钛的腐蚀(参考复制组合版)

钛的腐蚀(参考复制组合版)
钛的腐蚀(参考复制组合版)

钛的腐蚀

钛的介绍

金属钛是一种很有潜力的金属,由于它特有的性质和特点,因此,在未来的国民经济发展中将起着不可替代的作用。

地球表面十公里厚的地层中,含钛达千分之六,比铜多61倍,在地壳中的含量排第十位(地壳中元素排行:氧、硅、铝、铁、钙、钠、钾、镁、氢、钛)。随便从地下抓起一把泥土,其中都含有千分之几的钛,世界上储量超过一千万吨的钛矿并不稀罕。钛的硬度与钢铁差不多,而它的重量几乎只有同体积的钢铁的一半,钛虽然稍稍比铝重一点,它的硬度却比铝大2倍。钛的导热性和导电性能较差,近似或略低于不锈钢,钛具有超导性,纯钛的超导临界温度为0.38-0.4K。钛具有可塑性,高纯钛的延伸率可达50-60%,断面收缩率可达70-80%,但强度低,不宜作结构材料。钛中杂质的存在,对其机械性能影响极大,特别是间隙杂质(氧、氮、碳)可大大提高钛的强度,显著降低其塑性。钛作为结构材料所具有的良好机械性能,就是通过严格控制其中适当的杂质含量和添加合金元素而达到的。现在,在宇宙火箭和导弹中,就大量用钛代替钢铁。据统计,目前世界上每年用于宇宙航行的钛,已达一千吨以上。极细的钛粉,还是火箭的好燃料,所以钛被誉为宇宙金属,空间金属。

但是钛很活泼,加热时能与O2、N2、H2、S和卤素等非金属作用。液态钛几乎能溶解所有的金属,因此可以和多种金属形成合金。钛加入钢中制得的钛钢坚韧而富有弹性。钛与金属Al、Sb、Be、Cr、Fe等生成填隙式化合物或金属间化合物。因此,钛的最大缺点是难于提炼,要提炼出纯钛需要十分苛刻的条件,由于钛在高温下化合能力极强,因此,不论在冶炼或者铸造的时候,人们都小心地防止这些元素“侵袭”钛。在冶炼钛的时候,空气与水当然是严格禁止接近的,甚至连冶金上常用的氧化铝坩埚也禁止使用,因为钛会从氧化铝里夺取氧。现在,人们利用镁与四氯化钛在惰性气体——氦气或氩气中相作用,来提炼钛。这样,制备出纯钛的成本将会很高。

因此,综合考虑,钛主要用于对称本要求不高的场合。例如,航天、航空、

航海、深海探测等。

钛的常温腐蚀

钛是一种非常活泼的金属,因此其平衡电位很低,在介质中的热力学腐蚀倾向大。但实际上钛在许多介质中很稳定,如钛在氧化性、中性和弱还原性等介质中是耐腐蚀的。这是因为钛和氧有很大的亲和力,在空气中或含氧的介质中,钛表面生成一层致密的、附着力强、惰性大的氧化膜,保护了钛基体不被腐蚀。即使由于机械磨损也会很快自愈或重新再生。这表明了钛是具有强烈钝化倾向的金属。因此,在有氧的环境下,钛具有很强的耐腐蚀性。

1.酸的腐蚀

(a)盐酸:常温下,浓度<5%的盐酸在室温下不与钛反应,20%的盐酸在常温下与钛发生反应。当温度长高时,稀盐酸也会腐蚀钛。钛虽然不耐盐酸溶液的腐蚀,但也可通过合金化,阳极钝化和添加缓蚀剂等方法来提高钛材的耐腐蚀能力。所以在生产实践中,钛材仍有使用价值。(b)硫酸:在常温下,钛对低温低浓度的硫酸溶液有一定的耐腐蚀,在约40%的硫酸对钛的腐蚀速度最快,当浓度大于40%,达到60%时腐蚀速度反而变慢,80%又达到最快。加热的稀酸或50%的浓硫酸可与钛反应生成硫酸钛。钛在硫酸中的耐腐蚀性可通过向溶液中通入空气、氮气或添加氧化剂、高价重金属离子来改善,因此,钛在硫酸中无太大的实用价值。(c)硝酸和王水:致密的表面光滑的钛对硝酸具有很好的稳定性,这是由于硝酸能快速在钛表面生成一层牢固的氧化膜,但是表面粗糙,特别是海绵钛或粉末钛,可与次、热稀硝酸发生反应,而且,温度升高时,两者都会与之反应。

2. 海水对钛的腐蚀

钛在海水中,很稳定,不容易被海水腐蚀,是由于钛表面的一层致密的氧化膜,抵挡住氯离子对钛基体的侵蚀。经过试验,钛在不同深度的海水中暴露多年均未测得明显腐蚀。即使钛表面有沉积物,也不发生缝隙腐蚀和点蚀。海水中存在硫化物也不影响钛的腐蚀性。在海洋大气,飞溅区和潮差区,钛都不存在腐蚀问题。钛也能抗高速海水的冲蚀。海水中悬浮摩擦性颗粒对于

铜或铝合金十分有害,但对于钛影响不大。钛也已被公认为海水中最佳抗空泡腐蚀的金属材料之一。由于钛对于海洋生物没有毒性,海生物在钛表面附着比较普遍。海生物下面的钛没有发生缝隙腐蚀和点蚀,表面仍保持抗腐蚀氧化膜的完整性。钛在海水中几乎不发生孔蚀和缝隙腐蚀,因此钛是海水中使用最合适的材料。正由于这种良好的性质,钛被用于制造螺桨轴、索具及用于海水淡化厂的换热器;还被用于咸水水族馆的冷热水器、钓鱼线及潜水用刀。钛被用于制造海洋监视部署的住房及其他元件,及用于以及科学用或军用的监察仪。前苏联研发出主要用钛制造潜艇的技术。但温度上升到90摄氏度时,钛在海水中就变得不再稳定,开始发生腐蚀现象。

钛在高温下的腐蚀

钛的高温耐腐蚀性,取决于所处介质的特性和自身表面氧化膜的性能。钛在空气或氧化性气氛中,作结构材料能使用到426 ℃,但在250 ℃左右时,钛开始明显地吸氢,在完全的氢气气氛中,当温度升高到316 ℃以上时,钛吸氢变脆。因此,在没有经过广泛试验的情况下,钛不宜作温度高于330 ℃以上的化工设备使用,从吸氢及机械性能等考虑,全钛压力容器其使用温度不得超过250 ℃,热交换器用钛管使用温度上限约为316 ℃。在500-800℃之间,通过实验证明,钛的腐蚀速度与温度成正比。经过研究,钛随温度升高,表面的氧化膜完整性降低。

钛的局部腐蚀特性

1. 缝隙腐蚀

钛的耐缝隙腐蚀性能特别强,只有在少数的化工介质中发生缝隙腐蚀。钛的缝隙腐蚀与温度、氯化物浓度、pH 值以及缝隙的尺寸有密切的关系。据有关资料介绍,湿氯气的温度在85 ℃以上时易产生缝隙腐蚀。例如某些厂在冷却器前先用一个填料塔直接冷却使湿氯气温度降至65~70 ℃后,再进入钛制冷却器,以提高抗缝隙腐蚀,效果也很显著。实践证明: 降低温度是防止缝隙腐蚀行之有效的方法。总的说来,狭窄的间隙发生缝隙腐蚀可能性要比宽间隙大得多,在某一宽缝时,钛的缝隙腐蚀达到极值。当缝隙很小时,

