2014湖北部分州市中考数学真题选编——典型选择、填空、中档题(直线形和圆为主)考点解析20150514

合集下载

湖北省2014年九年级下学期期中考试数学试题(含答案)

湖北省2014年九年级下学期期中考试数学试题(含答案)

湖北省鄂州市2013-2014学年九年级下学期期中考试数学试题学校: 考生姓名: 准考证号:注意事项:1.本试卷共4页,满分120分,考试时间120分钟。

2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题有10个小题,每小题3分,共30分) 1.-2的相反数是( )A .- 1 2B . 1 2C .-2D .22.下列运算正确的是( )A .1234x x x =⋅B .8143)(x x =C .()034≠=÷x x x xD .743x x x =+3.下列四个立体图形中,主视图为圆的是( )A .B .C .D .4.在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( )A .7145B .1421 C .53 D .721 5.点A 在双曲线xky =上,AB ⊥x 轴于B ,且△AOB 的面积为3,则k =( ) A .3B .6C .±3D .±66.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A .2.5B .5C .10D .157.在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,这样的直线最多可以作( ) A .2条 B .3条 C .4条 D .6条8.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2B .a <2C .a <2且a ≠1D .a <-29.如图,抛物线y 1=a (x +2)2-3与1)3(2122+-=x y 交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B 、C ,则以下结论:①无论x 取何值,y 2总是正数;②a =1;③当x =0时,y 1-y 2=4;④2AB =3AC .其中正确的是( ) A .①② B .②③ C .③④D .①④10.如图,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是( )A .(-75,-65)B .(75,65) C .(-75,65)D .(75,-65)二、填空题(每小题3分,共18分)11.16的算术平方根是____________.12.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是____________.13.已知关于x 的方程2x +mx -2=3的解是正数,则m 的取值范围为____________.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是____________米/秒.15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为____________.第14题图第15题图第16题图16.如图,在Rt △ABC 中,∠ABC =90°,∠C =60°,AC =10,将BC 向BA方向翻折过去,第9题图D200 220100使点C 落在BA 上的点C ′,折痕为BE ,则EC 的长度是 .三、解答题(17—20每题8分,21—22每题9分,23题10分,24题12分,共72分) 17.(满分8分)先化简,再求值:211aa a a a ⎛⎫+÷⎪--⎝⎭,其中1a =.18.(满分8分)如图,在等腰Rt △ABC 中,∠C =90°,正方形DEFG的顶点D 在边AC 上,点E ,F 在边AB 上,点G 在边BC 上. ⑴求证:△ADE ≌△BGF ;⑵若正方形DEFG 的面积为16,求AC 的长.19.(满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图. 请根据以上信息回答:⑵将不完整的条形图补充完整.⑶若居民区有8000人,请估计爱吃D 粽的人数?⑷若有外型完全相同的A 、B 、C 、D 粽各一个煮熟后,小王吃了俩个,用列表或画 树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(满分8分)已知关于x的一元二次方程x 2+(m +3)x +m +1=0.⑴求证:无论m 取何值,原方程总有两个不相等的实数根;⑵若x 1,x 2是原方程的两根,且12x x -=m 的值,并求出此时方程的两根. 21.(满分9分)东方山是鄂东南地区的佛教圣地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视塔.据黄石地理资料记载:东方山海拔DE =453.20米,月亮山海拔CF =442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A 处测得月亮山山顶C 的俯角为α,在月亮山山顶C 的正上方B 处测第18题图 东方山 月亮山得东方山山顶D 处的俯角为β,如图,已知tan α=0.15987,tan β=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A 到B 处需多少时间?(精确到0.1秒)22.(满分9分)如图,在△ABC 中,AB =AC ,∠BAC =54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F . ⑴求证:BE =CE ; ⑵求∠CBF 的度数; ⑶若AB =6,求的长.23.(满分10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担,李明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =-10x +500.⑴李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?⑵设李明获得的利润为W (元),当销售单价定为多少元时,每月可获得最大利润? ⑶物价部门规定,这种节能灯的销售单价不得高于25元,如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元? 24.(满分12分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以O A 为边作等边三角形OAB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿着OC 向点C 运动,动点Q 从B 点出发沿着BA 向点A 运动,P ,Q 两点同时出发,速度均为1个单位/秒。

湖北省襄阳市2014年中考数学试卷(word版含解析)

湖北省襄阳市2014年中考数学试卷(word版含解析)

