SPSS 第五章 相关分析和回归分析
spss中相关与回归分析

定义变量:血红蛋白,贫血体征→Variables
20:41
16
建立数据文件:血红蛋 白的等级相关分析.sav.
定义变量 输入数据
开始分析
ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate
定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34
主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17
20:41
主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)
SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于
是
n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影
数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。
在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。
本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。
一、相关分析相关分析是一种用于确定变量之间关系的统计方法。
SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。
在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。
下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。
1. 打开SPSS软件并导入数据。
可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备相关分析的变量。
选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。
在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。
3. 进行相关分析。
点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。
4. 解读相关分析结果。
SPSS会给出相关系数的值以及显著性水平。
相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。
显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。
二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。
SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。
下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。
1. 打开SPSS软件并导入数据。
同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备回归分析的变量。
相关与回归分析spss课件

表 2 10 名正常成年男性的血浆清蛋白含量及血红蛋白含量检测结果
编号
1 2 3 4 5
血浆清蛋 白含量(x)
35.5 36.5 38.5 37.5 36.5
血红蛋白含 量(y)
119.5 120.5 127.5 126.5 120.5
编号
6 7 8 9 10
血浆清蛋 白含量(x)
35.4 34.5 34.2 34.6 33.5
定义变量:身高, 体重→Variables
*
8
建立数据文件:身高体重的 相关分析.sav.
定义变量
输入数据
开始分析
绘制散点图
假定满足双变量正态分 布:analyze →Correlate →Bivariate
定义变量:身高, 体重→Variables
选择统计量: Correlation Coefficients →Pearson
开始分析
analyze →Correlate →Bivariate
定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
*
17
主要结果
Corre lations
血 红蛋 白含 量 ( g/dl)贫 血 体 征 Spearman's血 rh红 o 蛋 白 含 量 (Cgo/drrle)lation Coeffic1ie.0n0t0 -.741*
b.Dependent Var iable: 体 重 ( kg)
