高考数学(理)一轮复习分层演练:1.1集合及其运算(含答案)

合集下载

高考数学一轮复习讲练测专题1.1集合的概念及其基本运算(讲)理(含解析)

高考数学一轮复习讲练测专题1.1集合的概念及其基本运算(讲)理(含解析)

1},专题1.1集合的概念及其基本运算(讲)【辭析】由已知得^ = {1,4}.当口 = <时.A = [3],则討二〔12*卜・4厂直=0,当也=1时,J = ;L3j ; 则JU5 = {1.3r 4} p = 当a = 4时.^ = {4.3}, = (1,3.4}, -40-8={4}.当疽产1,戊戸吳。

否4时…儿丘二卩”丸好,JO^ =0,综上所述,当a = 3时—儿P = {1S4齐AClB^Qi 当应"时,血JH"4}, /仃丘二{1»当*4时,则加UE 二口34、“5={4}f 当口工1, 口产3, a 芦4时I dl-再三卜 B =0.2.【2015高考天津,理1】已知全集U 1,2,3,4,5,6,7,8 ,集合A 2,3,5,6,集合B 1,3,4,6,7则集合AI ejB () (A )2,5( B )3,6 (C ) 2,5,6 ( D ) 2,3,5,6,8【答案】A【赭斤】^5 = (2,5,8}_所以二冷5},故选九3. 【云南省玉溪一中 2015届高三上学期第一次月考试卷】设集合B {(x, y) y 3x },则A B 的子集的个数是( )A. 4 B. 3C. 2D. 1【答案】A1.【课本典型习题,P12第3题】设集合Ax(x a)(x 3) 0,a R , Bx(x 4)(x 1) 0 ,AUB , AI B .【答案】当a 3时,AU B 1,3,4 , AI B ;当a 1 时,AU B1,3,4,AI B 1 ;当 a时,贝U AU B 1,3,4 , AIB 4 ;当 a 1 ,a 3, a 4时, AU B1,3,4, a , AI B【课前小测摸底细】求4{(“)話【解析】篥會話为橢區|兰+匸=1上的昌集合卫为扌無心煎i' = 丁上的点,由于指纹函数恒过点(Q1)・16 -4* 斗由于点121在椭圆兰十二“曲内部,因此扌旨数函数与椭圆有2个交点.,的子篥的个数次F =4个,16 4故答累为扎4. 【基础经典试题】集合M ={y | y= x2—1, x R},集合N={x|y= 9 x2, x R},则MIN等于( )A. {t|0 t 3} B . {t|—1 t 3} C . {(- . 2,1),( .2,1) D •【答案】B【鱷析】■・」=/—in —h 二対=[—h +工)・又丫)=嗣-》匸9 - ? > 0 +/■[- 3,3]. ■- M A -V = [-l(3].5. 【改编自2012年江西卷理科】若集合A={— 1,1}, B= 0,2,则集合{z|z= x+ y, x A, y B}中的元素的非空子集个数为()A. 7 B . 6 C . 5 D . 4【答案】A【鋒析】由已知得,集台V尸K+F送用ye ^={-1.1.3}-所以其非空子集个数冷2为二7,故选【考点深度剖析】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识•纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算•解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素•二是考查抽象集合的关系判断以及运算•【经典例题精析】考点1集合的概念K【1-1 】若a, b R,集合{1 , a b, a 0,-,b,求b a的值_____________________ .a【答案】2iy【解析】由d d+方卫}=0—血可知“山则只能卄庄0,则有以下对应关爲CJ - b = 0.b—=c ab = 1.Jl_2【1-2】已知集合A={x|x+ m好4 = 0}为空集,则实数m的取值范围是()A. ( —4, 4) B . [ —4, 4] C . ( —2, 2) D . [ —2, 2]【答案】A【解析】依题意知一元二次方程F十ww十4二0无解,^flzA A= w;_16 < 0(解得一4€楞羔4.故选A.【1-3】已知A={a+ 2, (a+ 1)2, a2+ 3a+ 3},若1€ A,则实数a构成的集合B的元素个数是()A. 0 B . 1 C . 2 D . 3【答案】B丽析】若口则1,代入集合」」得川={1"1},与集合元责的互异性若S+1F=1,帶住=0或一2,代入集合4帰/=匸切}或去{0二1},后■看与集合的互异性矛盾,故尸0 符合要求J若/+3卄3=1,则尸—诫-拿代人黑皆出得沪{山1}或看•戶{轴助都与集合的互异性相矛盾, 無上可如只有口二。

高三数学人教版A版数学(理)高考一轮复习教案:1.1 集合 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:1.1 集合 Word版含答案