2013年谷城县初中毕业适应性考试数学试题(本试卷共4页,满分120分.考试时间120分钟.)★祝 考 试 顺 利★ 注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B 铅笔或0.5毫米黑色签字笔.4.考试结束后,请将本试题卷与答题卡一并上交.一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.21-的相反数是( ) D A. 2- B. 2 C. 21- D. 21 2.如图,将三角尺的直角顶点放在直线a 上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )CA. 50°B. 60°C. 70°D. 80°3.下列计算正确的是( )DA. 532x x x =+B. 632x x x =⋅C. 532)(x x =D. 235x x x =÷ 4.据科学家估计,地球的年龄大约是46亿年,46亿这个数用科学记数法表示为( )CA.4.6×108B. 46×108C. 4.6×108D. 0.46×10105.某不等式组的解集在数轴上表示如图,则这个不等式组可能是( B )A.23x x -⎧⎨⎩≥≤B.23x x -⎧⎨<⎩≥C.⎩⎨⎧<->32x xD.23x x >-⎧⎨⎩≤6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m )1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是( )CA.1.65 , 1.70 B.1.70 , 1.70 C.1.70 , 1.65 D.3 , 47.下列图形中,既是轴对称图形又是中心对称图形的是( )A8.下列四个几何体中,主视图与左视图相同的几何体有( )DA .1个B .2个C .3个D .4个 9.已知关于x 的一元二次方程(a ﹣l )x 2﹣2x +l=0有两个不相等的实数根,则a 的取值范围是( )CA .a >2B .a <2C .a <2且a ≠lD .a <﹣210.在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( )BA .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =-+D .2(2)2y x =+-11.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是( )DA .B .C .D . 12.如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC =60°.若动点P以2cm/s 的速度从B 点出发沿着B→A 的方向运动,点Q 从A 点出发沿着A →C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t(s),当△APQ 是直角三角形时,t 的值为( ) C A.34 B. 33- C. 34或33- D. 34或33-或3 二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13.计算(348227)3-÷ = . 614.一次函数y =m x +∣m -1∣的图象过点(0,2),且y 随x 的增大而增大,则m = .315.如图所示,小明和小龙玩转陀螺游戏,他们分别同时转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是 .41 16.在△ABC 中,cosB=23,AB=8cm ,AC=5cm ,则△ABC 的面积= cm 2. 17.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为 .2π3三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本小题满分5分)已知:x =5+3,y =5-3,求:)(y x y x y x y x +---+·)11(22y x -的值.19. (本小题满分6分)如图,在平面直角坐标系中,一次函数111+=x k y 的图象与y 轴交于点A,与x 轴交于点B,与反比例函数xk y 22=的图象分别交于点M、N,已知△AOB 的面积为1,点M的纵坐标为2.(1)求一次函数与反比例函数的解析式;(2)直接写出1y >2y 时,x 的取值范围.A B D CO20.(本小题满分6分)某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所给信息解答下列问题:(1)这次数学知识竞赛获得二等奖人数是多少?(2)请将条形统计图补充完整;(3)若给所有参赛学生每人发一张卡片,各自写自己名字,然后把卡片放入一个不透明的袋子内,摇匀后任意摸取一张卡片,求摸出的卡片上是写有一等奖学生名字的概率。

2014年湖北省黄冈市中考数学试卷(附答案与解析)

2014年湖北省黄冈市中考数学试卷(附答案与解析)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前湖北省黄冈市2014年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的立方根是( ) A .2-B .2±C .2D .12- 2.如果α与β互为余角,则( ) A .180αβ+=︒B .180αβ-=︒C .90αβ-=︒D .90αβ+=︒ 3.下列运算正确的是( )A .236x x x =B .65x x x ÷=C .246()x x -=D .235x x x +=4.如图所示的几何体的主视图是( )ABC D 5.函数y =,自变量x 的取值范围是( ) A .0x ≠B .2x ≥C .20x x ≠>且D .20x x ≠≥且 6.若α、β是一元二次方程0622=-+x x 的两根,则22αβ+=( ) A .8-B .32C .16D .407.如图,圆锥体的高cm h =,底面圆半径2cm r =,则圆锥体的全面积为( )A.2cm B .28πcm C .212πcm D.24)πcm8.已知,在ABC △中,=10BC ,BC 边上的高5h =,点E 在边AB 上,过点E 作EF BC ∥,交AC 边于点F .点D 为BC 边上一点,连接DE ,DF .设点E 到BC 的距离为x ,则DEF △的面积S 关于x 的函数图象大致为( )ABCD第Ⅱ卷(非选择题 共96分)二、填空题(本大题共7小题,每小题3分,共21分.把答案填写在题中的横线上)9.计算:1||3-= .10.分解因式:22(21)a a +-= . 11.. 12.如图,若AD BE ∥,且90ACB ∠=︒,30CBE ∠=︒,则CAD ∠= 度.13.当12-=x 时,代数式222111x x x x x x x-+-÷+++的值是 .14.如图,在O 中,弦CD 垂直于直径AB 于点E ,若30BAD ∠=︒,且2BE =,则毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)CD = .15.如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 cm .