Sig. .000a
对总体回归 模型检验的F
值
对总体回归 模型检验的
P值
*
36
主要结果
相关分析和回归分析SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS软件进行相关分析与回归分析;具体包括:(1)皮尔逊pearson简单相关系数的计算与分析(2)学会在SPSS上实现一元及多元回归模型的计算与检验..(3)学会回归模型的散点图与样本方程图形..(4)学会对所计算结果进行统计分析说明..(5)要求试验前;了解回归分析的如下内容..参数α、β的估计回归模型的检验方法:回归系数β的显着性检验t-检验;回归方程显着性检验F-检验..二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度..用来测度简单线性相关关系的系数是Pearson简单相关系数..2.回归分析的统计学原理相关关系不等于因果关系;要明确因果关系必须借助于回归分析..回归分析是研究两个变量或多个变量之间因果关系的统计方法..其基本思想是;在相关分析的基础上;对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定;确立一个合适的数据模型;以便从一个已知量推断另一个未知量..回归分析的主要任务就是根据样本数据估计参数;建立回归模型;对参数与模型进行检验与判断;并进行预测等..线性回归数学模型如下:在模型中;回归系数是未知的;可以在已有样本的基础上;使用最小二乘法对回归系数进行估计;得到如下的样本回归函数:回归模型中的参数估计出来之后;还必须对其进行检验..如果通过检验发现模型有缺陷;则必须回到模型的设定阶段或参数估计阶段;重新选择被解释变量与解释变量及其函数形式;或者对数据进行加工整理之后再次估计参数..回归模型的检验包括一级检验与二级检验..一级检验又叫统计学检验;它是利用统计学的抽样理论来检验样本回归方程的可靠性;具体又可以分为拟与优度评价与显着性检验;二级检验又称为经济计量学检验;它是对线性回归模型的假定条件能否得到满足进行检验;具体包括序列相关检验、异方差检验等..三、试验演示内容与步骤1.连续变量简单相关系数的计算与分析在上市公司财务分析中;常常利用资产收益率、净资产收益率、每股净收益与托宾Q值4个指标来衡量公司经营绩效..本试验利用SPSS对这4个指标的相关性进行检验..操作步骤与过程:打开数据文件“上市公司财务数据连续变量相关分析.sav”;依次选择“分析→相关→双变量”打开对话框如图;将待分析的4个指标移入右边的变量列表框内..其他均可选择默认项;单击ok提交系统运行..图5.1 Bivariate Correlations对话框结果分析:表给出了Pearson简单相关系数;相关检验t统计量对应的p值..相关系数右上角有两个星号表示相关系数在0.01的显着性水平下显着..从表中可以看出;每股收益、净资产收益率与总资产收益率3个指标之间的相关系数都在0.8以上;对应的p值都接近0;表示3个指标具有较强的正相关关系;而托宾Q值与其他3个变量之间的相关性较弱..表5.1 Pearson简单相关分析Correlations每股收益率净资产收益率资产收益率托宾Q值每股收益率PearsonCorrelation1.877.824-.073Sig.2-tailed..000.000.199N315315315315净资产收益率Pearson.8771.808-.001 CorrelationSig..000..000.983 2-tailedN315315315315资产收益率Pearson.824.8081.011 CorrelationSig..000.000..849 2-tailedN315315315315托宾Q值Pearson-.073-.001.0111 CorrelationSig..199.983.849.2-tailedN315315315315 Correlation is significant at the 0.01 level 2-tailed.2.一元线性回归分析实例分析:家庭住房支出与年收入的回归模型在这个例子里;考虑家庭年收入对住房支出的影响;建立的模型如下:其中;yi是住房支出;xi是年收入线性回归分析的基本步骤及结果分析:1绘制散点图打开数据文件;选择图形-旧对话框-散点/点状;如图5.2所示..图5.2 散点图对话框选择简单分布;单击定义;打开子对话框;选择X变量与Y变量;如图5.3所示..单击ok提交系统运行;结果见图5.4所示..图5.3 Simple Scatterplot 子对话框从图上可直观地看出住房支出与年收入之间存在线性相关关系..图5.4 散点图2简单相关分析选择分析—>相关—>双变量;打开对话框;将变量“住房支出”与“年收入”移入variables列表框;点击ok运行;结果如表5.2所示..