相关分析和一元线性回归分析SPSS报告
SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于
是
n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影
SPSS相关性和回归分析一元线性方程案例解析

将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
点击“分析”--回归----线性”结果如下所示:
将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”
相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。
本文将介绍如何使用SPSS进行相关分析和回归分析。
相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。
在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“相关”子菜单。
3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。
4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。
5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。
回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。
在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“回归”子菜单。
3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。
4.选择回归模型的方法(如线性回归、多项式回归等)。
5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。
6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。
在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。
回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。
值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。
例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。
总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。
通过上述步骤,用户可以轻松地完成数据分析和结果呈现。
然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。
SPSS的相关分析和回归分析

n
( Xi X )(Yi Y )
r
11
n
n
( Xi X )2 (Yi Y )2i 1i 1源自2021/3/611
计算相关系数
(一)相关系数 (3)种类:
n
n
Di2 (Ui Vi )2
i 1
i 1
R
1
6 n(n2
Di2 1)
• Spearman相关系数:用来度量定序或定类变量间的线性相
第八章 SPSS的相关分析和回归分 析
2021/3/6
1
概述
(一)相关关系
(1)函数关系:(如:销售额与销售量;圆面积和圆半径.)
是事物间的一种一一对应的确定性关系.即:当一 个变量x取一定值时,另一变量y可以依确定的关 系取一个确定的值
(2)统计关系:(如:收入和消费;身高的遗传.)
事物间的关系不是确定性的.即:当一个变量x取 一定值时,另一变量y的取值可能有几个.一个变 量的值不能由另一个变量唯一确定
300
•散点图在进行相
200
关分析时较为粗略
100
领导(管理)人数
2021/3/6
0
Rsq = 0.7762
8 200 400 600 800 1000 1200 1400 1600 1800
普通职工数
计算相关系数
(一)相关系数 (1)作用:
– 以精确的相关系数(r)体现两个变量间的线性 关系程度.
2021/3/6
17
计算相关系数
(五)应用举例
• 通过27家企业普通员工人数和管理人员数,利用 相关系数分析人数之间的关系
– *表示t检验值发生的概率小于等于0.05,即总体无相 关的可能性小于0.05;
spss一元回归分析详细操作与结果分析

spss一元回归分析详细操作与结果分析Case1:降水&纬度Case1数据说明:⏹53个台站的年降水量、年蒸发量、纬度和海拔数据⏹在本例中,把降水量P作为因变量,纬度作为自变量Case1目的:⏹分析降水量和纬度之间的数量关系Case1操作要点:⏹做散点图,查看两因素之间是否线性相关⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验打开spss的数据编辑器,编辑变量视图注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最小为10才能全部显示。
编辑数据视图,将excel数据复制粘贴到spss中⏹从菜单上依次点选:图形—旧对话框—散点/点状⏹定义简单分布,设置Y为年降水量,X为纬度⏹由散点图发现,降水量与纬度之间线性相关给散点图添加趋势线的方法:•双击输出结果中的散点图•在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了“拟合线”•拟合方法选择“线性”,置信区间可以选95%个体,应用step3:线性回归分析⏹从菜单上依次点选:分析—回归—线性⏹设置:因变量为“年降水量”,自变量为“纬度”⏹“方法”:选择默认的“进入”,即自变量一次全部进入的方法。
⏹“统计量”:•勾选“模型拟合度”,在结果中会输出“模型汇总”表•勾选“估计”,则会输出“系数”表⏹“绘制”:在这一项设置中也可以做散点图⏹“保存”:•注意:在保存中被选中的项目,都将在数据编辑窗口显示。
•在本例中我们勾选95%的置信区间单值,未标准化残差⏹“选项”:只需要在选择方法为逐步回归后,才需要打开【统计量】按钮⏹“回归系数”复选框组:定义回归系数的输出情况•勾选“估计”可输出回归系数B及其标准误差,t值和p值•勾选“误差条图的表征”则输出每个回归系数的95%可信区间•勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩阵。
⏹“残差”复选框组:•用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、个案诊断。
实验报告四.SPSS一元线性相关回归分析预测