第一节 集合1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集. (2)在具体情境中,了解全集与空集的含义. 3.集合间的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集. (3)能使用韦恩(Venn)图表示集合的关系及运算.知识点一 集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性. 2.元素与集合的关系:属于或不属于,表示符号分别为∈和∉. 3.集合的三种表示方法:列举法、描述法、V enn 图法.易误提醒 在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[自测练习]1.已知a ∈R ,若{-1,0,1}=⎩⎨⎧⎭⎬⎫1a ,a 2,0,则a =________.解析:1a ≠0,a ≠0,a 2≠-1,只有a 2=1.当a =1时,1a =1,不满足互异性,∴a =-1.答案:-1知识点二 集合间的基本关系A必记结论若集合A中有n个元素,则其子集个数为2,真子集个数为2-1,非空真子集的个数为2n-2.易误提醒易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.[自测练习]2.已知集合A={x|x=a+(a2-1)i}(a∈R,i是虚数单位),若A⊆R,则a=() A.1 B.-1 C.±1 D.0解析:A⊆R,∴a2-1=0,a=±1.答案:C3.已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512 B.256C.255 D.254解析:由题意知当x=1时,y可取1,2,3,4;当x=2时,y可取1,2;当x=3时,y可取1;当x=4时,y可取1.综上,B中所含元素共有8个,所以其真子集有28-1=255个.选C.答案:C知识点三集合的基本运算及性质易误提醒 运用数轴图示法易忽视端点是实心还是空心. 必记结论 ∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[自测练习]4.(2015·广州一模)已知全集U ={1,2,3,4,5},集合M ={3,4,5},N ={1,2,5},则集合{1,2}可以表示( )A .M ∩NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )解析:M ∩N ={5},A 错误;∁U M ={1,2},(∁U M )∩N ={1,2},B 正确;∁U N ={3,4},M ∩(∁U N )={3,4},C错误;(∁U M )∩(∁U N )=∅,D 错误.故选B.答案:B5.(2015·长春二模)已知集合P ={x |x ≥0},Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -2≥0,则P ∩(∁R Q )=( ) A .(-∞,2) B .(-∞,-1] C .(-1,0)D .[0,2]解析:由题意可知Q ={x |x ≤-1或x >2},则∁R Q ={x |-1<x ≤2},所以P ∩(∁R Q )={x |0≤x ≤2}.故选D.答案:D考点一 集合的基本概念|1.已知集合S ={x |3x +a =0},如果1∈S ,那么a 的值为( ) A .-3 B .-1 C .1D .3解析:∵1∈S ,∴3+a =0,a =-3. 答案:A2.设集合A ={1,2,4},集合B ={x |x =a +b ,a ∈A ,b ∈A },则集合B 中的元素个数为( )A .4B .5C .6D .7 解析:∵a ∈A ,b ∈A ,x =a +b ,∴x =2,3,4,5,6,8,∴B 中有6个元素,故选C. 答案:C3.(2015·贵阳期末)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=________.(用列举法表示)解析:若a1∈A,则a2∈A,则由若a3∉A,则a2∉A可知,a3∈A,假设不成立;若a4∈A,则a3∉A,则a2∉A,则a1∉A,假设不成立,故集合A={a2,a3}.答案:{a2,a3}判断一个元素是某个集合元素的三种方法:列举法、特征元素法、数形结合法.考点二集合间的基本关系及应用|(1)已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2B.3C.4 D.5[解析]依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.[答案] C(2)已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1][解析]依题意,由M⊆N得a≥2,即所求的实数a的取值范围是[2,+∞),选B.[答案] B1.判断两集合的关系常有两种方法(1)化简集合,从表达式中寻找两集合间的关系.(2)用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时的两个关键点(1)将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.(2)合理利用数轴、Venn图帮助分析.1.(2015·辽宁五校联考)设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是() A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A.答案:A考点三集合的基本运算|(1)(2015·高考全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}[解析]由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.[答案] A(2)(2015·郑州期末)已知函数f(x)=2-x-1,集合A为函数f(x)的定义域,集合B为函数f(x)的值域,则如图所示的阴影部分表示的集合为________.[解析]本题考查函数的定义域、值域以及集合的表示.要使函数f(x)=2-x-1有意义,则2-x-1≥0,解得x≤0,所以A=(-∞,0].又函数f(x)=2-x-1的值域B=[0,+∞).阴影部分用集合表示为∁A∪B(A∩B)=(-∞,0)∪(0,+∞).[答案](-∞,0)∪(0,+∞)集合运算问题的四种常见类型及解题策略(1)离散型数集或抽象集合间的运算.常借助Venn图求解.(2)连续型数集的运算.常借助数轴求解.(3)已知集合的运算结果求集合.借助数轴或Venn图求解.(4)根据集合运算求参数.先把符号语言译成文字语言,然后适时应用数形结合求解.2.(2015·高考陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(-∞,1]解析:∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.答案:A考点四集合的创新问题|设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7B.10C.25D.52[解析]A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.[答案] B解决集合创新问题的三个策略(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.(2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.(3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.3.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=()A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.答案:B1.遗忘空集致误【典例】 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.若(∁R A )∩B =B ,则实数a 的取值范围是________.[解析] ∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤3,∴∁R A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,当(∁R A )∩B =B 时,B ⊆∁R A 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时, B ={x |--a <x <-a }, 要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.[答案] a ≥-14[易误点评] 由∁R A ∩B =B 知B ⊆∁R A ,即A ∩B =∅,又集合B 中元素属性满足x 2+a <0,当a ≥0时B =∅易忽视导致漏解.[防范措施] (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)已知集合B ,若已知A ⊆B 或A ∩B =∅,则考生很容易忽视A =∅而造成漏解.在解题过程中应根据集合A 分三种情况进行讨论.[跟踪练习] 已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-12A 组 考点能力演练1.集合U ={0,1,2,3,4},A ={1,2},B ={x ∈Z |x 2-5x +4<0},则∁U (A ∪B )=( ) A .{0,1,3,4} B .{1,2,3} C .{0,4}D .{0}解析:因为集合B ={x ∈Z |x 2-5x +4<0}={2,3},所以A ∪B ={1,2,3},又全集U ={0,1,2,3,4},所以∁U (A ∪B )={0,4}.所以选C.答案:C2.已知集合A ={0,1,2,3,4},B ={x |x =n ,n ∈A },则A ∩B 的真子集个数为( )A.5 B.6C.7 D.8解析:由题意,得B={0,1,2,3,2},所以A∩B={0,1,2},所以A∩B的真子集个数为23-1=7,故选C.答案:C3.(2015·太原一模)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞)D.(-3,-1)x|-3<x<1,N={}x|-1≤x≤1,∴阴影部分表示的集合解析:由题意可知,M={}x|-3<x<-1.为M∩(∁U N)={}答案:D4.集合A={x|x-2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(-∞,-2] B.[-2,+∞)C.(-∞,2] D.[2,+∞)解析:由题意,得A={x|x<2}.又因为A∩B=A,所以a≥2,故选D.答案:D5.(2015·山西质检)集合A,B满足A∪B={1,2},则不同的有序集合对(A,B)共有() A.4个B.7个C.8个D.9个解析:由题意可按集合A中的元素个数分类.易知集合{1,2}的子集有4个:∅,{1},{2},{1,2}.若A=∅,则B={1,2};若A={1},则B={2}或B={1,2};若A={2},则B ={1}或B={1,2};若A={1,2};则B=∅或B={1}或B={2}或B={1,2}.综上所述,不同的有序集合对(A,B)共有9个,故选D.答案:D6.(2015·广州模拟)设集合A={(x,y)|2x+y=6},B={(x,y)|3x+2y=4},满足C⊆(A∩B)的集合C的个数为________.解析:依题意得,A∩B={(8,-10)},因此满足C⊆(A∩B)的集合C的个数是2.答案:27.设集合S n={1,2,3,…,n},若X⊆S n,把X的所有元素的乘积称为X的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集,则S4的所有奇子集的容量之和为________.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:78.已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________. 解析:由{-1,m }∩⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34≠∅,可得-1<m <34,由此可得整数m =0. 答案:09.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解:由已知得A ={x |-1≤x ≤3}, B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∴A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3. 因此实数m 的取值范围是{m |m >5或m <-3}.10.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2}, ∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}.(2)由(1)知A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2}, 当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,综上所述,实数a 的取值范围为{a |a ≥3}.B 组 高考题型专练1.(2014·高考课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解析:由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.答案:A2.(2014·高考课标全国卷Ⅱ)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=() A.{1} B.{2}C.{0,1} D.{1,2}解析:由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.答案:D3.(2015·高考全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4C.3 D.2解析:集合A={x|x=3n+2,n∈N},当n=0时,3n+2=2,当n=1时,3n+2=5,当n=2时,3n+2=8,当n=3时,3n+2=11,当n=4时,3n+2=14,∵B={6,8,10,12,14},∴A∩B中元素的个数为2,选D.答案:D4.(2015·高考福建卷)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B 等于()A.{-1} B.{1}C.{1,-1} D.∅解析:因为A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故选C.答案:C5.(2015·高考浙江卷)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=() A.[0,1) B.(0,2]C.(1,2) D.[1,2]解析:∁R P={x|0<x<2},故(∁R P)∩Q={x|1<x<2}.答案:C6.(2015·高考重庆卷)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A解析:由真子集的概念知B A,故选D.答案:D。