由于腐蚀介质不能润湿缝隙内表面,即使是浸润了内表面,其流动受到限制,钛的氧化膜仍未遭到破坏;如果缝隙较大,氧的扩散相当迅速,足以使钛钝化。因此当缝隙很小或较大时,都不会导致缝隙腐蚀的发生。

2.应力腐蚀

除个别的几种介质外,工业纯钛耐应力腐蚀极好,受应力腐蚀导致钛设备损坏的现象还是罕见的。工业钝钛只有在发烟硝酸,某些甲醇溶液或某些盐酸溶液,高温次氯酸盐,温度为300~450 ℃的熔盐或含NaCl气氛,二硫化碳,正己烷及干氯气等介质中才产生应力腐蚀。

在浓硝酸中含有高于6.0% NO2和低于0.7% H2O 时,既使在室温的情况下,工业纯钛也会发生应力腐蚀破裂。我国在98%浓硝酸中使用钛设备时曾发生过严重的应力腐蚀和爆炸。钛虽然在某些特殊介质中有应力腐蚀破坏现象,但与其他金属相比,钛对应力腐蚀破裂的抵抗力还是良好的。钛在发生应力腐蚀时,随着表面钝化,会产生很大的拉应力,从而在较低的外应力下位错开始运动。当腐蚀促进的局部塑性变形发展到临界状态,位错塞积群前端的应力集中等于原子键合力,导致微裂纹形核!裂纹形核后,因其尖端基体的费米能级高于裂纹其他区域,裂纹尖端处的电极电位较低,在腐蚀介质的作用下,裂纹尖端金属发生阳极分解。一方面氢使裂纹的表面能降低,在外力作用下,为了与外力平衡断面将会扩大。另一方面氢使裂纹尖端处与裂纹其他区域的费米能级之差加大,增大腐蚀电位差,促进应力腐蚀的发展。

3.氢脆腐蚀

钛是一种活性金属,它与氢反应不仅在表面而且扩散到钛内部,当钛中的氢浓度达到能形成独立的氢化钛相时,钛将会脆化。氢可能在钛材使用之前就存在于金属内,也可能在氢气或含氢介质中使用而吸收了氢。因此,在实际使用钛制设备的过程中,应特别注意氢脆,以免设备遭受破坏。

一般来说,钛中的氢分为内氢和外氢两种。内氢是指钛在冶炼,热加工,热处理,酸洗,电镀等过程中引入的氢;而钛原来不含氢或者含氢很少,但在使用时由于从外界环境中引入的氢叫外氢,具体的说是通过以下几种途径在金属表面产生活性氢原子,然后进入金属中。(1) 钛制设备所处的介质中含有

分子氢,例如高温氢气氛。(2)钛发生全面腐蚀或者局部腐蚀产生的氢被钛吸收。例如钛的缝隙腐蚀常伴随着吸氢。(3) 钛与负电性金属发生电偶腐蚀或阴极保护过保护时产生的氢。后两种由电化学腐蚀阴极引起的钛氢脆更频繁,而且不需要高温高压就可以发生,更应引起重视。

钛材的氢脆受许多因素影响,其主要的影响因素有氢含量,应变率、应力、应力集中程度,介质温度和环境等等。当钛表面被金属铁污染时,会增大钛的吸氢量。因为铁可以和钛基体形成腐蚀微电池,在腐蚀反应中产生初生态氢,增加了氢进入的活性点和活性通道,使氢的侵入更为容易,而且破坏的膜也不容易修复。温度对钛吸氢的影响主要体现在提高钛与氢的反应速度和氢在其中的扩散速度。低温下,氢在钛中的扩散速度很小。但在较高温度下(大于80 ℃) ,吸氢会变得明显。大于300 ℃,钛与氢反应速度急剧加快,生成大量氢化物而使钛发生明显的氢脆。在氢气氛中温度超过316 ℃,一般不推荐使用钛制设备。根据以上影响因素可采取降低钛材中的含氢量,增大钛材的氢固溶度,减少钛材的表面污染,降低钛材中的铁含量,消除残余应力等方法,减少氢脆腐蚀的发生。

4.点腐蚀

点腐蚀的产生,取决于能发生点腐蚀部件的氧化膜的破坏程度,这种腐蚀在有缝隙的部位易产生。钛材料表面的钝化膜局部被破坏后不能自钝化,引起表面电化学不均匀性,导致腐蚀在一些部位深入发展,形成点状的局部腐蚀。如在氯化锌溶液中使用钛制交换器时,在与铁接触的部位易产生点腐蚀;在氯化钠溶液中,钛制热交换器也有轻微的点腐蚀;聚四氟塑料垫圈与钛部件构成缝隙的部位,是最容易产生点腐蚀的场所;钛在氯化钙及氯化铝溶液中也有点腐蚀现象,但是腐蚀发生在一定的浓度和温度范围内,此外,因不恰当的热处理,热加工成型及焊接出现变色的部位和铁等污染部位也常产生点腐蚀现象。高温中等浓度的氯化物溶液是使钛材料产生点蚀的主要介质,如100℃,25%浓度氯化铝溶液、175 ℃,75%浓度氯化钙溶液、103rC,40%浓度氯化铵溶液等,都发生过因点腐蚀而使设备破坏的事例。一般温度低于80℃,不易发生点腐蚀。铁、铜等金属污染钛材料的表面,增加点腐蚀倾向。防止措施是采用含氧量高的纯钛,钛制设备投入使用前应进行酸洗,大气热

氧化等处理。

5.电偶腐蚀

在电解质中,钛和其他金属接触组成电偶,则低惰性或正极的金属发生腐蚀。由于钛的钝化膜存在,保证了钛在电偶中成为阴极不发生腐蚀。钛作为阴极时,阳极金属的表面积越小,其电流密度越大,腐蚀越显著。但是在盐酸或硫酸中,钛和铝组成电偶耐,由于铝的腐蚀改变了钛电势,导致了钛的迅速腐蚀。

总结

在不同的环境下、不同的条件下,钛的腐蚀过程和结果也是不同的,因此,要想发挥钛的最佳性能,就要控制好钛的使用条件。

钛的性质

钛的理化性质(高中化学必修一P53) 一、物理性质 钛的密度为4.506-4.516克/立方厘米(20℃),熔点1668±4℃,熔化潜热3.7-5.0千卡/克原子,沸点3260±20℃,汽化潜热102.5-112.5千卡/克原子,临界温度4350℃,临界压力1130大气压。钛的导热性和导电性能较差,近似或略低于不锈钢,钛具有超导性,纯钛的超导临界温度为0.38-0.4K。在25℃时,钛的热容为0.126卡/克原子·度,热焓1149卡/克原子,熵为7.33卡/克原子·度,金属钛是顺磁性物质,导磁率为1.00004。 钛具有可塑性,高纯钛的延伸率可达50-60%,断面收缩率可达70-80%,但强度低,不宜作结构材料。钛中杂质的存在,对其机械性能影响极大,特别是间隙杂质(氧、氮、碳)可大大提高钛的强度,显著降低其塑性。钛作为结构材料所具有的良好机械性能,就是通过严格控制其中适当的杂质含量和添加合金元素而达到的。 二、化学性质 钛在较高的温度下,可与许多元素和化合物发生反应。各种元素,按其与钛发生不同反应可分为四类: 第一类:卤素和氧族元素与钛生成共价键与离子键化合物; 第二类:过渡元素、氢、铍、硼族、碳族和氮族元素与钛生成金属间化物和有限固溶体; 第三类:锆、铪、钒族、铬族、钪元素与钛生成无限固溶体; 第四类:惰性气体、碱金属、碱土金属、稀土元素(除钪外),锕、钍等不与钛发生反应或基本上不发生反应。