三、解答题(本大题共10小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分5分)解不等式组:215,311.2x x x -⎧⎪⎨+-⎪⎩>①≥②并在数轴上表示出不等式组的解集.17.(本小题满分6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需多少元?18.(本小题满分6分)已知,如图所示,AB AC =,BD CD =,DE AB ⊥于E ,DF AC ⊥于点F ,求证:DE DF =.19.(本小题满分6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛. (1)请用树形图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率.20.(本小题满分7分)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 与AB 交于点D ,过点D 作O 的切线,交BC 于点E .(1)求证:EB EC =;(2)若以点O ,D ,E ,C 为顶点的四边形是正方形,试判断ABC △的形状,并说明理由.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)21.(本小题满分7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味的牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如下两张不完整的人数统计图.(1)本次被调查的学生有 名;(2)补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味牛奶要比原味多送多少盒?22.(本小题满分9分) 如图,已知双曲线1y x =-与两直线x y 41-=,kx y -=(0>k 且41≠k )分别相交于A ,B ,C ,D 四点.(1)当点C 的坐标为(1,1)-时,A ,B ,D 三点坐标分别是A ( , ),B ( , ),D ( , );(2)证明:以A ,D ,B ,C 为顶点的四边形是平行四边形; (3)当k 为何值时,□ADBC 是矩形;23.(本小题满分7分)如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B两船相距1)海里,船C 在船A 的北偏东60︒方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75︒方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号);(2)已知距观测点D 处100海里范围内有暗礁.若巡逻船A 沿直线AC 去营救船C ,在毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共32页) 数学试卷 第8页(共32页)去营救的途中有无触礁危险?(1.411.73≈)24.(本小题满分9分)某地实行医疗保险(以下简称“医保”)制度,医保机构规定: 一、每位居民年初缴纳医保基金70元;二、居民每个人当年治病所花的医疗费(以定点医院的医疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用.如果设一位居民当年治病花费的医疗费为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和年初缴纳的医保基金)记为y 元.(1)当0x n ≤≤时,70y =;当6000n x <≤时,y = (用含n 、k 、x 的代数式表示);(2)表二是该地A ,B ,C 三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n 、k 的值;(3)该地居民周大爷2013年看病的医疗费用共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(本小题满分13分)已知,如图所示,在四边形OABC 中,AB OC ∥,BC x ⊥轴于C ,(1,1)A -,(3,1)B -,动点P 从O 点出发,沿着x 轴正方向以每秒2个单位长度的速度移动.过点P 作PQ 垂直于直线OA ,垂足为点Q .设点P 移动的时间为t 秒02)t (<<,OPQ △与四边形OABC 重叠部分的面积为S .(1)求经过O ,A ,B 三点的抛物线的解析式并确定顶点M 的坐标; (2)用含t 的代数式表示点P 、点Q 的坐标;(3)如果将OPQ △绕点P 按逆时针方向旋转90︒,是否存在t ,使得OPQ △的顶点O 或Q 落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由; (4)求出S 与t 的函数关系式;5 / 16湖北省黄冈市2014年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据立方根的定义,3(2)8-=-Q ,8∴-的立方根是2-,故选A. 【考点】立方根. 2.【答案】D【解析】若两个角的和是90︒,则这两个角互余,故90αβ+=︒,故选D. 【考点】互余. 3.【答案】B【解析】同底数幂相乘,底数不变,指数相加,故23235x x xx +==g ,A 错误;同底数幂相除,底数不变,指数相减,故6565x x x x -÷==,B 正确;幂的乘方,底数不变,指数相乘,故24248()x x x ⨯-==,C错误;2x 与3x 不是同类项,不能合并,故D 错误,故选B. 【考点】幂. 4.【答案】D【解析】根据几何体的形状可知从正面看到的图象为D ,故选D. 【考点】几何体的三视图,难度较小. 5.【答案】B【解析】根据二次根式被开方数是非负数,分式的分母不能等于0,得20,0,x x -⎧⎨≠⎩≥解得2x ≥,故选B.【考点】函数自变量的取值范围. 6.【答案】C 【解析】若α,β是方程2260x x +-=的两根,则2b aαβ+=-=-,6c aαβ==-,所以2222()2(2)2(6)16αβαβαβ+=+-=--⨯-=,故选C.【考点】一元二次方程的根与系数的关系. 7.【答案】C数学试卷 第11页(共32页)数学试卷 第12页(共32页)【解析】设圆锥的母线长为l ,根据勾股定理,4l ==,故圆锥的全面积22πππ24π212πrl r =+=⨯⨯+=g ,故选C. 【考点】圆锥表面积的计算. 8.【答案】D【解析】EF BC ∥Q ,AEF ABC ∴△△:,相似三角形对应边上的高之比等于相似比,5510x EF-∴=,102EF x ∴=-,21(102)52S x x x x ∴=-=-+(05x ≤≤),由此可知,S 是关于x 的二次函数且图象开口向下,故选D.【考点】动点问题的函数图象,相似三角形的性质,三角形的面积.第Ⅱ卷二、填空题9.【答案】13【解析】根据负数的绝对值等于它的相反数,故1133-=. 【考点】绝对值. 10.【答案】(31)(1)a a ++【解析】原式(21)(21)(31)(1)a a a a a a =+++-=++g . 【考点】平方差公式分解因式. 11.【答案】2【解析】原式22=-=. 【考点】二次根式的化简与计算. 12.