表5.2 住房支出与年收入相关系数表CorrelationsCorrelation is significant at the 0.01 level 2-tailed.从表中可得到两变量之间的皮尔逊相关系数为0.966;双尾检验概率p值尾0.000<0.05;故变量之间显着相关..根据住房支出与年收入之间的散点图与相关分析显示;住房支出与年收入之间存在显着的正相关关系..在此前提下进一步进行回归分析;建立一元线性回归方程..3 线性回归分析步骤1:选择菜单“分析—>回归—>线性”;打开Linear Regression 对话框..将变量住房支出y移入Dependent列表框中;将年收入x移入Independents列表框中..在Method 框中选择Enter 选项;表示所选自变量全部进入回归模型..图5.5 Linear Regresssion对话框步骤2:单击Statistics按钮;如图在Statistics子对话框..该对话框中设置要输出的统计量..这里选中估计、模型拟合度复选框..图5.6 Statistics子对话框估计:输出有关回归系数的统计量;包括回归系数、回归系数的标准差、标准化的回归系数、t统计量及其对应的p值等..置信区间:输出每个回归系数的95%的置信度估计区间..协方差矩阵:输出解释变量的相关系数矩阵与协差阵..模型拟合度:输出可决系数、调整的可决系数、回归方程的标准误差、回归方程F检验的方差分析..步骤3:单击绘制按钮;在Plots子对话框中的标准化残差图选项栏中选中正态概率图复选框;以便对残差的正态性进行分析..图5.7 plots子对话框步骤4:单击保存按钮;在Save子对话框中残差选项栏中选中未标准化复选框;这样可以在数据文件中生成一个变量名尾res_1 的残差变量;以便对残差进行进一步分析..图5.8 Save子对话框其余保持Spss默认选项..在主对话框中单击ok按钮;执行线性回归命令;其结果如下:表5.3给出了回归模型的拟与优度R Square、调整的拟与优度Adjusted R Square、估计标准差Std. Error of the Estimate以及Durbin-Watson统计量..从结果来看;回归的可决系数与调整的可决系数分别为0.934与0.93;即住房支出的90%以上的变动都可以被该模型所解释;拟与优度较高..表5.4给出了回归模型的方差分析表;可以看到;F统计量为252.722;对应的p值为0;所以;拒绝模型整体不显着的原假设;即该模型的整体是显着的..表5.5给出了回归系数、回归系数的标准差、标准化的回归系数值以及各个回归系数的显着性t检验..从表中可以看到无论是常数项还是解释变量x;其t统计量对应的p值都小于显着性水平0.05;因此;在0.05的显着性水平下都通过了t检验..变量x的回归系数为0.237;即年收入每增加1千美元;住房支出就增加0.237千美元..表5.3 回归模型拟与优度评价及Durbin-Watson检验结果Model Summaryba Predictors: Constant;年收入千美元b Dependent Variable:住房支出千美元表5.4 方差分析表ANOVAba Predictors: Constant; 年收入千美元b Dependent Variable: 住房支出千美元表5.5 回归系数估计及其显着性检验Coefficientsaa Dependent Variable: 住房支出千美元为了判断随机扰动项是否服从正态分布;观察图5.9所示的标准化残差的P-P图;可以发现;各观测的散点基本上都分布在对角线上;据此可以初步判断残差服从正态分布..为了判断随机扰动项是否存在异方差;根据被解释变量y与解释变量x的散点图;如图5.4所示;从图中可以看到;随着解释变量x的增大;被解释变量的波动幅度明显增大;说明随机扰动项可能存在比较严重的异方差问题;应该利用加权最小二乘法等方法对模型进行修正..图5.9 标准化残差的P-P图四、备择试验现有1987~2003年湖南省全社会固定资产投资总额NINV与GDP两个指标的年度数据;见下表..试研究全社会固定资产投资总额与GDP的数量关系;并建立全社会固定资产投资总额与GDP之间的线性回归方程..。
04-SPSS相关分析和回归分析-51页精选文档

8.2.2 相关系数
利用相关系数进行变量间线性关系的分析通常需 要完成以下两个步骤:
第一,计算样本相关系数r;
相关系数r的取值在-1~+1之间
R>0表示两变量存在正的线性相关关系;r<0表示两变 量存在负的线性相关关系
R=1表示两变量存在完全正相关;r=-1表示两变量存 在完全负相关;r=0表示两变量不相关
• 相关分析用于描述两个变量间关系的密切程度,其特点是
变量不分主次,被置于同等的地位。