三、与一些化合物的反应 ◇HF和氟化物 氟化氢气体在加热时与钛发生反应生成TiF4,反应式为(1);不含水的氟化氢液体可在钛表面上生成一层致密的四氟化钛膜,可防止HF浸入钛的内部。氢氟酸是钛的最强溶剂。即使是浓度为1%的氢氟酸,也能与钛发生激烈反应,见式(2);无水的氟化物及其水溶液在低温下不与钛发生反应,仅在高温下熔融的氟化物与钛发生显著反应。 Ti+4HF=TiF4+2H2+135.0千卡(1) 2Ti+6HF=2TiF3+3H2(2) ◇HCl和氯化物 氯化氢气体能腐蚀金属钛,干燥的氯化氢在>300℃时与钛反应生成TiCl4,见式(3);浓度<5%的盐酸在室温下不与钛反应,20%的盐酸在常温下与钛发生瓜在生成紫色的TiCl3,见式(4);当温度长高时,即使稀盐酸也会腐蚀钛。各种无水的氯化物,如镁、锰、铁、镍、铜、锌、汞、锡、钙、钠、钡和NH4离子及其水溶液,都不与钛发生反应,钛在这些氯化物中具有很好的稳定性。 Ti+4HCl=TiCl4+2H2+94.75千卡(3) 2Ti+6HCl=TiCl3+3H2 (4) ◇硫酸和硫化氢 钛与5%的硫酸与钛有明显的反应,在常温下,约40%的硫酸对钛的腐蚀速度最快,当浓度大于40%,达到60%时腐蚀速度反而变慢,80%又达到最快。加热的稀酸或50%的浓硫酸可与钛反应生成硫酸钛,见式(5),(6),加热的浓硫酸可被钛还原,生成SO2,见式(7)。常温下钛与硫化氢反应,在其表面

钛合金阳极氧化

钛合金阳极氧化 钛是地壳中储量较丰富的元素之一,它在地壳中的丰度约为0.64%,在结构金属中仅次于铝、镁和铁居第四位,1791 年英国矿物爱好者W.Gregoy 在黑色磁铁矿中发现了化学元素Ti,在分析这种钛铁矿时把它称为Menachanite;1795 年,德国化学家Klaproth 在分析匈牙利Boinik 出产的一种红金石时,发现一种新的金属,称其为titanium。钛及钛合金在工程上应用较晚,直到1952 年才正式作为结构材料使用,这主要是因为钛和氧、氮、氢和碳等元素有很强的亲和力,并易产生化学作用,致使钛及其合金的生产成本较高的缘故。近年来钛及钛合金因其具有优良的机械性能在现代工业中得到了广泛应用。 钛合金作为工程结构材料,与其它金属相比,钛合金具有密度小,相当于铁的57%;比强度高,如Ti-6A1-4V 钛合金的比强度为21.7,而LY12 铝合金为16.7;高耐酸性,纯钛在硝酸以及在常温5 %以下的硫酸、盐酸、磷酸中有较好的耐腐蚀性,在海水中几乎不被腐蚀;同时钛合金拥有优良的高、低温力学性能,TC11钛合金能在600 ℃的高温下长期稳定工作,在-200 ℃低温下仍能保持很好的塑性;另外,钛合金还具有无磁、良好的弹性、形状记忆、吸氢、超导、低阻尼、高抗冲击强度、耐压、抗震、与复合材料有良好的相容性等性能。 钛及其合金作为21 世纪最重要的工程金属,以其优异的性能而被广泛用于航空航天、舰船、汽车、医疗、化工等行业。但钛合金不耐磨,与其它金属易产生接触腐蚀等问题限制了其应用范围。因此适当的表面处理以增强钛合金的耐蚀性、耐磨性及装饰性具有重要的现实意义。传统的钛合金表面处理技术有许多不足之处,例如,工艺复杂、成本高、电解液对环境不友好等。 钛合金的特性 (1)钛合会的最主要性能之一是密度小,比强度高。钛的密度为4.5 g/cm 3,在常用金属中只有铝的密度为2.7 g/cm’比它轻,但铝合金的强度较低,而低碳锏7.86 g/ca。、不锈钢8 0 g/cm、铜8 9 g/cm,都比钛要高。由于钛合金的高比强度,用钛合金代替钢和铝合金降低机体结构重量是相当可观的,同时它是缩小结构体积的优选材料,在相同空间尺寸条件下,使它能够代替那些因空间受限的铝合金及钢构件,这对于提高飞机结构寿命及性能具有重要意义。 (2)钛及其合金另一个突出的性能是其优良的抗蚀性。金属的抗腐蚀性能与金属的固有性质有关,各种金属的热力学稳定性,可以根据它们的标准平衡电位来大致评定,一般来说,标准平衡电位越高(即越正)、标志该金属热力学稳定性越高,金属离子化倾向越小,越不易受到腐蚀;反之同理。虽然钛是一种化学性质比较活泼的余属,其标准平衡电位较低(负),在介质中的热力学腐蚀倾向大,但实际上钛在许多介质中是很稳定的,这是因为它的钝化倾向很强,与氧有很大的亲和力,在空气中或含氧的介质中氧化,钛表面生成一层具有很好的耐腐蚀性能的氧化膜,阻隔了钛及其合金基体进一步氧化腐蚀,这就决定了钛及其合金具有很好的化学腐蚀抗力。同时,由于钛及其合金表面形成了这一层具有良好防护性能并且电阻率较高的表面膜,钛合金的电化学腐蚀抗力实际上也表现为该表面膜的电化学腐蚀抗力,因此,钛及其钛合金具有优异的电化学腐蚀抗力。 (3)钛合金与复合材料有很好的相溶性。出于复合材料具有高比强度、高比刚度、耐疲劳胜能好、工艺性好等优点,随着先进复合材料设计及工艺技术的日趋成熟,和钛合会一样,先进复合材料尤其是碳纤维环氧复合材料(GECM)的应用F1益增长,已用于多种飞机的垂尾、方向舵、机翼等重要结构。由于碳纤维独特的电化学性能,其电极电位较正,与偶接金属材料电连接后,在腐蚀介质中会导致电极电位较负的金属腐蚀速率加快。

生物医用钛合金材料及应用

生物医用钛合金材料及应用 摘要:随着生物技术的蓬勃发展和重大突破,生物医用钛合金的 需求量快速增长。不过,已被广泛应用的TC4及TC4ELI等医用钛合金 中因为V和Al元素存有的致病性,所以新型医用钛合金的研发在我国 具有重大的现实意义和广阔的市场前景。本文简述生物医用钛合金分类,基本性能和应用基础;指出了其在医用领域的发展趋势;并综述 了新型β钛合金的基本加工制备方法和性能评价方法。 关键词:医用钛合金;开发;研究进展;加工制 生物医用钛合金材料是专指用于生物医学工程的一类功能结构材料,具体指是用于外科植入物和矫形器械产品的生产和制造1。钛合金加工材的生产制备涉及冶金,压力加工,复合材料和化工等领域,是 世界上公认的高技术产品。钛及钛合金开始由航天、航空、国防军工 领域逐渐进入到民用消费领域2。诸如医疗卫生行业中的植入物,医疗器械;体育休闲业的钛高尔夫球杆以及钛眼镜架、钛手表、钛自行车 等产品,对钛加工材的需求量在持续增大。随着生物技术的蓬勃发展 和重大突破,生物医用金属材料及其制品产业将发展成为世界经济的 一个支柱产业3。其中,钛及其合金凭借着质轻,弹性模量低,无毒无磁,抗腐蚀,强度高、韧性好等优良的综合性能,于近年来的需求量 也出现了快速稳步的增长4。同时,随着钛合金开始进入整形外科等领域,新的潜在市场需求出现,未来钛合金市场将会出现更快速的增长。