a
均值 159.1000 .000 .781 159.2740 .00000 .000 -.038 -.17402 .007 .900 .104 .100
标准 偏差 1.79729 1.000 .308 1.95023 1.75840 .943 1.025 2.10525 1.084 1.583 .133 .176
广东金融学院实验报告
课程名称:市场调查与预测
实验编号 及实验名称 姓 名
实验四:SPSS 一元线性相关回归分析预测 马秀文 实验中心 周刺天
系 班
别 级
工商管理系 市场营销 2 班 4
学
号
111521216 2013/12/9 无
实验地点 指导教师
实验日期 同组其他成员
实验时数 成 绩
一、实验目的及要求 利用 SPSS 进行回归分析。 二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等) 通过实验教学中心的教学环境发布相关练习资料。 软件运行环境:操作系统 WindowsXP,办公自动化软件,SPSS 统计分析软件包。 硬件设备:实验室的个人电脑。 三、实验内容及步骤(包含简要的实验步骤流程) 为了了解某地母亲身高 x 与女儿身高 Y 的相关关系,随机测得 10 对母女的身高(见文 件“母女身高.sav”) 。利用 SPSS 软件,完成以下任务: 1.画出 x、Y 散点图,观察因变量与自变量之间关系是否有线性特点; 2.试对 x 与 Y 进行一元线性回归分析,列出一元线性回归预测模型; 3.预测当母亲身高为 161cm 时女儿的身高?
第 2 页 共 7 页
四、实验结果(包括程序或图表(截图) 、 自变量与因变量有线性特点, 即母亲身高和女儿身高有线性特点, 且大致呈正相关的关系。
SPSS相关性和回归分析一元线性方程案例解析

其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧)结果为0.000,由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。
既然具备相关性,那么我们将进一步做分析,建立回归分析,并且构建“一元线性方程”,如下所示:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方程)案例解析
SPSS相关性分析