新高考数学理一轮总复习知能演练1.1集合的概念与运算(含答案详析)

新高考数学理一轮总复习知能演练1.1集合的概念与运算(含答案详析)

一、选择题1.会合 P={ x|y=x+ 1} ,会合 Q= { y|y=x- 1} ,则 P 与 Q 的关系是 ()A. P=Q B .P QC.P Q D.P∩Q=?分析:选 B.依题意得, P={ x|x+ 1≥ 0} = { x|x≥ - 1} , Q={ y|y≥ 0} ,∴ P Q.2.(2011 高·考课标全国卷 )已知会合 M= {0,1,2,3,4} ,N= {1,3,5} ,P= M∩ N,则 P 的子集共有 ()A.2个B.4 个C.6 个D.8 个22= 4(个 ).分析:选 B.∵ M= {0,1,2,3,4} ,N= {1,3,5} ,∴ M∩N= {1,3} .∴ M∩ N 的子集共有3. (2012 高·考山东卷 ) 已知全集 U = {0,1,2,3,4} ,会合 A={1,2,3} , B= {2,4},则 (?U A)∪B 为()A. {1,2,4} B . {2,3,4}C. {0,2,4} D .{0,2,3,4}分析:选 C.由题意知 ?U A= {0,4} ,又 B= {2,4} ,∴(?U A)∪ B= {0,2,4} .应选 C.4.(2011 高·考北京卷 )已知会合P= { x|x2≤ 1} ,M= { a} .若 P∪ M= P,则 a 的取值范围是 ()A. (-∞,-C. [ -1,1]1]B.[1,+∞ )D .(-∞,-1]∪[1,+∞ )分析:选 C.由 P∪M =P,有 M ? P.∴a2≤ 1,∴- 1≤ a≤ 1.应选 C.5. (2011 高·考广东卷 )已知会合A={( x, y)|x, y 为实数,且x2+ y2= 1} , B= {( x, y)|x,y 为实数,且 y= x} ,则 A∩ B 的元素个数为 ()A. 0 B . 1C. 2 D .3分析:选 C.法一: A 为圆心在原点的单位圆, B 为过原点的直线,故有 2 个交点,应选C.222,2,x+ y = 1,x=2x=-2法二:由可得或应选 C.y=x,2,2,y=2y=-2二、填空题6.(2012 ·考四川卷高)设全集 U= { a,b,c,d} ,会合 A= { a,b} ,B= { b,c,d} ,则 (? U A)∪ (?U B)= ________.分析: ?U A= { c,d} , ?U B= { a} ,∴(?U A)∪ (?U B)= { a, c, d} .答案: { a, c, d}7.(2013 南·京月考 )已知会合A= {(0,1) ,(1,1), (- 1,2)} , B= {( x, y)|x+ y-1= 0, x, y ∈Z },则A∩B=________.分析: A、B 都表示点集, A∩B 即是由 A 中在直线 x+ y-1= 0 上的全部点构成的会合,代入考证即可.答案: {(0,1) , (- 1,2)}8.设 U ={0,1,2,3} , A= { x∈ U |x2+ mx= 0} ,若 ?U A= {1,2} ,则实数 m=________.分析:∵ ?U A= {1,2} ,∴ A= {0,3} ,∴0,3 是方程 x2+ mx= 0 的两根,∴m=- 3.答案:-3三、解答题9.设全集U=R, A= { x|2x- 10≥ 0} ,B= { x|x2-5x≤ 0,且 x≠ 5} .求(1)?U (A∪B);(2)(?U A)∩ (?U B).解: A= { x|x≥ 5} ,B= { x|0≤ x< 5} .(1)A∪ B= { x|x≥ 0} ,于是 ?U(A∪B)= { x|x< 0} .(2)?U A= { x|x< 5} , ?U B= { x|x< 0 或 x≥5} ,于是 (?U A)∩ (?U B)= { x|x<0} .10.设 A= {2 ,- 1, x2- x+1} , B= {2 y,- 4, x+4} , C= { - 1,7} ,且 A∩ B= C,求x、 y 的值.解:∵A∩ B= C= { - 1,7} ,∴必有7∈A,7∈ B,- 1∈ B.2即有 x -x+ 1= 7? x=- 2 或 x= 3.①当 x=- 2 时, x+ 4= 2,又 2∈A,∴ 2∈ A∩B,但 2?C,∴不知足 A∩B= C,∴ x=- 2 不切合题意.②当 x= 3 时, x+ 4= 7,∴ 2y=- 1? y=-1 2.1所以, x= 3, y=-2.一、选择题1. (2012 ·考湖北卷高) 已知会合 A= { x|x2- 3x+ 2= 0, x∈R } , B={ x|0< x<5, x∈N} ,则知足条件 A? C? B 的会合 C 的个数为 ()A. 1 B . 2C. 3 D .4分析:选 D. 解出会合 A、B 后,再确立会合 C 的个数.由于会合 A={1,2} ,B= {1,2,3,4} ,所以当知足 A? C? B 时,会合 C 能够为 {1,2} 、 {1,2,3} 、{1,2,4} 、 {1,2,3,4} ,故会合 C 有 4 个.2.已知全集 U=Z,会合 A= { x|x2= x} ,B= { -1,0,1,2} ,则图中暗影部分所表示的会合为()A. { -1,2} C. {0,1}B.{- 1,0} D .{1,2}分析:选 A. 由题意得会合A= {0,1} ,图中暗影部分所表示的会合是不在会合 A 中,但在会合 B 中的元素的会合,即 (?U A)∩ B,易知 (?U A)∩ B= { - 1,2} ,故图中暗影部分所表示的会合为 { - 1,2} .正确选项为 A.二、填空题3.已知会合 A= { x|a- 3< x< a+3} ,B= { x|x<- 1 或 x>2} ,若 A∪ B=R,则 a 的取值范围为 ________.分析:由 a- 3<- 1 且 a+ 3> 2,解得- 1<a< 2.也可借助数轴来解.答案: (- 1,2)4.(2012 高·考天津卷 )已知会合A ={ x ∈ R ||x + 2|< 3} ,会合B ={ x ∈ R |(x - m)(x - 2)< 0} ,且 A ∩ B = (- 1, n) ,则 m = ________, n = ________.分析: A = { x ∈ R ||x + 2|<3} ={ x ∈ R |- 5<x<1} , 由 A ∩ B =(-1, n),可知 m<2 ,则 B = { x|m<x<2} ,画出数轴,可得 m =- 1, n =1.答案: -1 1三、解答题5.记函数 f( x)=2- x + 3的定义域为A , g(x)= lg[( x - a - 1)(2a - x)](a < 1)的定义域x + 1为 B.(1)求 A ;(2)若 B? A ,务实数 a 的取值范围.解: (1)由 2- x + 3≥ 0,得 x - 1≥ 0.x + 1 x + 1∴ x <- 1 或 x ≥1,即 A = (- ∞ ,- 1)∪ [1,+ ∞ ).(2)由 (x - a - 1)(2a - x)> 0,得 (x - a - 1)(x - 2a)<0.∵ a <1,∴ a +1> 2a.∴B = (2a ,a + 1).由 B? A ,得 2a ≥ 1 或 a + 1≤- 1,即 a ≥1或 a ≤ -2.而 a <1,2∴ 1≤a < 1 或 a ≤ - 2. 21故 a 的范围是 (-∞ ,- 2]∪ 2,1 .。