1医用钛合金的研究进展 1.1医用钛合金的分类 钛合金按材料显微组织类型可分为:α型,α+β型和β型钛合金3类。 1.2医用钛合金的发展趋势 经文献调研8-14发现,国内外的相关研究学者一致认为医用钛合金的发展经历了三个标志性的阶段,第一阶段是以纯钛和Ti-6Al-4V 合金为代表的;第二阶段是以Ti-5A1-2.5Fe、Ti-6A1-7Nb为代表的新型α+β型合金;第三阶段是主要开发与研制具有更好生物相容性和更低弹性模量β-钛合金的阶段。理想的生物医用钛合金材料15必须满足有以下条件:良好的生物相容性、弹性模量低、密度低、防腐性能好、无毒、屈服强度高、疲劳寿命长、室温下有较大的塑性、易成形、易铸造等。而当前一直广泛应用于植入物材料的重要合金为Ti-6A1-4V和Ti-6A1-4VELI。有文献报道16-19V元素可引起恶性组织反应,可能对人体产生毒副作用,Al则会引起骨质疏松和精神紊乱等病

腐蚀数据与选材手册

内容有效性 本书是根据腐蚀数据手册的前一版进行修订和改编的。该书补充了许多工业环境和媒体中材料选择的内容,并补充了原书中的数据。该书收集了大约一百万个数据,一百多种材料,1500多种媒体和大约18种工业环境。这是一本具有完整数据和强大实用性的必要参考书。本书的第一章简要介绍了腐蚀的基本概念。第二部分介绍了正确选择材料和设计的原理以及设计工作中应注意的事项。结合原理并列举了许多示例,它也引入了一些材料选择方面的错误。在接下来的十章中,从介质和工业环境的角度介绍了各种材料的耐腐蚀性,重点是硫酸和硫酸行业,硝酸和硝酸行业,盐酸和盐酸行业,氢氟酸和氢氟酸。酸工业,磷酸和磷酸工业,乙酸和乙酸工业,脂肪酸和脂肪酸工业,氯和氯碱工业,氯化钠和盐工业腐蚀数据和重要腐蚀介质(如氢氧化钠,氨水)的材料选择(氢氧化铵)硫,电子工业,罐车工业,航空航天工业,高温腐蚀环境以及工业环境中的各种材料。解释了在不同环境中使用各种材料以及它们的优缺点的比较。在第三部分中,以表格的形式列出了材料在不同介质中的耐腐蚀性。本文收集了一百多种材料,例如金

属和合金,塑料,橡胶,木材,陶瓷,玻璃,混凝土,碳和石墨,涂料,涂料,涂料,乳香,碱,盐,气体,液态金属,其他机械,有机物,石油产品,轻工业产品,食品和植物油,大气,土壤,水和海水以及在不同温度下的腐蚀数据。在第四附录中,介绍了产生应力腐蚀开裂的材料的物理和机械性能以及材料和环境的组合。本书适用于从事化学,石油,石化,轻工,食品,纺织,冶金,建筑,机械,能源,交通,电子,国防,石油,化工,石油和天然气等领域的科研和设计人员,从事腐蚀和防护的工程技术人员,航空航天等行业。高校相关专业的师生也可以参考。 符号说明 腐蚀的基本概念 第一章简介1 1,腐蚀的定义1 二,腐蚀危害1 1.经济损失

钛的好处以及性能

钛对人体有哪些好处? 1.增强人体免疫功能; 2.调节血压、血脂、血糖等生理功能; 3.广泛治疗癌肿的作用; 4.具有抗致癌因子的作用; 5.具有防治多种疾病和健身的功能; 6.具有明显的抗衰老功效; 7.具有增白美容的功效。 钛对人体到底有哪些好处? 钛是一种具有坚硬、不生锈特性的安全、低变应原的金属。在医药和体育运动领域中被广泛使用。这种轻金属具有通过细胞电离调节身体天然电流的能力。钛具有特殊的电流特性,对人体会产生有益的生理作用且其化学性稳定,不会发生经时性的变化或变质,有益人体身心健康。因此使用钛制品可以达到精神松弛、肌肉放松、运动机能提高的效果。体温上升,热量增加会使肌肉放松,并且刺激血液流动,增加的血液流动帮助您的身体更好地清除血流中由疼痛产生的作用物和疲劳因子。有效地控制身体内的电流紊乱。疼痛与不适的消除立即见效。对粘液囊炎,坐骨神经痛、头痛这些类型的关节炎和经前综合症的短暂痛疼缓解具有明显作用。通过调节身体电流来缓解肌肉的痛疼与僵硬,改善血液循环。由于这些原因,本产品受到马拉松选手和许多日本运动员的喜爱。专业的运动数字反映较好的运动流速,更快的反射时间,以及运动成绩的提高。 钛有什么特点? 由于金属钛呈银白色,具有熔点高(1727℃)、比重轻(4.5)、机械强度高(5)、耐低温(超低温下电阻率几乎为0)、耐磨蚀、线钛塑性良好(能薄壁化使用)、不易氧化、还原性强等特点;钛的氧化物—

—二氧化钛(钛白),具有无毒、良好的物理化学稳定性(1000℃煅烧后不熔于任何酸和碱)、折射指数高(2.55~2.70),以及很强的白度、着色力(1150~1650)、遮盖力(40~50g/m2)、耐温性、抗粉化等特征,被称为“颜料之王”。 钛金属有什么特点? 强度高,重量轻,属于高档金属,主要用于航空器配件制造。要用简单方法鉴别,这个比较难,没有仪器和设备手段,要准确鉴别是无法办到的。 钛合金的性能是什么? 比强度高、热强度高、抗蚀性好、低温性能好、化学活性大、导热系数小、弹性模量小 钛合金的性能怎么样 钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件 钛与其它金属比较具有什么特点? 钛的强度大,纯钛抗拉强度最高可达180kg/mm2。有些钢的强度高

医用钛合金腐蚀_力学相容性和生物相容性研究现状_图文(精)

第 25卷第 2期 V ol.25 No.2 2008年 4月 April 2008 收稿日期:2007-09-23 基金项目:国家自然科学基金资助项目(50571017 作者简介:王明 (1982- , 男, 硕士, 主要从事新型医用钛合金的研发工作。通讯联系人:宋西平, E-mail: xpsong@https://www.360docs.net/doc/068796514.html,。 医用钛合金腐蚀、力学相容性和生物相容性研究现状 王明,宋西平 (北京科技大学新金属材料国家重点实验室,北京 100083 摘要:医用钛合金日益受到重视,被应用于牙齿、骨骼等领域。但对医用钛合金总体性能的评价以及生物相容性概念的定义等问题目前观点不一,研究方向也各不相同,且多数研究仅仅涉及腐蚀、力学相容性和生物相容性等某一方面,缺乏综合考虑。本文从腐蚀、力学相容性和生物相容性 3个方面总结了医用钛合金的研究现状,并指出了研究过程存在的问题和以后的发展方向。关键词:医用钛合金;腐蚀;力学相容性;生物相容性 1 前言 金属材料是人类最早使用的生物医用材料之一,甚至可以追溯到公元前 400~公元前 300年, 腓尼基人用金属丝修复牙缺损 [1]。 1546年纯金薄片被用于修复缺损颅骨, 1775年 Icart 等报道了用铁丝固定断骨, 1829年 Levert 等进行动物体内植入 试验,检验了多种金属材料与人体组织的相容性,得出铂丝对组织的刺激性最小的结论。后来也有许多关于金属材料在医学上应用的例子,然而直到 19世纪末, 人们才开始对金属医用材料进行系统研究。 1926年,不锈钢(18Cr-18Ni 用于外科,替代了 较易腐蚀的钢。 1943年,美国又推荐 302型不锈钢用于骨折固定。 1950年,将不锈钢含碳量最大限度的降低至 0.08%~0.03%, 从而研制出具有较好耐蚀性的 316L 不锈钢。由于医用不锈钢的生物相容性较差,后来又开发了钴基合金,主要用来制造人