【答案】60【解析】A D B E ∥Q ,180DAB ABE ∴∠+∠=︒,即180DAC CAB ABC CBE ∠+∠+∠+∠=︒,又90ACB ∠=︒Q ,90CAB ABC ∴∠+∠=︒,90DAC CBE ∴∠+∠=︒,而30CBE ∠=︒,60DAC ∴∠=︒.【考点】直角三角形的性质,平行线的性质. 13.【答案】3-7 / 16【解析】原式22(1)(1)(1)11x x x x x x x x x x -+=+=-+=+-g,当1x =时,原式21)3==-【考点】代数式的化简与求值. 14.【答案】【解析】连接OD ,根据同弧所对的圆周角等于圆心角的一半,260BOD BAD ∴∠=∠=︒,设O e 半径是r ,则2OE r =-,在Rt DOE △中,cos OE BOE OD ∠=,即2cos60r r-︒=,解得4r =,2OE ∴=,4OD =,又由勾股定理得DE =,根据垂径定理2CD DE ==. 【考点】圆周角定理,垂径定理,解直角三角形.15.【答案】252或10【解析】分类谈论:(1)等腰三角形的顶角的顶点与矩形的顶点重合,如图a ,则5AE AF ==,此时,112555222AEF S AE AF ==⨯⨯=△g ;(2)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 与宽AB 上,如图b ,此时5EF AE ==,651BE =-=,在Rt EBF △中,根据勾股定理,BF ==,11522AEF S AE BF ==⨯⨯=△g (3)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 在长AD 上,如图c ,此时5EF AE ==,853DE =-=,在Rt EDF △中,根据勾股定理,4DF ==,11541022S AE DF ==⨯⨯=△AEF g ;故答案是252或10.【考点】等腰三角形的画法,三角形的面积计算. 三、解答题16.【答案】解:解不等式①得3x >; 解不等式②的1x ≥.∴原不等式组的解集为3x >,不等式组的解集在数轴上表示如下:数学试卷 第15页(共32页)数学试卷 第16页(共32页)【考点】一元一次不等式组.17.【答案】购买一台电子白板需8 000元,购买一台投影机需4 000元.【解析】解:设购买一块电子白板需x 元,购买一台投影机需y 元,依题意列方程组234000,4344000.x y x y -=⎧⎨+=⎩解得8000,4000.x y =⎧⎨=⎩答:购买一台电子白板需8 000元,购买一台投影机需4 000元. 【考点】二元一次方程组在实际问题中的应用. 18.【答案】证法一:连接AD.AB AC =Q ,BD CD =,AD AD =,ABD ACD ∴△≌△.BAD CAD ∴∠=∠.AD ∴是EAF ∠的平分线.又DE AB ⊥Q ,DF AC ⊥,DE DF ∴=. 证法二:证ABD ACD △≌△,得ACD ABD ∠=∠.DCF DBE ∴∠=∠.又90DFC DEB ∠=∠=︒Q ,DC DB =,DFC DEB ∴△≌△.DE DF ∴=.【考点】全等三角形的判定和性质. 19.【答案】解:(1)树形图:∴共有12种选派方案.(2)恰有一男一女参赛共有8种可能,82123P∴==(一男一女).【考点】列举法或树状图求概率.20.【答案】(1)解:(1)证法一:如图,连接CD.ACQ为Oe的直径,90ACB∠=︒,CB∴为Oe的切线.又DEQ切Oe于点D,ED EC∴=.CDE DCE∴∠=∠.ACQ为Oe直径,90ADC∴∠=︒.90CDE EDB∴∠+∠=︒,90DCE CBD∠+∠=︒.9 / 16数学试卷 第19页(共32页)数学试卷 第20页(共32页)EDB CBD ∴∠=∠.ED EB ∴=.EB EC ∴=.证法二:如图,连接OD .AC Q 为O e 的直径,90ACB ∠=︒,CB ∴为O e 的切线.又DE Q 切O e 与点D ,EB EC ∴=,90ODE ∠=︒.90ODA EDB ∴∠+∠=︒. OA OD =Q ,ODA OAD ∴∠=∠.又90OAD DBE ∠+∠=︒Q ,EDB DBE ∴∠=∠.ED EB ∴=.EB EC ∴=.(2)ACB △为等腰直角三角形. 理由:Q 四边形ODEC 为正方形,OC CE ∴=,90ACB ∠=︒.又12OC AC =Q ,12CE EB BC ==,AC BC ∴=.ACB ∴△为等腰直角三角形.【考点】圆的切线的判定和性质,等腰三角形的判定和性质,正方形的性质,等腰直角三角形的判定. 21.【答案】(1)200. (2)40.90︒.(3)144.【解析】解:(1)200(2)如图,补全条形图(40人)喜好“菠萝味”学生人数在扇形统计图中所占圆心角度数为5036090200⨯︒=︒. (3)6238241200()1200144200200200⨯-=⨯=(盒) 答:每次草莓味要比原味多送144盒.【考点】条形统计图,扇形统计图的理解与应用.22.【答案】解:(1)1(2,)2A -,1(2,)2B -,(1,1)D -. (2)证法一:Q 反比例函数1y x =-的图象关于原点对称,过原点的直线14y x =-也关于原点对称,OA OB ∴=.同理OC OD =. ∴四边形ADBC 是平行四边形. 证法二:14y x =-Q 与1y x=-交于A ,B 两点, 1(2,)2A ∴-,1(2,)2B -. ∴由勾股定理知222117(2)()24OA =-+=, 2221172()24OB =+-=. 22OA OB ∴=.OA OB ∴=.y kx =-Q 与1y x =-交于C ,D 两点,(C k ∴,(D k. 21OC k k ∴=+,21OD k k =+.数学试卷 第23页(共32页)22OC OD ∴=.OC OD ∴=.∴四边形ADBC 是平行四边形.(3)当4k =时,ADBC Y 为矩形.理由:当OA OC =时,22AB OA OC CD ===.ADBC ∴Y 为矩形.此时由22OA OC =得1174k k +=,217104k k -+=, 14k ∴=,214k =. 又14k ≠Q ,4k ∴=. 4k ∴=时,ADBC Y 为矩形.【考点】待定系数法求函数的解析式,平行四边形的判定,矩形的判定,勾股定理. 23.【答案】(1)A 与C 间距离为200海里,A 与D间距离为1)-海里. (2)船A 沿直线AC 航行,前往船C 处途中无触礁危险.【解析】解:(1)如图,过C 作CE AB ⊥于点E .设AE a =海里,则1)BE AB AE a =-=-(海里).在Rt ACE △中,90AEC ∠=︒,60EAC ∠=︒,21cos602AE a AC a ∴===︒海里,tan 60CE AE =︒g 海里.在Rt BCE △中,BE CE =,1)a ∴-=.100a ∴=海里.2200AC a ∴==海里.在ACD △和ABC △中,180456075ACB ADC ∠=︒-︒-=︒=∠,CAD BAC ∠=∠,ACD ABC ∴△△:,AD AC AC AB∴=. 即200AD =1)AD ∴=.答:A 与C 间距离为200海里,A 与D 间距离为1)海里.(2)如图,过D 作DF AC ⊥于点F .