相关分析的作用
判断变量之间有无联系 确定相关关系的表现形式及相关分析方法 把握相关关系的方向与密切程度 为进一步采取其他统计方法进行分析提供依据 用来进行预测
相关分析和回归分析区别
相关分析:如果仅仅研究变量之间的相互关系 的密切程度和变化趋势,并用适当的统计指标 描述。 回归分析:如果要把变量间相互关系用函数表 达出来,用一个或多个变量的取值来估计另一 个变量的取值。
2 Cn
2 (U V ) n(n 1)
偏相关分析
概念:当有多个变量存在时,为了研究任何两 个变量之间的关系,而使与这两个变量有联系 的其它变量都保持不变。即控制了其它一个或 多个变量的影响下,计算两个变量的相关性。 偏相关系数:偏相关系数是用来衡量任何两个 变量之间的关系的大小。 自由度:在统计学中,自由度指的是计算某一 统计量时,取值不受限制的变量个数。通常 df=n-k。其中n为样本含量,k为被限制的条 件数或变量个数,或计算某一统计量时用到其 它独立统计量的个数。
线性相关和非线性相关
统计关系还可以分为: (1)线性相关:当一个变量的值发生变化时, 另外的一个变量也发生大致相同的变化。在直 角坐标系中,如现象观察值的分布大致在一条 直线上,则现象之间的相关关系为线性相关或 直线相关(Linear correlation)。 (2)非线性相关:如果一个变量发生变动,另 外的变量也随之变动,但是,其观察值分布近 似的在一条曲线上,则变量之间的相关关系为 非线性相关或曲线相关(Curvilinear correlation)
回归方程统计检验
回归方程的拟合优度:回归直线与各观测点的接近程度称 为回归方程的拟合优度,也就是样本观测值聚集在回归线 周围的紧密程度 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关分析和一元线性回归分析S P S S报告
Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
用下面的数据做相关分析和一元线性回归分析:
选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。
一、相关分析
1.作散点图
普通高等学校毕业生数和高等学校发表科技论文数量的相关图
从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。
2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数
把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:
Correlations
普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)
普通高等学校毕业生数(万人) Pearson Correlation 1 .998**
Sig. (2-tailed) .000
N 14 14
高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000
N 14 14
**. Correlation is significant at the level (2-tailed).
两相关变量的Pearson相关系数=,表示呈高度正相关;相关系数检验对应的概率P值=,小于显着性水平,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显着。
3.求两变量之间的相关性
选择相关系数中的全部,点击确定:
Correlations
(万人) (篇)
Kendall's tau_b (万人) Correlation Coefficient **
Sig. (2-tailed) . .
N 14 14
(篇) Correlation Coefficient **
Sig. (2-tailed) . .
N 14 14
Spearman's rho (万人) Correlation Coefficient **
Sig. (2-tailed) . .
N 14 14
(篇) Correlation Coefficient **
Sig. (2-tailed) . .
N 14 14
**. Correlation is significant at the level (2-tailed).
注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显着。
两相关变量(毕业生数和发表论文数)的Spearman相关系数=,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显着。
4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数
将所求变量移至变量,将控制变量移至控制中,选中显示实际显着性水平,点击确定:
Correlations
普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)
普通高等学校毕业生数(万人) Pearson Correlation 1 .998**
Sig. (2-tailed) .000
N 14 14 高等学校发表科技论文数量Pearson Correlation .998** 1
注解: 两相关变量(普通高校毕业生数和发表论文数)的偏相关系数=,呈正相关;对应的偏相关系数双侧检验p值0,小于显着性水平,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显着。
二、一元线性回归
从前面的相关分析可以看出普通高等学校毕业生数和高等学校发表科技论文数量呈高度正相关关系,所以,下面对这两个变量做一元线性回归分析。
1.建立回归方程
点击选项,选中使用F的概率,如上图所示。
点击继续,确定:
Variables Entered/Removed b
Model Variables
Entered
Variables
Removed Method
1 (篇)a. Enter
a. All requested variables entered.
b. Dependent Variable: (万人)
此图显示的是回归分析方法引入变量的方式。
此图是回归方程的拟合优度检验。
注解:上图是回归方程的拟合优度检验。
第二列:两变量(被解释变量和解释变量)的相关系数R=.
第三列:被解释变量(毕业人数)和解释变量(发表科技论文数)的判定系数R 2=是一元线性回归方程拟合优度检验的统计量;判定系数越接近1,说明回归方程对样本数据的拟合优度越高,被解释变量可以被模型解释的部分越多。
第四列:被解释变量(毕业人数)和解释变量(发表科技论文数)的调整判定系数R 2=。
这主要适用于多个解释变量的时候。
第五列:回归方程的估计标准误差=.
注解:回归方程的整体显着性检验—回归分析的方差分析
第二列:被解释变量(毕业人数)的总离差平方和=
,被分解为两部分:回归平方和=;剩余平方和=.
F 检验统计量的值=,对应概率的P 值=,小于显着性水平,应拒绝回归方程显着性检验的原假设(回归系数与0不存在显着性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显着的,可以建立线性模型。
注解:回归方程的回归系数和常数项的估计值,以及回归系数的显着性检验。
第二列:常数项估计值=;回归系数估计值=.
第三列:回归系数的标准误差=
第四列:标准化回归系数=.
第五、六列:回归系数T检验的t统计量值=,对应的概率P值=,小于显着性水平,拒绝原假设(回归系数与0不存在显着性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显着的。
于是,回归方程为:
y i=+
2.回归方程的进一步分析
(1)在统计量中选中误差条图的表征,水平百分之95.
点击继续,然后点击确定,输出每个非标准化回归系数的95%置信区间:
选中统计量中的描述性,点击继续,然后确定,输出变量的均值、标准差相关系数矩阵和单侧检验概率值:
Descriptive Statistics
Mean
Std.
Deviation N
(万人) 14
(篇) 14
Correlations
(万人) (篇)
Pearson Correlation (万人) .998
(篇) .998
Sig. (1-tailed) (万人) . .000
(篇) .000 .
N (万人) 14 14
(篇) 14 14
(2)残差分析
选中统计量中的个案诊断,所有个案,点击继续,然后确定:
从上表可以看出,第8例的残差和标准化残差最大。