钛合金表面处理

钛合金表面处理 引言 钛在高温下易于与空气中的O、H、N等元素及包埋料中的Si、Al、Mg等元素发生反应,在铸件表面形成表面污染层,使其优良的理化性能变差,硬度增加、塑性、弹性降低,脆性增加。 钛的密度小,故钛液流动时惯性小,熔钛流动性差致使铸流率低。铸造温度与铸型温差(300℃)较大,冷却快,铸造在保护性气氛中进行,钛铸件表面和内部难免有气孔等缺陷出现,对铸件的质量影响很大。 因此,钛铸件的表面处理与其它牙用合金相比显得更为重要,由于钛的独特的理化性能,如导热系数小、表面硬度、及弹性模量低,粘性大,电导率低、易氧化等,这对钛的表面处理带来了很大的难度,采用常规的表面处理方法很难达到理想的效果。必须采用特殊的加工方法和操作手段。 铸件的后期表面处理不仅是为了得到平滑光亮的表面,减少食物及菌斑等的积聚和粘附,维持患者的正常的口腔微生态的平衡,同时也增加了义齿的美感;更重要的是通过这些表面处理和改性过程,改善铸件的表面性状和适合性,提高义齿的耐磨、耐蚀和抗应力疲劳等理化特性。 一、表面反应层的去除 表面反应层是影响钛铸件理化性能的主要因素,在钛铸件研磨抛光前,必须达到完全去除表面污染层,才能达到满意的抛光效果。通过喷砂后酸洗的方法可完全去除钛的表面反应层。 1. 喷砂:钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在0.45Mpa以下。因为,喷射压力过大时, 砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。 2. 酸洗:酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但 HF—HCl系酸洗液吸氢量较大,而HF—HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5 %左右,HNO3的浓度在15%~30%左右为宜。 二、铸造缺陷的处理 内部气孔和缩孔内部缺陷:可等热静压技术(hot isostatic pressing)去

钛合金的特性及其应用

钛合金的特性及其应用,材料工程学论文,工学论文 [摘要]综述了钛合金材料的应用及研究现状,着重介绍了钛及钛合金的主要特性,加工性能及其在航空航天、军事工业和汽车制造方面的应用,并在此基础上展望了钛合金的发展方向。 [关键词]钛合金特性加工性能应用领域 Ti在地壳中的丰度为0.56%(质量分数,下同),在所有按元素中居第9位,而在可作为结构材料的金属中居第4位,仅次于Al、Fe、Mg,其储量比常见金属Cu,Pb,Zn储量的总和还多。我国钛资源丰富,储量为世界第一。钛合金的密度小,比强度、比刚度高,抗腐蚀性能、高温力学性能、抗疲劳和蠕变性能都很好,具有优良的综合性能,是一种新型的、很有发展潜力和应用前景的结构材料。近年来,世界钛工业和钛材加工技术得到了飞速发展,海绵钛、变形钛合金和钛合金加工材的生产和消费都达到了很高的水平,在航空航天领域、舰艇及兵器等军品制造中的应用日益广泛,在汽车、化学和能源等行业也有着巨大的应用潜力。 一、钛及钛合金的特性 钛及钛合金具有许多优良特性,主要体现在如下几个方面: 1.强度高。钛合金具有很高的强度,其抗拉强度为686—1176MPa,而密度仅为钢的60%左右,所以比强度很高。 2.硬度较高。钛合金(退火态)的硬度HRC为32—38。 3.弹性模量低。钛合金(退火态)的弹性模量为1.078×10-1.176×10MPa,约为钢和不锈钢的一半。 4.高温和低温性能优良。在高温下,钛合金仍能保持良好的机械性能,其耐热

性远高于铝合金,且工作温度范围较宽,目前新型耐热钛合金的工作温度可达550—600℃;在低温下,钛合金的强度反而比在常温时增加,且具有良好的韧性,低温钛合金在-253℃时还能保持良好的韧性。 5.钛的抗腐蚀性强。钛在550℃以下的空气中,表面会迅速形成薄而致密的氧化钛膜,故在大气、海水、硝酸和硫酸等氧化性介质及强碱中,其耐蚀性优于大多数不锈钢。 二、钛及钛合金的加工性能 1.切削加工性能 钛合金强度高、硬度大,所以要求加工设备功率大,模具、刀具应有较高的强度和硬度。切削加工时,切屑与前刀面接触面积小,刀尖应力大。与45钢相比,钛合金的切削力虽然只有其2/3—3/4,可是切屑与前刀面的接触面积却更小(只有45钢的1/2—2/3),所以刀具切削刃承受的应力反而更大,刀尖或切削刃容易磨损;钛合金摩擦因数大,而热导率低(分别仅为铁和铝的1/4和1/16);刀具与切屑的接触长度短,切削热积聚于切削刃附近的小面积内而不易散发,这些因素使得钛合金的切削温度很高,造成刀具磨损加(转载自文章资源库https://www.360docs.net/doc/068796514.html,,请保留此标记。)快并影响加工质量。由于钛合金弹性模量低,切削加工时工件回弹大,容易造成刀具后刀面磨损的加剧和工件变形;钛合金高温时化学活性很高,容易与空气中的氢、氧等气体杂质发生化学反应,生成硬化层,同时进一步加剧了刀具的磨损;钛合金切削加工中,工件材料极易与刀具表面粘结,加上很高的切削温度,所以刀具易于产生扩散磨损和粘结磨损。 2.磨削加工性能 钛合金化学性质活泼、在高温下易与磨料亲和并粘附,堵塞砂轮,导致砂轮磨

氟化物对纯钛及钛合金的腐蚀作用

氟化物对纯钛及钛合金的腐蚀作用 近年来,钛和钛合金广泛应用于口腔领域,是最常用的口腔材料之一。钛由于与氧具有很高的亲和力,拼在其表面形成了一层紧密而稳定的氧化膜而具有出色的耐腐蚀性。有研究表明氟离子在酸性环境下能破坏这层氧化膜,从而削弱钛的抗腐蚀能力。目前,含氟牙膏、正畸凝胶等含氟牙膏产品大量应用于口腔。钛及钛合金暴露于含氟的复杂口腔坏境中。在此情况下,钛及其合金的腐蚀行为受到氟化物本身浓度、环境酸碱度、口腔中蛋白质和钛合金的成分以及种植体材料表面微形貌等方面的影响。 1.氟化物腐蚀原理 钛材料良好的抗腐蚀性只要是由表面薄二致密稳定的氧化 膜产生,这层氧化膜在破坏后能在含氧环境中迅速形成。这使得氧化膜的破坏和修复(再钝化)维持在一个稳定的状态,保护内部的钛元素不被继续氧化。但有报道发现,钛表面氧化膜在氢氟酸溶液中会出现溶解。目前普遍认为氟化物对钛及钛合金的腐蚀原理是口腔中溶解的氟化物和氢离子结合形成氟化氢。氟化氢能优先吸附于钛表面氧化膜的某些点上,排挤掉氧原子,然后和氧化膜中的太离子结合形成可溶性氟化物,使钛发生点蚀。反应方