在Rt ADF △,60DAF ∠=︒,sin601)2DF AD ∴=︒=⨯g100(3127100=-≈>. ∴船A 沿直线AC 航行,前往船C 处途中无触礁危险.【考点】解直角三角形.24.【答案】(1)()%70y x n k =-+g .(2)50040.n k =⎧⎨=⎩, (3)7 470【解析】解:(1)()%70y x n k =-+g .(2)由表二易知400n ≥,且800x =时,190y =,1500x =时,470y =.(800)%70190,(1500)%70470.n k n k -+=⎧∴⎨-+=⎩g g 解得500,40.n k =⎧⎨=⎩(3)当6000x >时,(6000500)40%(6000)20%70y x =-⨯+-⨯+数学试卷 第27页(共32页)0.21070x =+,∴当32000x =时,0.23200010707470y =⨯+=(元).(直接代入计算也可)【考点】列代数式的应用,二元一次方程组的应用.25.【答案】(1)4(2,)3-. (2)(2,0)P t ,(,)Q t t -.(3)①12t =. ②1t =(4)见解析.【解析】解:(1)Q 抛物线过原点(0,0)O , ∴可设经过A ,B ,O 三点的抛物线解析式为2y ax bx =+(或直接设2y ax bx c =++).将(1,1)A -,(3,1)B -代入2y ax bx =+中,得1,93 1.a b a b +=-⎧⎨+=-⎩1,34.3a b ⎧=⎪⎪∴⎨⎪=-⎪⎩ 21433y x x ∴=-. ∴抛物线221414(2)3333y x x x =-=--,顶点M 的坐标为4(2,)3-.(2)Q 点A 坐标为(1,1)-,45COA ∴∠=︒.OPQ ∴△为等腰直角三角形.过Q 作QD x ⊥轴于D.2OP t =Q ,11222OD OP t t ∴==⨯=,12DQ OP t ==. ∴点P 坐标为(2,0)P t ,点Q 坐标为(,)Q t t -.(3)当OPQ △绕点P 逆时针旋转90︒后,点O 坐标为(2,2)t t -,点Q 的坐标为(3,)t t -.①若点O 在21433y x x =-上, 则214(2)2233t t t ⨯-⨯=-,220t t -=. 10t ∴=,212t =.02t <<Q ,12t ∴=. 12t ∴=时点(1,1)O -在21433y x x =-上.(只需求出t 的值即可). ②若点Q 在21433y x x =-上, 则214(3)(3)33t t t ⨯-⨯=-,20t t -=. 10t ∴=,21t =.又02t <<Q ,1t ∴=.1t ∴=时点(3,1)Q -在21433y x x =-上.(只需求出t 的值即可). (4)如图,分三种情况讨论:①当01t <≤时, 211222OPQ Q S S OP y t t t ===⨯⨯=△g . (方法二:212OPQ S S OQ ==△) ②当312t <≤时,设P Q ''交AB 与E . OP Q ABQ S S S '''=-△△.AB OC ∥Q ,45Q AE '∴∠=︒,数学试卷 第31页(共32页)AEQ '∴△为等腰直角三角形.cos4522OQ OP t ''∴=︒==g. 1)AQ OQ OA t ''∴=--.221(1)2AEQ S AQ t ''∴==-△. 22(1)21S t t t ∴=--=-.(方法二:OAEP S S '=梯形) ③如图,当322t <<时,设P Q ''''交BC 于点F ,交AB 于点E ', 则OP Q AE Q CFP S S S S '''''''''=--△△△.221(1)2AE Q S AQ t '''''==-△Q , 2211(23)22CFP S CP t ''''==-△, 2222111(1)(23)2822S t t t t t ∴=----=-+-. (方法二:BE F OABC S S S '=-△梯形)22(01),321(1),211328(2).22t t S t t t t t ⎧⎪⎪⎪∴=-⎨⎪⎪-+-⎪⎩<≤<≤<< 【考点】求抛物线解析式,抛物线顶点坐标,动点问题,面积的计算,点的存在.。

2014年湖北省鄂州市中考数学试卷附详细答案(原版+解析版)

2014年湖北省鄂州市中考数学试卷附详细答案(原版+解析版)

2014年湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)(2014•鄂州)的绝对值的相反数是()A.B.C.2D.﹣22.(3分)(2014•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5 3.(3分)(2014•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.4.(3分)(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°5.(3分)(2014•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±6.(3分)(2014•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°7.(3分)(2014•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.8.(3分)(2014•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2016(1﹣x)2=1500 B.1500(1+x)2=2160C.1500(1﹣x)2=2160 D.1500+1500(1+x)+1500(1+x)2=2160 9.(3分)(2014•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.A.①②③B.②③④C.①③④D.①②③④10.(3分)(2014•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A),B(0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3二、填空题:(每小题3分,共18分)11.(3分)(2014•鄂州)的算术平方根为.12.(3分)(2014•鄂州)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为.13.(3分)(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为.14.(3分)(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k (k≠0)与线段AB有交点,则k的取值范围为.15.(3分)(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.16.(3分)(2014•鄂州)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(8分)(2014•鄂州)先化简,再求值:(+)÷,其中a=2﹣.18.