• 在Analyze的下拉菜单Correlate命令项中有三个相关分 析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。 Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间 进行相似性分析,一般不单独使用,而作为聚类分析和因 子分析等的预分析。
|r|>0.8表示两变量有较强的线性关系; |r|<0.3表示 两变量之间的线性关系较弱
第二,对样本来自的两总体是否存在显著的线性 关系进行推断。
对不同类型的变量应采用不同的相关系数来度量,常用 的相关系数主要有Pearson简单相关系数、Spearman等
级相关系数和Kendall 相关系数等。
4.在Test of Significance框中选择输出偏相关 检验的双尾概率p值或单尾概率p值。
SPSS相关分析与回归分析专题课件

SPSS相关分析与回归分析专题课件
线性回归
相关分析 与
回归分析
回归分析一般步骤: •确定回归方程中的解释变量(自变量)和
被解释变量(因变量) •确定回归模型 •建立回归方程 •对回归方程进行各种检验 •利用回归方程进行预测
SPSS相关分析与回归分析专题课件
线性回归
线性回归模型
相关分析 与
回归分析
研究者把非确定性关系称为相关关系。
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
三.相关分析的特点和应用
相关关系是普遍存在的,函数关系仅是相关关系的特 例。 1.相关关系的类型
相关关系多种多样,归纳起来大致有以下6种: 强正相关关系,其特点是一变量X增加,导致另一变量
Y明显增加,说明X是影响Y的主要因素。 弱正相关关系,其特点是一变量X增加,导致另一变量
所以,相关分析的意义和目的在于: (1)在统计学中有理论与实践意义 (2)对相关关系的存在性给出判断
( 3 ) 对相关关系的强度给出度量和分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
二、相关分析的概念
变量之间的关系分为确定性关系和非确定性关系。 确定性关系:当一个变量值(自变量)确定后,另一个 变量值(因变量)也就完全确定了,确定性关系往往可以 表示成一个函数的形式,比如圆的面积和半径的关系: S=πr² 非确定性关系:给定了一个变量值后,另一个变量值可 以在一定范围内变化,例如家庭的消费支出和家庭收入的 关系。
回归分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
(1)案例处理摘要。“案例处理摘要”表格给出了数 据使用的基本情况。主要是对有无缺失值的统计信息, 可见本例的11个案例没有缺失,全部用于分析。 (2)近似矩阵。“近似矩阵”表格给出的是各变量之 间的相似矩阵,图中以线框标注了相关系数较大的几对 变量。它们在进一步的分析中应重点关注,或者直接对 其进行适当的预处理(例如变量约减)
spass教程第五章相关分析和回归分析ppt课件

5.1 下表为青海一月平均气温与海拔高度及纬度的数
据,试分析一月平均气温与海拔高度和纬度的偏相关 系数〔由于第三个变量纬度(海拔)的存在所起的作用, 能够会影响纬度(海拔)与一月平均温度之间的真实关 系〕。
测站 昂欠 清水河 玛多 共和 铁卜加 茫崖 托勒 伍道梁 察尔汗 吉迈 尖扎 西宁
一月气温
曲线回归
检验结果和系数
MODEL: MOD_3.
Independent: 年降水量 Dependent Mth Rsq d.f. F Sigf b0 b1 b2 b3 海拔高度 LIN .462 10 8.60 .015 -780.60 2.0951 海拔高度 LOG .484 10 9.39 .012 -10241 1672.91 海拔高度 INV .477 10 9.13 .013 2504.03 -1.E+06 海拔高度 QUA .506 9 4.60 .042 -2676.6 6.9415 -.0029 海拔高度 CUB .559 8 3.39 .074 5011.03 -23.623 .0356 -2.E-05 海拔高度 COM .665 10 19.85 .001 63.4154 1.0030 海拔高度 POW .710 10 24.54 .001 6.7E-05 2.4296 海拔高度 S .719 10 25.64 .000 8.9234 -1781.4 海拔高度 GRO .665 10 19.85 .001 4.1497 .0030 海拔高度 EXP .665 10 19.85 .001 63.4154 .0030
降水量
多元非线性回归
7.6 某变量受其它两个变量的影响,其中X、Y这两 个变量对y影响的函数表达式为 Z=a+bX+cX2+dY+eY2+fXY,根据下面的数据计算 这个关系式〔不可直线化的多元非线性回归,知曲 线的方式〕 注:多元多项式回归也用此方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1 9.5 8 9.5 9.8 9.7 13.5 9.5 12.5 9.4 11.4 7.7 8.3 12.5 8 6.5 12.9