程如下: Ti2O3+6HF=2TiF3+3H2O, TiO2+4HF=TiF4+2H2O, TiO2+2HF=H2O+TiOF2. 表面氧化膜破坏发生多孔性改变后,导致深部钛的暴露。钛是一种活性很高的金属,在含氢或析氢腐蚀环境中会持续吸收氢,在钛晶面生成TiH2,促进腐蚀的进程,甚至形成微裂纹,最终导致钛材料修复失败。 2.氟化物腐蚀影响因素 2.1氟化物的浓度 口腔中氟化物主要来源于含氟牙膏和漱口水等口腔保健品,其浓度范围1000~10000Ppm不等,使用这些保健产品会导致口腔局部氟离子浓度增高。有研究发现在酸性溶液中,氟离子浓度达到30ppm时,钛表面的氧化膜即可出现破坏,说明低浓度的氟离子就减弱了钛材料的抗腐蚀性能。 (1)高浓度氟溶液对钛表面的腐蚀作用在弱酸环境中就能进行。Her-Hsiung Huang 溶液中能检测到更高的钛离子溶出量,这也间接说明了钛在酸蚀化电阻下降明显,抗腐蚀性能下降。马长柏等 (3)发现腐蚀产生的点状凹陷的分布范围和深度均随氟离

材料的腐蚀与防护

姓名:贾永乐学号:201224190602 班级:机械6班 检索主题:材料的腐蚀与防护 数据库:中国知识资源总库——中国期刊全文数据库 检索方法:用高级检索,主题词:腐蚀与防护关键词:材料相与检索结果:1456篇,其中关于航空材料的13篇;金属材料的腐蚀的183篇;材料的防护的522篇,其余为腐蚀与防护相关 的其它技术和方法。 文献综述 1材料腐蚀与防护的发展史: 所有的材料都有一定的使用寿命,在使用过程中将遭受断裂、磨损、腐蚀等损坏。其中,腐蚀失效的危害最为严重,它所造成的经济损失超过了各种自然灾害所造成的损失总和,造成许多灾难性的事故,造成了资源浪费和环境污染。因此,研究与解决材料的腐蚀问题,与防止环境污染、保护人民健康息息相关。在现代工程结构中,特别足在高温、高压、多相流作用下,以及在磨损、断裂等的协同作用下,腐蚀损坏格外严重。据统计,材料腐蚀带来的经济损失约占国民生产总值的1.8%~4.2%。而常用金属材料最容易遭受腐蚀,因此金属腐蚀的研究受到广泛的重视【1】。我们只有在搞清楚材料腐蚀的原因的基础上,才能研制适宜的耐腐蚀材料、涂层及采取合理的保护措施,以达到防止或控制腐蚀的目的。从而减少经济损失和事故,保护环境保障人类健康。 每年由于腐蚀引起的材料失效给人类社会带来了巨大的损失。航

空材料的腐蚀损失尤为巨大。我国针对航空产品的腐蚀与防护的研究和应用起始于上世纪五十年代,经过几十年的曲折发展,取得了很大进步。目前在航空产品的常温腐蚀与防护上,已经进入了向国际接轨的发展阶段。航空材料由于服役环境复杂多变, 不同构成材料相互配合影响, 导致航空材料在飞行器的留空阶段、停放阶段遭受多种不同种类的腐蚀, 增加了飞行器的运营成本, 对飞行器的功能完整性和使用安全性造成严重的危害。英美空军每架飞机每年因腐蚀造成的直接修理费用为11 000~ 55 000美元之间【2】。1985年8月12日,日本一架B747客机因应力腐蚀断裂而坠毁,死亡500余人。因此航空材料的腐蚀防护技术研究对航空业的发展具有举足轻重的作用。 1978.10国家科委主任方毅在全国聘任27位科学家组建了我国《腐蚀科学》学科组,笔者作为学科组成员,第三专业组(大气腐蚀专业组)副组长,承担了航空航天部分的调查任务。1980.1—1982.6广泛函调一百多个工厂,并深入26个厂、所、部队,机场进行了实地考查,发现了大量的腐蚀问题,笔者1985年在我国首次出版了《航空产品腐蚀故障事例集》,汇集了数据比较周全,二十世纪六、七十年代的46个腐蚀故障【3】。 1990年前,铁道车辆车体结构通常采用普碳钢制造,加之使用涂料档次低,对表面处理和涂装工艺不够重视,车辆锈蚀严重,修理时车体钢板的更换率相当高,有些客车甚至仅使用1个厂修期就报废。1985年,耐大气腐蚀钢(即Corten钢,又称耐候钢)开始用于车辆,到1990年,已在全部新造车辆上采用。由于这类钢材含有(0.2%~0.4%

钛合金阳极氧化液及其表面处理方法与设计方案

本技术公开了一种钛合金阳极氧化液,按重量份数计算:硫酸1030份、磷酸2040份、乙酸515份、硫酸铵1525份、硫酸钾1013份、甲酸816份、去离子水8001000份。经过该阳极氧化液处理后的钛合金表面性质更加稳定,防护性能更好。一种应用上述阳极氧化液处理钛合金表面的方法,包括以下步骤:步骤1,对钛合金表面处理用碱液进行清洗;步骤2,将经步骤1清洗后的钛合金表面进行打磨,然后用清水清洗干净,烘干;步骤3,将经步骤2清洗后的钛合金放入钛合金阳极氧化液进行阳极氧化处理;步骤4,将经步骤3处理后的钛合金再次清洗干净、烘干即得。 权利要求书 1.一种钛合金阳极氧化液,其特征在于,按重量份数计算:硫酸10-30份、磷酸20-40份、乙酸5-15份、硫酸铵15-25份、硫酸钾10-13份、甲酸8-16份、去离子水800-1000份。 2.根据权利要求2所述的一种钛合金阳极氧化液,其特征在于,所述硫酸为质量分数为98%的浓硫酸。 3.一种应用权利要求1-2中任一项钛合金阳极氧化液处理钛合金表面的方法,其特征在于,包括以下步骤: 步骤1,对钛合金表面处理用碱液进行清洗; 步骤2,将经步骤1清洗后的钛合金表面进行打磨,然后用清水清洗干净,烘干; 步骤3,将经步骤2清洗后的钛合金放入钛合金阳极氧化液进行阳极氧化处理; 步骤4,将经步骤3处理后的钛合金再次清洗干净、烘干即得。 4.根据权利要求3所述的一种应用钛合金阳极氧化液处理钛合金表面的方法,其特征在于,

步骤1中,碱液为pH值为10-11的氢氧化钠溶液。 5.根据权利要求3所述的种应用钛合金阳极氧化液处理钛合金表面的方法,其特征在于,步骤3中,阳极氧化处理的处理条件为:在温度为15~25℃、电压为20-40V的条件下处理30-90s。 技术说明书 一种钛合金阳极氧化液及其表面处理方法 技术领域 本技术属于钛合金表面处理技术领域,具体涉及一种钛合金阳极氧化液,本技术还涉及应用上述一种钛合金阳极氧化液的处理钛合金表面的方法。 背景技术 钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。 第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,钛合金得到了广泛的应用。 在适当的阳极氧化条件下,钛合金表面会产生一种富有艺术价值的、呈现丰富色彩变化的阳极氧化膜层,其既有一定的装饰性,又有一定的耐腐蚀能力。具有广泛的应用前景。