(8分)(2014•鄂州)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.19.(8分)(2014•鄂州)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=,甲班学生成绩的中位数落在等级中,扇形统计图中等级D部分的扇形圆心角n=.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).20.(8分)(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.21.(9分)(2014•鄂州)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.22.(9分)(2014•鄂州)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD 于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.23.(10分)(2014•鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?24.(12分)(2014•鄂州)如图,在平面直角坐标系xOy中,一次函数y=x+m的图象与x 轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.2014年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2014•鄂州)的绝对值的相反数是()A.B.C.2D.﹣2考点:绝对值;相反数.分析:根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣的绝对值为;再根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为﹣;解答:解:﹣的绝对值为:|﹣|=,的相反数为:﹣,所以﹣的绝对值的相反数是为:﹣,故选:B.点评:此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.2.(3分)(2014•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=﹣8x6,错误;B、原式=9a2﹣6ab+b2,错误;C、原式=x5,正确;D、原式不能合并,错误,故选C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(3分)(2014•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.点评:本题考查简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°考点:平行线的性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)(2014•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:分两种情况:点A在第一象限或第二象限,从而得出点B的坐标,再根据△AOB为等边三角形,△AOB的边长为2,求出点A坐标,即可得出k值.解答:解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(1,),∵点A为双曲线y=(k≠0)上一点,∴k=;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(﹣2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(﹣1,),∵点A为双曲线y=(k≠0)上一点,∴k=﹣;故选D.点评:本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.6.(3分)(2014•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°考点:圆锥的计算.专题:计算题.分析:设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.解答:解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选D.点评:本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)(2014•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.考点:菱形的判定.分析:首先根据菱形的性质可得BG=GD,然后设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x ﹣y,再根据勾股定理可得y2+x2=(3x﹣y)2,再整理得=,然后可得y=x,再进一步可得的值.解答:解:∵四边形BGDH是菱形,∴BG=GD,设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x﹣y,∵在Rt△AGB中,AG2+AB2=GB2,∴y2+x2=(3x﹣y)2,整理得:=,y=x,∴===,故选:C.点评:此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边形相等.8.(3分)(2014•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2016(1﹣x)2=1500 B.1500(1+x)2=2160C.1500(1﹣x)2=2160 D.1500+1500(1+x)+1500(1+x)2=2160考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程.解答:解:如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意得今年缴税1500(1+x)2,列出方程为:1500(1+x)2=2160.故选B.点评:考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.(3分)(2014•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.A.①②③B.②③④C.①③④D.①②③④考点:中点四边形.专题:规律型.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故①②正确;③根据中位线的性质易知,A7B7═A5B5A3B3=A1B1=AC,B7C7=B5C5=B3C3=B1C1=BD,∴四边形A7B7C7D7的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是,故本选项错误;综上所述,②③①正确.故选A.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.10.