不止一个 。多元线性回归的目的就是用一个多元线性回归 方程表示多个自变量和1个应变量间的关系。
:截距
:标准偏回归系数
标准偏回归系数表示其他自变量固定的情况下, xi改变一个单位,y平均改变bi个单位。
R2称为多元回归方程的决定系数, 即y的变异中可由方 程中的自变量组合所决定的部分。
R2值介于0~1之间,R2越接近1, 说明回归方程的效果 越好。R2越接近0, 说明回归方程的效果越差,即y的变异中 只有很少一部分能由方程中的自变量组合所决定,即使该 方程有显著意义,也不能认为该方程的效果可以令人满意, 启示我们还应进一步寻找其他对y可能有显著作用的变量或 变量组合。R2也可用于检验多元回归方程的显著性 。