钛及钛合金的失效与改善措施

钛及钛合金的失效与其预防 钛及钛合金是20世纪50年代兴起的一种重要结构金属,被联合国《世界经济的未来》报告誉为继钢、铝之后21世纪的第三金属。钛及钛合金具有许多优异的性能,比如低密度,高熔点,高比强度,耐腐蚀性能优异,高低温性能好,无磁性,声波和振动的低阻尼特性,生物相容性好,具有超导特性、形状记忆和吸氢特性等,被称为“太空金属”和“海洋金属”,在航空航天、海洋开发、化工、冶金、电力、医用材料、体育休闲业、汽车等领域有着广阔的应用。 钛及其合金在航空航天领域[1]得以广泛应用,在航空发动机上不断取代铝合金、镁合金及钢构件。这得益于钛合金的高比强度远超过强度高而密度大的钢以及重量轻但强度较低的铝合金;并且钛合金的耐热性远高于铝合金,目前先进耐热钛合金的工作温度可达550℃~600℃,同时低温钛合金则在-253℃还能保持良好的塑性;另外钛及其合金优良的抗蚀性,特别是在海水和海洋大气中抗蚀性极高,这对舰载飞机、水上飞机以及沿海地区服役的飞机都十分有利。尽管钛合金具有诸多优点,但也存在一些缺点限制了它的应用。钛及其合金的弹性模量低,容易变形失稳,不宜作细长杆件和薄壁件;钛及其合金导热性差、摩擦系数高,容易导致粘连,不宜用作有摩擦关系的零部件;制造成本高等。 钛及其合金不仅在军事领域得到广泛应用,其在民用工业领域的应用也日益增多。由于这些钛制构件的受力状况和工作环境各不相同,其常见的失效模式主要有:1.疲劳断裂;2.腐蚀损伤,如钛合金的氧污染、应力腐蚀断裂、氢脆等; 3.摩擦损伤,如外物磨蚀、冲刷等; 4.失稳,由于刚性不够而在使用条件下失稳失效; 5.蠕变失效,包括变形过大、蠕变断裂、蠕变脆化等。 1. 疲劳断裂失效 疲劳断裂是零部件在交变载荷(应力或应变)反复作用下的累积损伤过程,这是钛合金零部件最主要的失效模式,如压气机颤振引起叶片的低周疲劳、振动引起转子叶片的高周疲劳等。 (1)低周疲劳断裂 金属在交变载荷作用下由于塑性应变的循环作用而引起的疲劳破坏叫做低周疲劳,也称塑性疲劳或应变疲劳。低周疲劳寿命很短,一般低于105周次。钢及铝合金在退火状态下一般表现为循环硬化,而大多数退火状态的钛合金在低周疲劳过程中一般表现为循环软化。循环软化或循环硬化是指金属材料在应变(应力)保持一定的情况下,应力(应变)在循环过程中下降(增高)或增高(下降)的现象。对结构件的设计而言,一般选用循环稳定或循环硬化的材料,而大多工业钛合金属于循环软化材料,在使用过程中,若处于应力控制,则会产生过量的塑性变形而使构件破坏或失效。 (2)高周疲劳断裂[2]

钛及钛合金的表面处理研究进展

钛及钛合金的表面处理 摘要:本文对钛及钛合金的表面处理的方法进行了综述,随着钛合金在航天航空、舰船、石油、化工以及其他行业的不断应用,世界各国尤其是发达国家和发展中国家的研究工作者为克服钛合金的缺点正做着各种尝试和努力,钛合金的表面处理方法也取得了长足的进展。 关键词:钛及钛合金表面处理研究方法 1 引言 钛及钛合金具有低密度、良好的耐腐蚀能力、高比强度以及令人满意的生物相容性,在航空航天、化工、生物医学等领域得到广泛的应用,并为社会带来巨大的经济效益。然而,钛及钛合金表面硬度低,在滑动摩擦条件下摩擦力学性能差,特别是抗摩擦和磨损性能较差的钛合金,严重地限制了其应用范围。为了有效地利用钛合金的优良性能,对其进行表面处理,是一种改善钛合金缺陷使其最大限度地发挥其优势的重要措施之一。 2 表面处理方法 2.1 电镀 在钛合金表面主要有镀镍、镀硬铬、镀银等,镀银目的是提高钛合金的导电性和钎焊性。电镀前必须对钛合金表面进行预处理,膜层与基体的结合力差是钛及钛合金表面进行电化学处理的主要问题,要想在钛及钛合金上得到满意和合格的表面膜层,镀覆预处理是非常重要的步骤,而预处理的关键是“活化成膜”处理,若选择适宜的预处理方法,既能简化工艺,又能保证和提高镀覆层与基体的结合强度[1]。 2.2 交流微弧氧化 微弧氧化(MAO)是一项在金属表面生长氧化物陶瓷膜的新技术。它从阳极氧化发展而来.但它施加了几百伏的高压,突破了阳极氧化对电压的限制。该技术通过微弧放电区瞬间高温高压烧结直接把基体金属变成氧化物陶瓷,并获得较厚的氧化物膜。对钛合金表面微弧氧化,获得膜的硬度高并与金属基体结合良好。改善了钛合金表面的抗磨损、抗腐蚀、耐热冲击及绝缘等性能,在许多领域具有很好的应用前景[2]。 2.3 表面氧化处理 一般钛和钛合金较之常用的生物体用合金Co、Cr合金和316L不锈钢的耐磨性都较差,而且所产生的磨损粉在生物体内都有可能产生不良影响。因此,新开发的一些生物体用钛合金在生物体内使用之前往往都要采取适当的表面处理,以提高其抗磨性。为此,日本丰桥技术科学大学和大同特殊钢公司研究了一种新开发的生物体用B型钛合金(简称TNTZ合金),采取表面氧化处理提高其表面耐磨性[3]。 2.4 离子注入 离子注入与其它表面处理技术相比显示了诸多优点,与物理或化学气相沉积相比,主要优点在:①膜与基体结合好,抗机械、化学作用不剥落能力强;②注入过程不要求升高基体温度,从而可保持工件几何精度;③工艺重复性好等。许多研究者报道了氨离子注入对合金表面成分、组织结构、硬度及摩擦学性能有良好改善效果。TiC也是超硬相,故钛合金经离子注入碳也同样可以强化钛合金表面。但是由于等离子体基离子注入并非连续过程,施加每一负脉冲电位时,随着脉冲电位由零下降至谷值,再回升至零,发生着溅射和注入两个过程。如果等离子体中含有金属或碳离子时,在脉冲电位为零时,在一定条件下还会在表面形成