2020版高考数学北京版大一轮精准复习精练:1.1集合的概念及运算含解析

2020版高考数学北京版大一轮精准复习精练:1.1集合的概念及运算含解析

2018 北京,1
2017 北京,1
2016 北京,1 2016 北京文 ,14 2015 北京文 ,1
集合的交、 并、补运算
2014 北京,1
2013 北京,1
不等式和方程的 解法
★★★
分析解读
1. 掌握集合的表示方法 , 能判断元素与集合的 “属于 ” 关系、集合与集合之间的包含关系 .
2. 深刻理解、掌握子、交、并、补集的概念 , 熟练掌握集合的交、并、补的运算和性质 , 能用韦恩 (Venn) 图表示
C.5
D.6
答案 C
考点二 集合间的基本关系
(2015 重庆 ,1,5 分) 已知集合 A={1,2,3},B={2,3},
A.A=B
B.A∩ B=?
C.A? B
答案 D
则( ) D.B ? A
考点三 集合的基本运算
1.(2017 课标 Ⅰ,1,5 分) 已知集合 A={x|x<1},B={x|3 x<1}, 则(
A.{0}
B.{0,1}
C.{0,2}
D.{0,1,2}
答案 C
5.(2013 北京 ,1,5 分 ) 已知集合 A={-1,0,1},B={x|-1 ≤x<1}, 则 A∩B=( )
A.{0}
B.{-1,0}
C.{0,1}
D.{-1,0,1}
答案 B
6.(2011 北京 ,1,5 分 ) 已知集合 P={x|x 2≤1},M={a}. 若 P∪M=P,则 a 的取值范围是 (
A.[0,1)
B.(0,2]
C.(1,2)
D.[1,2]
答案 C 10.(2014 浙江 ,1,5 分 ) 设全集 U={x∈ N |x ≥ 2}, 集合 A={x ∈ N |x 2≥5}, 则?UA=( )

高考数学一轮复习学案:1.1 集合及其运算(含答案)

高考数学一轮复习学案:1.1 集合及其运算(含答案)