(3分)(2014•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A),B(0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3考点:二次函数的性质.专题:计算题.分析:由0<2a<b得x0=﹣<﹣1,作AA1⊥x轴于点A1,CD⊥y轴于点D,连接BC,过点A 作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则AA1=y A,OA1=1,BD=y B ﹣y C,CD=1,易证得Rt△AFA1∽Rt△BCD,利用相似比得到=;过点E作EG⊥AA1于点G,易得△AEG∽△BCD,利用相似比得=,再把点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)代入抛物线y=ax2+bx+c得y A=a+b+c,y B=c,y C=a ﹣b+c,y E=ax12+bx1+c,所以=1﹣x1,整理得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<﹣1,所以1﹣x2≥1﹣x1,即1﹣x2≥3,于是得到≥3,所以的最小值为3.解答:解:由0<2a<b,得x0=﹣<﹣1,由题意,如图,过点A作AA1⊥x轴于点A1,则AA1=y A,OA1=1,连接BC,过点C作CD⊥y轴于点D,则BD=y B﹣y C,CD=1,过点A作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则∠FAA1=∠CBD.于是Rt△AFA1∽Rt△BCD,所以=,即=,过点E作EG⊥AA1于点G,易得△AEG∽△BCD.有=,即=,∵点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)在抛物线y=ax2+bx+c上,得y A=a+b+c,y B=c,y C=a﹣b+c,y E=ax12+bx1+c,∴=1﹣x1,化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,则1﹣x2≥1﹣x1,即1﹣x2≥3.∴≥3,∴的最小值为3.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x 的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题:(每小题3分,共18分)11.(3分)(2014•鄂州)的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.(3分)(2014•鄂州)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为144.考点:算术平均数.分析:先根据平均数的定义由五次成绩的平均数为144得出这五次成绩的总数为144×5,再根据平均数的定义即可求出他七次练习成绩的平均数.解答:解:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144×5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为144.点评:本题考查了平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.(3分)(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为﹣2≤x≤﹣1.考点:一次函数与一元一次不等式.专题:数形结合.分析:先确定直线OA的解析式为y=﹣2x,然后观察函数图象得到当﹣2≤x≤﹣1时,y=kx+b的图象在x轴上方且在直线y=﹣2x的下方.解答:解:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为﹣2≤x≤﹣1.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14.(3分)(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.考点:两条直线相交或平行问题.专题:计算题.分析:由于当x=1时,y=0,所以直线y=kx﹣k过定点(1,0),因为直线y=kx﹣k(k≠0)与线段AB有交点,所以当直线y=kx﹣k过B(4,7)时,k值最小;当直线y=kx﹣k过A(2,3)时,k值最大,然后把B点和A点坐标代入y=kx﹣k可计算出对应的k的值,从而得到k的取值范围.解答:解:∵y=k(x﹣1),∴x=1时,y=0,即直线y=kx﹣k过定点(1,0),∵直线y=kx﹣k(k≠0)与线段AB有交点,∴当直线y=kx﹣k过B(4,7)时,k值最小,则4k﹣k=7,解得k=;当直线y=kx﹣k过A (2,3)时,k值最大,则2k﹣k=3,解得k=3,∴k的取值范围为≤k≤3.故答案为≤k≤3.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.(3分)(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积16﹣4﹣.考点:扇形面积的计算;正方形的性质.分析:如解答图,作辅助线,利用图形的对称性求解.解题要点是求出弓形OmC的面积.解答:解:如图,设点O为弧的一个交点.连接OA、OB,则△OAB为等边三角形,∴∠OBC=30°.过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=AB=,∴OF=2﹣.过点O作PQ⊥BC,分别交AD、BC于点P、Q,则OQ=1.S弓形OmC=S扇形OBC﹣S△OBC=﹣×2×1=﹣1.∴S阴影=4(S△OCD﹣2S弓形OmC)=4[×2×(2﹣)﹣2(﹣1)]=16﹣4﹣.故答案为:16﹣4﹣.点评:本题考查了扇形的面积公式和正方形性质的+应用,主要考查学生的计算能力,题目比较好,难度不大.16.(3分)(2014•鄂州)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为﹣1.考点:正方形的性质;二次函数的最值;全等三角形的判定与性质.分析:如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+y2=z2,和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.解答:解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,∴△AMN≌△AML,∴∠MAN=∠MAL=45°,设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z∴(2﹣y﹣z)2+y2=z2,整理得2y2+(2z﹣4)y+(4﹣4z)=0,∴△=4(z﹣2)2﹣32(1﹣z)≥0,即(z+2+2)(z+2﹣2)≥0,又∵z>0,∴z≥2﹣2,当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=2﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.