轻质材料腐蚀数据管理及预测系统的设计

Vol.42No.6 988   计算机与数字工程 Computer&DigitalEngineering总第295期 2014年第6期 轻质材料腐蚀数据管理及预测系统的设计磁 付冬梅1 向金龙1 苏 艳2,3 (1.北京科技大学自动化学院 北京 100083)(2.中国兵器工业第五九研究所 重庆 400039) (3.国防科技自然环境试验中心 重庆 400039) 摘 要 为实现轻质材料腐蚀数据的科学管理与有效利用,对积累的数据进行了评价、规范化、分类等工作,基于Ora‐cle数据库进行数据结构设计,实现了已积累的九大类轻质材料腐蚀数据的全部入库。基于J2EE平台,整合Struts、Spring及Hibernate框架技术,开发了一套结构精简与实用性高的腐蚀数据应用系统。该系统集成了数据存储、管理、查询、腐蚀预测等多种功能,能够面向互联网为广大用户提供丰富的数据服务。 关键词 材料腐蚀;腐蚀预测;系统设计;数据库 中图分类号 TP392 DOI:10.3969/j.issn1672‐9722.2014.06.018 LightMaterialsCorrosionData ManagementandPredictionSystem FUDongmei1 XIANGJinlong1 SUYan2,3 (1.SchoolofAutomationandElectricalEngineering,UniversityofScienceandTechnologyBeijing,Beijing 100083)(2.No.59InstituteofChinaOrdnanceIndustry,Chongqing 400039) (3.ChongqingEngineeringResearchCenterforEnvironmentalCorrosionandProtection,Chongqing 400039)Abstract Toachievethescientificmanagementandefficientutilizationoflightmaterialcorrosiondata,theassessment,standardizationandclassificationofcorrosiondataarecarriedon,datastructuredesignisbasedontheOracle,andtheninetypesoflightmaterialscorrosiondataarearchivedandwarehoused.ACorrosiondataapplicationsystemwithleanstructureandhighavailabilityisdeveloped,mainlybasedonJ2EEplatformandcombinedwithStruts,SpringandHibernateframe‐worktechniques,whichcanprovideuserswithavarietyofconsultingservicesviaWebtosharedmaterialscorrosiontestre‐sultsforintegratingavarietyoffunctionssuchasdatastorage,management,query,corrosionpredictionandprotectionsys‐temrecommend. KeyWords materialcorrosion,corrosionprediction,systemdesign,database ClassNumber TP392 1 引言 腐蚀是材料受环境介质作用而破坏的现象。据统计,发达国家的材料腐蚀经济损失占其年生产总值的2%~4%,给国民经济带来了巨大损失。因此,各国对腐蚀研究及防护技术的开发与利用给予高度重视。我国对自然环境腐蚀也非常重视,从“六五”到现在,国家自然科学基金一直设立重大项目予以支持,开展材料在我国自然环境中腐蚀数据积累及腐蚀规律研究,为国家基础设施建设提供选材依据,为快速评价与预测材料腐蚀行为提供方法。近年来,为了满足材料高性能、高可靠性和低成本的要求,性能优异的轻质材料肩负了很大的责任。轻质材料在国防工业中应用非常广泛,如航空 磁收稿日期:2013年12月20日,修回日期:2014年1月30日 基金项目:国家自然科学基金重点项目(编号:51131005);国家科技基础性工作专项(编号:2012FY113000)资助。 作者简介:付冬梅,女,教授,研究方向:图像分析与处理、智能系统、系统建模。向金龙,男,硕士研究生,研究方向:智能系统与数据分析。苏艳,女,工程师,研究方向:环境试验研究和傅里叶红外光谱分析。

钛牌号对照表

钛牌号对照表

钛牌号对照表 2007-06-07 11:25 中国美国俄罗斯 TAD 碘化钛 Grade1 1号纯 钛 BT1-00 工业纯钛 TA1 工业纯钛 Grade2 2号纯 钛 BT1-0 工业纯钛 TA2 工业纯钛 Grade3 3号纯 钛 OT4 -0 Ti-0.8Al-0.7Sn TA3 工业纯钛 Grade4 4号纯 钛 OT4 -1 Ti-2Al-1.5Mn TA4 Ti-3Al Grade5 Ti-6Al-4V OT4 Ti-3Al-1.5Mn TA5 Ti-4Al-0.005B Grade6 Ti-5Al-2.5V BT5 Ti-5Al TA6 Ti-5Al Grade7 Ti-0.2Pd BT5 -1 Ti-5Al-2.5Sn TA7 Ti-5Al-2.5Sn Grade9 Ti-3Al-2.5V BT6 Ti-6Al-4V TA8 Ti-5Al-2.5Sn-3Cu-1.5Zr Grade10 Ti-11.5Mo-4.5Sn-6Zr BT6c Ti-6Al-4V TC1 Ti-2Al-1.5Mn Grade11 Ti-0.2Pd BT3 -1 Ti-6Al-1.5Cr-2.5Mo-0.5Fe-0.3Si TC2 Ti-3Al-1.5Mn Grade12 Ti-0.3Mo-0.75Ni BT9 Ti-6.5Al-3.5Mo-0.3Si TC3 Ti-4Al-4V A-1

Ti-5Al-2.5Sn BT/4 Ti-5Al-3Mo-1.5V TC4 Ti-6Al-4V A-3 Ti-6Al-2Nb-1Ta BT16 Ti-2.8Al-5Mo-5V TC6 Ti-6Al-1.5Cr-2.5Mo-0.5Fe-0.3Si A-4 Ti-8Al-1Mo-1V BT18 Ti-8Al-0.6Mo-11Zr-1Nb TC7 Ti-6Al-0.6Cr-0.4Fe-0.4Si-0.01B AB-1 Ti-6Al-4V BT19 Ti-3Al-5.5Mo-3.5V-5.5Cr-1Zr TC9 Ti-6.5Al-3.5Mo-2.5Sn-0.3Si AB-3 Ti-6Al-6V-2Sn BT20 Ti-6Al-1.5Mo-1.5V TC10 Ti-6Al-6V-2Sn-0.5Cu-0.5Fe AB-4 Ti-6Al-2Sn-4Zr-2Mo BT22 Ti-5.5Al-5V-5Mo-1.5Cr-1.0Fe TC11 Ti-6Al-3.5Mo-1.5Zr-0.3Si AB-5 Ti-3Al-2.5V ПT-3B Ti-4Al-2V TB2 Ti-5Mo-5V-3Cr-3Al B-1 Ti-3Al-13V-11Cr ПT-7M Ti-2Al

钛合金表面处理

钛合金表面处理 Hessen was revised in January 2021

钛合金表面处理 引言 钛在高温下易于与空气中的O、H、N等元素及包埋料中的Si、Al、Mg等元素发生反应,在铸件表面形成表面污染层,使其优良的理化性能变差,硬度增加、塑性、弹性降低,脆性增加。 钛的密度小,故钛液流动时惯性小,熔钛流动性差致使铸流率低。铸造温度与铸型温差(300℃)较大,冷却快,铸造在保护性气氛中进行,钛铸件表面和内部难免有气孔等缺陷出现,对铸件的质量影响很大。 因此,钛铸件的表面处理与其它牙用合金相比显得更为重要,由于钛的独特的理化性能,如导热系数小、表面硬度、及弹性模量低,粘性大,电导率低、易氧化等,这对钛的表面处理带来了很大的难度,采用常规的表面处理方法很难达到理想的效果。必须采用特殊的加工方法和操作手段。 铸件的后期表面处理不仅是为了得到平滑光亮的表面,减少食物及菌斑等的积聚和粘附,维持患者的正常的口腔微生态的平衡,同时也增加了义齿的美感;更重要的是通过这些表面处理和改性过程,改善铸件的表面性状和适合性,提高义齿的耐磨、耐蚀和抗应力疲劳等理化特性。 一、表面反应层的去除 表面反应层是影响钛铸件理化性能的主要因素,在钛铸件研磨抛光前,必须达到完全去除表面污染层,才能达到满意的抛光效果。通过喷砂后酸洗的方法可完全去除钛的表面反应层。 1.喷砂:钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在以下。因为,喷射压力过大时, 砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。 2.酸洗:酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但 HF—HCl系酸洗液吸氢量较大,而HF—HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5 %左右,HNO3的浓度在 15%~30%左右为宜。

相关文档
最新文档