高考数学一轮复习学案:1.1 集合及其运算(含答案)1.1集合及其运算集合及其运算最新考纲考情考向分析1.了解集合的含义,体会元素与集合的属于关系.2.能用自然语言.图形语言.集合语言列举法或描述法描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩Venn图表达集合的基本关系及集合的基本运算.集合的交.并.补运算及两集合间的包含关系是考查的重点,在集合的运算中经常与不等式.函数相结合,解题时常用到数轴和韦恩Venn图,考查学生的数形结合思想和计算推理能力,题型以选择题为主,低档难度.1集合与元素1集合中元素的三个特征确定性.互异性.无序性2元素与集合的关系是属于或不属于,用符号或表示3集合的表示法列举法.描述法.图示法4常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN*或NZQR2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中即若xA,则xBAB或BA真子集集合A 是集合B的子集,且集合B中至少有一个元素不在集合A中AB或BA集合相等集合A,B中的元素相同或集合A,B互为子集AB3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合ABx|xA且xB并集由所有属于集合A或属于集合B的元素组成的集合ABx|xA或xB补集由全集U中不属于集合A的所有元素组成的集合UAx|xU且xA 知识拓展1若有限集合A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n1.2ABABAABB.3AUA;AUAU;UUAA.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1任何一个集合都至少有两个子集2x|yx21y|yx21x,y|yx213若x2,10,1,则x0,1.4x|x1t|t15对于任意两个集合A,B,关系ABAB恒成立6若ABAC,则BC.题组二教材改编2P11例9已知U|0180,Ax|x是锐角,Bx|x是钝角,则UAB________.答案x|x是直角3P44A组T5已知集合Ax,y|x2y21,Bx,y|yx,则AB中元素的个数为________答案2解析集合A表示以0,0为圆心,1为半径的单位圆,集合B表示直线yx,圆x2y21与直线yx相交于两点22,22,22,22,则AB中有两个元素题组三易错自纠4若集合A1,1,B0,2,则集合z|zxy,xA,yB中的元素的个数为A5B4C3D2答案C解析当x1,y0时,z1;当x1,y2时,z1;当x1,y0时,z1;当x1,y2时,z3,故集合z|zxy,xA,yB中的元素个数为3,故选C.5已知集合Ax|x22x30,Bx|x1答案D解析因为AB,所以集合A,B有公共元素,作出数轴,如图所示,易知a1.2集合A0,2,a,B1,a2,若AB0,1,2,4,16,则a的值为A0B1C2D4答案D解析由题意可得a,a24,16,a4.3设集合A0,4,Bx|x22a1xa210,xR若ABB,则实数a的取值范围是______答案,11解析因为A0,4,所以BA分以下三种情况当BA时,B0,4,由此可知,0和4是方程x22a1xa210的两个根,由根与系数的关系,得4a124a210,2a14,a210,解得a1;当B且BA时,B0或B4,并且4a124a210,解得a1,此时B0满足题意;当B时,4a124a210,解得a1.综上所述,所求实数a的取值范围是,11思维升华1一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况2运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化跟踪训练1xx天津设集合A1,2,6,B2,4,CxR|1x5,则ABC等于A2B1,2,4C1,2,4,6DxR|1x5答案B解析AB1,2,4,6又CxR|1x5,则ABC1,2,4,故选B.2已知集合Ax|x2x120,Bx|2m1xm1,且ABB,则实数m的取值范围为A1,2B1,3C2,D1,答案D解析由x2x120,得x3x40,即3x4,所以Ax|3x4又ABB,所以BA.当B时,有m12m1,解得m2;当B时,有32m1,m14,2m1m1,解得1m2.综上,m的取值范围为1,题型四题型四集合的新定义问题集合的新定义问题典例已知集合Ax,y|x2y21,x,yZ,Bx,y||x|2,|y|2,x,yZ,定义集合ABx1x2,y1y2|x1,y1A,x2,y2B,则AB中元素的个数为A77B49C45D30答案C解析如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”所有圆点“”,集合AB显然是集合x,y||x|3,|y|3,x,yZ中除去四个点3,3,3,3,3,3,3,3之外的所有整点即横坐标与纵坐标都为整数的点,即集合AB表示如图所示的所有圆点“”所有圆点“”所有圆点“”,共45个故AB 中元素的个数为45.故选C.思维升华解决以集合为背景的新定义问题,要抓住两点1紧扣新定义首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中2用好集合的性质解题时要善于从试题中发现可以使用集合性质的一些因素跟踪训练定义一种新的集合运算ABx|xA,且xB若集合Ax|x24x30,Bx|2x4,则按运算,BA等于Ax|3x4Bx|3x4Cx|3x4Dx|2x4答案B解析Ax|1x3,Bx|2x4,由题意知,BAx|xB,且xAx|3x4.。

高考数学一轮专题01 集合综合归类(原卷版及答案)

高考数学一轮专题01 集合综合归类(原卷版及答案)

专题01 集合综合归类目录题型一:相等集合 .............................................................................................................................................................. 1 题型二:相等集合求参 ...................................................................................................................................................... 2 题型三:集合中的元素 ...................................................................................................................................................... 2 题型四:集合元素个数求参............................................................................................................................................... 3 题型五:子集与真子集关系............................................................................................................................................... 4 题型十:并集运算求参 ...................................................................................................................................................... 8 题型十一:补集与全集 (9)题型十二:补集与全集运算求参..................................................................................................................................... 10 题型十三:韦恩图应用 . (11)题型十四:交并补混合型运算......................................................................................................................................... 12 题型十五:交并补综合运算求参..................................................................................................................................... 13 题型十六:集合新定义型 (14)题型一:相等集合1.(2023·浙江·三模)设函数的定义域与值域都是R,且单调递增,,则( ) A .B .C .A=BD .2.(21-22高三上·浙江金华模拟)已知集合{}sin ,cos ,tan ααα=M {}()0,,,,,,2πα∈=∈N a b c a b c R ,则满足M N =且2a b c +=的集合N 的个数为( ) A .0 B .1 C .2 D .33.(23-24高三上·广东深圳·阶段练习)已知集合1,Z 6M x x m m ==+∈,1,Z 23n N x x n ==−∈ ,1,Z 26p P x x p ==+∈,则M ,N ,P 的关系为( )A .M N = PB .N P = MC .M N PD .M N P =4.(23-24高三上·湖南长沙·阶段练习)已知{}31,Z M x x m m ==−∈, {}32,Z N x x n n ==+∈ ,集合的相关概念(1)集合元素的三个特性:互异、无序、确定性.(2)元素与集合的两种关系:属于,记为 ∈ ;不属于,记为∉ . (3)集合的四种表示方法:列举法、描述法、韦恩图法、符号法.{}61,Z P x x p p ==−∈ ,则下列结论正确的是( ) A .M P = N B .P M N =C .M N ⊆ PD .N M ⊆ P5.(23-24高三上·贵州遵义·阶段练习)已知R a ∈,R b ∈,若集合{}2,,1,,0b a a a b a=−,则20232023ab +的值为( ) A .2− B .1− C .1 D .2题型二:相等集合求参1.(22-23高三 ·江苏苏州·阶段练习)设a 、b、c 是两个两两不相等的正整数.若{a b +,bc +,2}{c a n +=,2(1)n +,2(2)}(N )n n ++∈,则222a b c ++的最小值是( ) A .1000 B .1297 C .1849 D .20202.(2022·上海杨浦·预测)已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( ) A .[0,4) B .[1,4)− C .[3,5]− D .[0,7)3.(2024·云南楚雄·模拟预测)已知集合{|A y y ==,{|}B x x a =≥,若A B =,则a 的值为( )A .1B .2C .3D .44.(23-24高三·江苏常州·模拟)已知函数()()221R f x x ax a =−+∈,若非空集合(){}()(){}0,1A xf x B x f f x =≤=≤∣∣,满足A B =,则实数a 的取值范围是( ) A .11 −− B .1 −C .D .1,1 +5.(23-24高三·北京·阶段练习)已知函数()()2122x f x m x nx +⋅++,集合(){}0,A x f x x ==∈R ,集合{},R |[()]0Bx f f x x ==∈,若A B =,且都不是空集,则m n +的取值范围是( )A .[]1,4−B .[)1,1−C .[]3,5−D .[)0,4题型三:集合中的元素1.(21-22高三上·上海浦东新·阶段练习)已知{}n a 是等差数列,()sin n n b a =,存在正整数()8t t ≤,使得n t n b b +=,*n ∈N .若集合{}*,n Sx x b n N ==∈中只含有4个元素,则t 的可能取值有( )个A .2B .3C .4D .51.研究集合问题,要抓住元素,看元素应满足的属性。