y 5.77539 4.38263 2.27277 3.64637 3.11833 x1 1.1 1.7 1.6 7.8 7 x2 3.9 5.2 4.8 8.2 8.4 x3 16.65 38.62 65.6 10.56 25.22 x4 15.5 36.2 61.1 9.5 22.7 x5 1.2 2.5 4.5 1.1 2.6 x6 40.75639 42.48211 55.13187 44.67465 42.4436
X2
1.9
2
2.6
2.7
2
2.4
2.3
2.2
3.3
2.3
3.6
2.1
2.5
2.4
3.2
1.9
Y
7.1
6.4
10.4
10.9
7
10
7.9
9.3
12.8
7.5
10.3
6.6
9.5
7.7
7
9.5
方程检验表
从表中可知F>F0.01(p<0.01),说明方程通过了显著性检验,说明鱼产
量依投饵量、放养量的二元线性回归达到显著水平
将0.186与 -0.875 对照; 同时再 与前面 讲的例 子对照 看有什 么不同
回归分析(一元线性回归)
5.2 一条河流流经某地区,其降水量X(mm) 和径流量Y(mm)多年观测数据如表所示。 试建立Y与X的线性回归方程,并根据降水量 预测径流量。
Y X 25 81 36 33 70 54 110 184 145 122 165 143 20 44 78 129 14 41 75 62 130 168
从表中可知,方程最多引入变量X6、X2、X5时其对应的F值大于F0.01 (p<0.01),说明方程通过了显著性检验,说明地理要素Y依地理因素 X6、X2、X5的逐步线性回归达到显著水平
系数检验表
从表中可知引入自变量变量X6、X2、X5对应的t均大于t0.01(p<0.01),说明地 理因素Y对地理要素X6、X2、X5的偏回归系数达极显著水平即通过显著性检验;而其它
曲线回归
检验结果和系数
MODEL: MOD_3.
Independent: 年降水量 Dependent Mth Rsq d.f. 海拔高度 LIN 海拔高度 LOG 海拔高度 INV 海拔高度 QUA 海拔高度 CUB 海拔高度 COM 海拔高度 POW 海拔高度 S 海拔高度 GRO 海拔高度 EXP .462 .484 .477 .506 .559 .665 .710 .719 .665 .665 10 10 10 9 8 10 10 10 10 10 F Sigf b0 b1 b2 b3
将-0.728 与-0.941 对照;同 时再与前 面讲的例 子对照看 有什么不 同
从表中可知-0.728是一月温度和海拔高度的简单相关系数;而-0.941是一 月气温与海拔高度的偏相关系数
相 关性 控制变量 -无-a 一月温度 相关性 显著性(双侧) df 纬度 相关性 显著性(双侧) df 海拔高度 相关性 显著性(双侧) df 海拔高度 一月温度 相关性 显著性(双侧) df 纬度 相关性 显著性(双侧) df a. 单元格包含零阶 (Pearson) 相关。 一月温度 1.000 . 0 -.186 .563 10 -.728 .007 10 1.000 . 0 -.875 .000 9 纬度 -.186 .563 10 1.000 . 0 -.471 .122 10 -.875 .000 9 1.000 . 0 海拔高度 -.728 .007 10 -.471 .122 10 1.000 . 0
相 关性 一月温度 Pearson 相关性 显著性(双侧) N 海拔高度 Pearson 相关性 显著性(双侧) N 纬度 Pearson 相关性 显著性(双侧) N 12 -.728** .007 12 -.186 .563 12 12 -.471 .122 12 12 一月温度 1 海拔高度 -.728** .007 12 1 纬度 -.186 .563 12 -.471 .122 12 1
海拔高度 364 442 422 284 320 314 336 465 268 397 208 226
纬度 32.2 33.8 35 36.3 37.1 38.4 38.9 35.3 36.8 33.8 35.9 36.6
相 关性 控制变量 -无-a 一月温度 相关性 显著性(双侧) df 海拔高度 相关性 显著性(双侧) df 纬度 相关性 显著性(双侧) df 纬度 一月温度 相关性 显著性(双侧) df 海拔高度 相关性 显著性(双侧) df a. 单元格包含零阶 (Pearson) 相关。 一月温度 1.000 . 0 -.728 .007 10 -.186 .563 10 1.000 . 0 -.941 .000 9 海拔高度 -.728 .007 10 1.000 . 0 -.471 .122 10 -.941 .000 9 1.000 . 0 纬度 -.186 .563 10 -.471 .122 10 1.000 . 0