高考数学一轮复习 1.1 集合的概念和运算课时作业 理(含解析)新人教A版

高考数学一轮复习 1.1 集合的概念和运算课时作业 理(含解析)新人教A版

高考数学一轮复习 1.1 集合的概念和运算课时作业理(含解析)新人教A版一、选择题1.(2013·安徽卷)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=( ) A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}解析:集合A={x|x>-1},所以∁R A={x|x≤-1},所以(∁R A)∩B={-2,-1}.答案:A2.(2013·天津卷)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=( ) A.(-∞,2] B.[1,2] C.[-2,2] D.[-2,1]解析:解不等式|x|≤2得,-2≤x≤2,所以A=[-2,2],又B=(-∞,1],所以A∩B =[-2,1].答案:D3.(2013·福建省高三上学期第一次联考)已知集合A={3,a2},集合B={0,b,1-a},且A∩B={1},则A∪B=( )A.{0,1,3} B.{1,2,4}C.{0,1,2,3} D.{0,1,2,3,4}解析:因为a2=1,所以a=1或a=-1,当a=1时,B={0,b,0}与集合中元素互异性矛盾,所以舍去,故a=-1,此时B={0,b,2},所以b=1,所以A∪B={0,1,2,3}.答案:C4.(2013·河南郑州第一次质量预测)若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有( )A.1个 B.2个 C.3个 D.4个解析:∵A={0,1,2,x},B={1,x2},A∪B=A,∴B⊆A,∴x2=0或x2=2或x2=x,解得x=0或2或-2或1.经检验当x=2或-2时满足题意,故选B.答案:B5.(2013·合肥第二次质检)已知集合A={x∈R|x≥2},B={x∈R|x2-x-2<0}且R为实数集,则下列结论正确的是( )A.A∪B=R B.A∩B≠ØC.A⊆(∁R B) D.A⊇(∁R B)解析:由题意可知B={x|-1<x<2},故选C.答案:C6.(2013·山东烟台高三诊断性测试)若集合M={x∈N*|x<6},N={x||x-1|≤2},则M ∩(∁R N )=( )A .(-∞,-1)B .[1,3)C .(3,6)D .{4,5}解析:M ={x ∈N *|x <6}={1,2,3,4,5},N ={x ||x -1|≤2}={x |-1≤x ≤3},∁R N ={x |x <-1或x >3}.所以M ∩(∁R N )={4,5},选D.答案:D 二、填空题7.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =______.解析:A ,B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.答案:{(0,1),(-1,2)}8.设A ,B 是非空集合,定义A ×B ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ×B =______.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ×B =(2,+∞). 答案:(2,+∞)9.设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A B ,则a 的取值范围为________.解析:由|x -a |<1得-1<x -a <1,∴a -1<x <a +1,由A B 得⎩⎪⎨⎪⎧a -1>1a +1<5,∴2<a <4.又当a =2时,A ={x |1<x <3}满足A B ,a =4时,A ={x |3<x <5}也满足A B ,∴2≤a ≤4.答案:2≤a ≤4 三、解答题10.设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B =⎩⎨⎧⎭⎬⎫12,求A∪B .解:∵A ∩B =⎩⎨⎧⎭⎬⎫12,∴12∈A 且12∈B .将12分别代入方程2x 2-px +q =0及6x 2+(p +2)x +5+q =0, 联立得方程组⎩⎪⎨⎪⎧12-12p +q =0,32+12p +2+5+q =0,解得⎩⎪⎨⎪⎧p =-7,q =-4,∴A ={x |2x 2+7x -4=0}=⎩⎨⎧⎭⎬⎫-4,12,B ={x |6x 2-5x +1=0}=⎩⎨⎧⎭⎬⎫12,13,∴A ∪B =⎩⎨⎧⎭⎬⎫12,13,-4. 11.已知集合A ={x |x 2-2x -3≤0},B ={x |m -2≤x ≤m +2,m ∈R }. (1)若A ∪B =A ,求实数m 的取值; (2)若A ∩B ={x |0≤x ≤3},求实数m 的值; (3)若A ⊆∁R B ,求实数m 的取值范围.解:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2} (1)∵A ∪B =A ,∴B ⊆A ,如图有:⎩⎪⎨⎪⎧m -2≥-1m +2≤3,∴⎩⎪⎨⎪⎧m ≥1m ≤1,∴m =1.(2)∵A ∩B ={x |0≤x ≤3}∴⎩⎪⎨⎪⎧m -2=0m +2≥3,∴m =2.(3)∁R B ={x |x <m -2或x >m +2}. ∵A ⊆∁R B ∴m -2>3或m +2<-1, ∴m >5或m <-3.12.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =Ø或B ={2}, 当B =Ø时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,综上所述,所求a 的取值范围为{a |a ≥3}. [热点预测]13.(1)(2014·河北沧州高三质检)已知集合A=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -21-2x >0,B ={}y |y =log 2x -1,x ∈[3,9],则A ∩B =( )A.⎝ ⎛⎦⎥⎤12,3 B .(2,3]C .[1,2)D .(1,2)(2)(2013·重庆市高三模拟)对于数集A ,B ,定义A +B ={x |x =a +b ,a ∈A ,b ∈B },A ÷B ={x |x =a b,a ∈A ,b ∈B },若集合A ={1,2},则集合(A +A )÷A 中所有元素之和为( )A.102 B.152 C.212 D.232(3)已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=Ø,则m =________.解析:(1)A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2,B ={y |1≤y ≤3},∴A ∩B =[1,2). (2)由已知A +A ={2,3,4},所以(A +A )÷A ={2,1,3,32,4},其和为232.(3)A ={-1,2},B =Ø时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:(1)C (2)D (3)0,1,-12。

2024年高考数学一轮复习(新高考版) 第1章《集合》

2024年高考数学一轮复习(新高考版) 第1章《集合》

②若x∈M,则x2∈M.则集合M可能是
√A.{-1,1} √C.{1}
B.{-1,1,2,4} D.{1,-2,2}
由题意可知3∉M且4∉M,而-2或2与4同时出现, 所以-2∉M且2∉M, 所以满足条件的非空集合M有{-1,1},{1}.
(2)函数f(x)= x2-2x-3 的定义域为A,集合B={x|-a≤x≤4-a},若 B⊆A,则实数a的取值范围是__(-__∞__,__-__3_]_∪__[_5_,_+__∞__)__.
(2)(2023·聊城模拟)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合
B中元素的个数为
A.2
B.3
√C.4
D.5
因为A={0,1,2},a∈A,b∈A, 所以ab=0或ab=1或ab=2或ab=4, 故B={ab|a∈A,b∈A}={0,1,2,4}, 即集合B中含有4个元素.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
1.集合与元素 (1)集合中元素的三个特性:__确__定__性__、_互__异__性__、_无__序__性___. (2)元素与集合的关系是_属__于__或_不__属__于__,用符号_∈__或__∉__表示. (3)集合的表示法:_列__举__法__、_描__述__法__、_图__示__法__. (4)常见数集的记法
√A.0是任何数域的元素 √B.若数域F有非零元素,则2 023∈F
C.集合P={x|x=3k,k∈Z}为数域
√D.有理数集为数域
对于A,若a∈F,则a-a=0∈F,故A正确; 对于 B,若 a∈F 且 a≠0,则 1=aa∈F,2=1+1∈F,3=1+2∈F, 依此类推,可得 2 023∈F,故 B 正确; 对于 C,P={x|x=3k,k∈Z},3∈P,6∈P,但36∉P,故 P 不是数域,故 C 错误; 对于 D,若 a,b 是两个有理数,则 a+b,a-b,ab,ab(b≠0)都是有 理数,所以有理数集是数域,故 D 正确.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法A A1.辨明三个易误点(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2.活用几组结论(1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.(2)A∩A=A,A∩∅=∅.(3)A∪A=A,A∪∅=A.(4)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(5)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.(6)若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.1.教材习题改编已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B2.教材习题改编设集合A={x|2≤x<5},B={x∈Z|3x-7≥8-2x},则A∩B=()A.{x|3≤x<5} B.{x|2≤x≤3}C.{3,4} D.{3,4,5}C[解析] 因为A={x|2≤x<5},B={x∈Z|3x-7≥8-2x}={x∈Z|x≥3},所以A∩B={3,4}.3.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B 的元素个数为()A.0 B.1C.2 D.3C[解析] 集合A表示的是圆心在原点的单位圆,集合B表示的是直线y=x,据此画出图象,可得图象有两个交点,即A∩B的元素个数为2.4.教材习题改编已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=________.[解析] 由题意得∁U B={2,5,8},所以A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.[答案] {2,5}5.教材习题改编已知集合A={x|x2-4x+3<0},B={x|2<x<4},则(∁R A)∪B=________.[解析] 由已知可得集合A ={x |1<x <3},又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3},所以(∁R A )∪B ={x |x ≤1或x >2}.[答案] {x |x ≤1或x >2}集合的含义[学生用书P2][典例引领](1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .6D .9(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( ) A .1 B .-1 C .2D .-2【解析】 (1)当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2. 故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素. (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a =-1,b=1.所以b -a =2.【答案】 (1)C (2)C[通关练习]1.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6B [解析] 因为a ∈A ,b ∈B ,所以x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8.共4个元素.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. [解析] 因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.[答案] -32集合间的基本关系[学生用书P3][典例引领](1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)D (2)(-∞,3]1.在本例(2)中,若A ⊆B ,如何求解?[解] 若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3. 所以m 的取值范围为∅.2.若将本例(2)中的集合A 改为A ={x |x <-2或x >5},如何求解? [解] 因为B ⊆A ,所以①当B =∅时,即2m -1<m +1时,m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).[通关练习]1.设P ={y |y =-x 2+1,x ∈R },Q ={y |y =2x ,x ∈R },则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R PC [解析] 因为P ={y |y =-x 2+1,x ∈R }={y |y ≤1},Q ={y |y =2x ,x ∈R }={y |y >0},所以∁R P ={y |y >1},所以∁R P ⊆Q ,选C.2.已知集合A ={x |x 2-2x -3<0},B ={x |-m <x <m }.若B ⊆A ,则m 的范围为________. [解析] 当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |x 2-2x -3<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述m 的范围为m ≤1. [答案] m ≤1集合的基本运算(高频考点)[学生用书P3]集合的基本运算是历年各地高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题多为低档题.高考对集合运算的考查主要有以下三个命题角度: (1)求集合间的交或并运算; (2)求集合的交、并、补的混合运算; (3)已知集合的运算结果求参数的值(范围).[典例引领](1)(2016·高考全国卷乙)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B=( )A.⎝⎛⎭⎫-3,-32 B .⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D .⎝⎛⎭⎫32,3(2)(2016·高考山东卷)设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}(3)已知集合A 、B 均为U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =________.【解析】 (1)由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >32,则A ∩B =⎝⎛⎭⎫32,3. (2)由题知A ∪B ={1,3,4,5},所以∁U (A ∪B )={2,6}. (3)因为A ∩B ={3},所以3∈A , 又因为(∁U B )∩A ={9},所以9∈A ,又U ={1,3,5,7,9},假设1∈A ,由A ∩B ={3}, 知1∉B ,所以1∈∁U B ,则与(∁U B )∩A ={9}矛盾, 所以1∉A ,同理5,7∉A ,则A ={3,9}. 【答案】 (1)D (2)A (3){3,9}集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn 图求解; (2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.[题点通关]角度一 求集合间的交或并运算1.(2016·高考全国卷甲)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}C [解析] 由已知可得B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},所以A ∪B ={0,1,2,3},故选C.角度二 求集合的交、并、补的混合运算2.(2017·海口市调研测试)设全集U =R ,集合A ={x |7-6x ≤0},集合B ={x |y =lg(x +2)},则(∁U A )∩B 等于( )A.⎝⎛⎭⎫-2,76 B .⎝⎛⎭⎫76,+∞ C.⎣⎡⎭⎫-2,76 D .⎝⎛⎭⎫-2,-76 A [解析] 依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥76,∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <76;B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <76,选A. 3.