的X1、X3、X4的偏回归系数没有通过显著性检验,所以被剔除。则所见最优(逐步)回 归方程为
Y=-11.675-0.103X6-0.362X2-0.419X5
一元非线性回归分析
7.5 下表给出山脉南侧一组测站年降水量随海拔高度变化的观测 值,试建立年降水量依海拔高度的非线性回归方程(一元非线 性回归问题)。
曲线形式
海拔高度
3000 O bserv ed Linear 2000 Logarithmic Inv erse Q uadratic 1000 C ubic C ompound Power 0 S Growth -1000 400 500 600 700 800 900 1000 1100 1200 Exponential
海拔高度 220 350 470 510 640 830 1040 1280 1440 1670 1790 1830 年降水量 480 660 691 727 831 958 982 1168 1022 987 894 832
11种曲线形式 线性:Y=b0×b1X 二次曲线:Y=b0+b1X2 复合曲线:Y=b0b1X或lnY=lnb0+Xlnb1 增长:Y=exp(b0+b1X) 拟合对数:Y=b0+b1lnX 三次(立方)模型:Y=b0+b1X+b2X2+b3X3 S: Y=exp(b0+b1X) 拟合指数方程: Y=b0+eb1X 倒数(逆模型): Y=b0+b1/X 拟合乘幂曲线: Y=b0Xb1 Logisti: Y=I/((1/u)+b0b1X)
5.1 下表为青海一月平均气温与海拔高度及纬度的数 据,试分析一月平均气温与海拔高度和纬度的偏相关 系数(因为第三个变量纬度(海拔)的存在所起的作用,可能会影响纬度(海拔)与一月平均温
度之间的真实关系)。
测站 昂欠 清水河 玛多 共和 铁卜加 茫崖 托勒 伍道梁 察尔汗 吉迈 尖扎 西宁
一月气温 -6.9 -17 -16.9 -11.3 -14.2 -12.3 -18.2 -17.3 -10.4 -13.3 -6.4 -8.6
降水量
多元非线性回归
7.6 某变量受其它两个变量的影响,其中X、Y这两 个 变 量 对 Z 影 响 的 函 数 表 达 式 为 Z=a+bX+cX2+dY+eY2+fXY,根据下面的数据计算 这个关系式(不可直线化的多元非线性回归,已知 曲线的形式
注:多元多项式回归也用此方法
Nonlinear Regression Summary Statistics Dependent Variable Z Source DF Sum of Squares Mean Square Regression 6 57582.84980 9597.14163 Residual 23 7.46820 .32470 Uncorrected Total 29 57590.31800 (Corrected Total) 28 731.25559 R squared = 1 - Residual SS / Corrected SS = .98979 Asymptotic 95 % Asymptotic Confidence Interval Parameter Estimate Std. Error Lower Upper
方程检验表
从表中可知F>F0.01(p<0.01),说明方程通过了显著性检验,说明径流 量与降水量之间存在着极显著的直线回归关系
系数检验表
从表中可知t>t0.01(p<0.01),说明方程中的回归系数通过了显著性检验, 说明径流量与降水量之间有真实的直线回归关系。
回归分析(多元线性回归)
**. 在 .01 水平(双侧)上显著相关。
从上表可知,一月气温与海拔高度和纬度的相关系数分别为-0.728和-0.186,说明一 月气温与海拔高度和纬度均呈负相关关系;进一步对照其所对应的显著性分别为 0.007<0.05和0.563>0.05,表明一月气温与海拔高度的相关性显著,而一月气温与 纬度的相关性不显著。
8.60 .015 -780.60 2.0951 9.39 .012 -10241 1672.91 9.13 .013 2504.03 -1.E+06 4.60 .042 -2676.6 6.9415 -.0029 3.39 .074 5011.03 -23.623 .0356 -2.E-05 19.85 .001 63.4154 1.0030 24.54 .001 6.7E-05 2.4296 25.64 .000 8.9234 -1781.4 19.85 .001 4.1497 .0030 19.85 .001 63.4154 .0030