(2017·宜春中学、新余一中联考)已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x <1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}C [解析] 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x <1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁R B )∩A ,因为∁R B ={x |x ≥0},所以(∁R B )∩A ={x |0≤x <6},故选C.角度三 已知集合的运算结果求参数的值(范围)4.(2017·河南省六市第一次联考)已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)B[解析] 因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.[学生用书P4])——集合中的创新问题以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托.如果集合A满足若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.【解析】由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.【答案】{0,6}解决集合创新型问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.1.设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A ={x|0<x<2},B={y|y≥0},则A⊗B=________.[解析] 由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).[答案] {0}∪[2,+∞)2.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“单一元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“单一元”的集合共有________个.[解析] 符合题意的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.[答案] 6[学生用书P259(独立成册)])1.(2016·高考天津卷)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( )A .{1}B .{4}C .{1,3}D .{1,4}D [解析] 由题意得,B ={1,4,7,10},所以A ∩B ={1,4}. 2.设集合M ={x |x 2-2x -3<0,x ∈Z },则集合M 的真子集个数为( ) A .8 B .7 C .4D .3B [解析] 依题意,M ={x |(x +1)·(x -3)<0,x ∈Z }={x |-1<x <3,x ∈Z }={0,1,2},因此集合M 的真子集个数为23-1=7,故选B .3.(2017·南昌月考)设集合P ={a 2,log 2a },Q ={2a ,b },若P ∩Q ={0},则P ∪Q =( ) A .{0,1} B .{0,1,2} C .{0,2}D .{0,1,2,3}B [解析] 因为P ∩Q ={0},所以0∈P ,只能log 2a =0,所以a =1,a 2=1,又0∈Q ,因为2a =21=2≠0,所以b =0,所以,P ={0,1},Q ={2,0},所以P ∪Q ={0,1,2}.4.(2017·河南省八市重点高中质量检测)若U ={1,4,6,8,9},A ={1,6,8},B ={4,6},则A ∩(∁U B )等于( )A .{4,6}B .{1,8}C .{1,4,6,8}D .{1,4,6,8,9}B [解析] 因为U ={1,4,6,8,9},A ={1,6,8},B ={4,6},所以∁U B ={1,8,9},因此A ∩(∁U B )={1,8},故选B .5.(2017·湖南省东部六校联考)已知集合M ={-2,-1,0,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x ≤4,x ∈Z ,则M ∩N =( )A .{-2,-1,0,1,2}B .{-1,0,1,2}C .{-1,0,1}D .{0,1}C [解析] 由12≤2x ≤4,解得-1≤x ≤2,即集合N ={-1,0,1,2},所以M ∩N ={-1,0,1},故选C.6.(2017·石家庄教学质量检测(二))设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪1x <2,则下列结论正确的是( )A .N ⊆MB .M ⊆NC .M ∩N =∅D .M ∪N =RB [解析] 因为1x -2<0,即2x -1x >0,解得x <0或x >12,因为N =(-∞,0)∪⎝⎛⎭⎫12,+∞,又M ={1,-1},所以可知B 正确,A ,C ,D 错误,故选B .7.已知全集U =Z ,P ={-2,-1,1,2},Q ={x |x 2-3x +2=0},则图中阴影部分表示的集合为( )A .{-1,-2}B .{1,2}C .{-2,1}D .{-1,2}A [解析] 因为Q ={1,2},所以P ∩(∁U Q )={-1,-2},故选A.8.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( )A .9B .8C .7D .6C [解析] 由x 2-4x <0得0<x <4,所以M ={x |0<x <4}.又因为N ={x |m <x <5},M ∩N ={x |3<x <n },所以m =3,n =4,m +n =7.9.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( ) A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5} A [解析] 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.10.(2017·湖北省七市(州)协作体联考)已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C.130 D.117B[解析] 由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.11.(2017·开封市第一次模拟)设集合A={n|n=3k-1,k∈Z},B={x||x-1|>3},则A∩(∁R B)=()A.{-1,2} B.{-2,-1,1,2,4}C.{1,4} D.∅A[解析] 当k=-1时,n=-4;当k=0时,n=-1;当k=1时,n=2;当k=2时,n=5.由|x-1|>3,得x-1>3或x-1<-3,即x>4或x<-2,所以B={x|x<-2或x>4},∁R B={x|-2≤x≤4},A∩(∁R B)={-1,2}.12.(2017·临沂质检)已知全集U=R,集合A={x|x2-3x+2>0},B={x|x-a≤0},若∁U B ⊆A,则实数a的取值范围是()A.(-∞,1) B.(-∞,2]C.[1,+∞) D.[2,+∞)D[解析] 因为x2-3x+2>0,所以x>2或x<1.所以A={x|x>2或x<1},因为B={x|x≤a},所以∁U B={x|x>a}.因为∁U B⊆A,借助数轴可知a≥2,故选D.13.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为________.[解析] 根据并集的概念,可知{a,a2}={4,16},故只能是a=4.[答案] 414.(2017·山西省高三考前质量检测)设全集U={x∈Z|-2≤x≤4},A={-1,0,1,2,3}.若B⊆∁U A,则集合B的个数是________.[解析] 由题意得,U={-2,-1,0,1,2,3,4},所以∁U A={-2,4},所以集合B 的个数是22=4.[答案] 415.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.[解析] 因为全集U={1,2,3,4,5,6,7,8,9},由∁U(A∪B)={1,3},得A∪B={2,4,5,6,7,8,9},由A∩(∁U B)={2,4}知,{2,4}⊆A,{2,4}⊆∁U B.所以B={5,6,7,8,9}.[答案] {5,6,7,8,9}16.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.[解析] 因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32; ②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1. 综上,可得a 的取值范围是(-∞,-1].[答案] (-∞,-1]17.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.[解析] 因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).[答案] (-∞,-1]∪(0,1)18.已知集合M ={1,2,3,4},集合A 、B 为集合M 的非空子集,若∀x ∈A 、y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有_____个.[解析] 当A ={1}时,B 有23-1=7种情况,当A ={2}时,B 有22-1=3种情况,当A ={3}时,B 有1种情况,当A ={1,2}时,B 有22-1=3种情况,当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况,所以满足题意的“子集对”共有7+3+1+3+1+1+1=17个.[答案] 1719.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .[解] (1)因为9∈(A ∩B ),所以2a -1=9或a 2=9,所以a =5或a =3或a =-3.当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性;当a =-3时,A ={-4,-7,9},B ={-8,4,9},所以a =5或a =-3.(2)由(1)可知,当a =5时,A ∩B ={-4,9},不合题意,当a =-3时,A ∩B ={9}.所以a =-3.20.(2017·徐州模拟)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.[解] (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).。

相关文档
最新文档