故答案为﹣1.点评:本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(8分)(2014•鄂州)先化简,再求值:(+)÷,其中a=2﹣.考点:分式的化简求值.分析:将括号内的部分通分,相加后再将除法转化为乘法,然后约分.解答:解:原式=(+)•=•=•=,当a=2﹣时,原式==﹣.点评:本题考查了分式的化简求值,熟悉约分、通分、因式分解是解题关键.18.(8分)(2014•鄂州)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.解答:证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,∴∠DMB=∠BCD=90°,∴BH⊥DE.点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.19.(8分)(2014•鄂州)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=2,甲班学生成绩的中位数落在等级B中,扇形统计图中等级D部分的扇形圆心角n=36°.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).考点:频数(率)分布表;扇形统计图;列表法与树状图法.分析:(1)利用总人数30减去其它各组的人数就是x的值,根据中位数的定义求得中位数的值,利用360°乘以对应的比例就可求得圆心角的度数;(2)甲班的人用甲表示,乙班的人用乙表示,利用列举法即可求得概率.解答:解:(1)x=30﹣15﹣10﹣3=2;中位数落在B组;等级D部分的扇形圆心角n=360°×=36°;故答案是:2,B,36°;(2)乙班A等级的人数是:30×10%=3,则甲班的二个人用甲表示,乙班的三个人用乙表示.,共有20种情况,则抽取到两名学生恰好来自同一班级的概率是:=.点评:考查了频数(率)分布表,本题用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.20.(8分)(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.考点:根的判别式;根与系数的关系.分析:(1)根据关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,得出m≠0且(﹣2m)2﹣4•m•(m﹣2)≥0,求出m的取值范围即可;(2)根据方程两实根为x1,x2,求出x1+x2和x1•x2的值,再根据|x1﹣x2|=1,得出(x1+x2)2﹣4x1x2=1,再把x1+x2和x1•x2的值代入计算即可.解答:解:(1)∵关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,∴m≠0且△≥0,即(﹣2m)2﹣4•m•(m﹣2)≥0,解得m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1•x2=,∵|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,∴22﹣4×=1,解得:m=8;经检验m=8是原方程的解.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根.21.(9分)(2014•鄂州)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF 中可求出AB的长度.解答:解:(1)过点A作AE⊥CB于点E,设AE=x,在Rt△ACE中,∠C=30°,∴CE=x,在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∴CE﹣DE=10,即x﹣x=10,解得:x=5(+1),∴AD=x=5+5答:AD的长为(5+5)米.(2)由(1)可得AC=2AE=(10+10)米,过点B作BF⊥AC于点F,∵∠1=75°,∠C=30°,∴∠CAB=45°,设BF=y,在Rt△CBF中,CF=BF=y,在Rt△BFA中,AF=BF=y,∴y+y=(10+10),解得:y=10,在Rt△ABF中,AB==10米.答:树高AB的长度为10米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用锐角三角函数及已知线段表示未知线段,有一定难度.22.(9分)(2014•鄂州)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.考点:切线的判定.分析:(1)连接OC,推出∠DAC=∠CAB,∠OAC=∠OCA,求出∠DAC=∠OCA,得出OC∥AD,推出OC⊥DC,根据切线的判定判断即可;(2)连接BC,可证明△ACD∽△ABC,得出比例式,求出BC,求出圆的直径AB,再根据勾股定理得出CE,即可求出答案.解答:(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线;(2)解:连接BC,∵AB为直径,∴∠ACB=90°,∵AC平分∠BAD,∴∠CAD=∠CAB,∵=,∴令CD=3,AD=4,得AC=5,∴=,∴BC=,由勾股定理得AB=,∴OC=,∵OC∥AD,∴=,∴=,解得AE=,∴cos∠DAB===.点评:本题考查了切线的判定以及角平分线的定义、勾股定理和解直角三角形,是中学阶段的重点内容.23.(10分)(2014•鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?考点:二次函数的应用.分析:(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解答:解:(1)设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120;(2)当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+﹣40)(﹣2x+120)=﹣2250;(3)当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y=﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,于是,x=25时,y=﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(12分)(2014•鄂州)如图,在平面直角坐标系xOy中,一次函数y=x+m的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.考点:二次函数综合题.分析:(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2=﹣x2的两根分别为x0,x0,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.解答:解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是x=2,∴,解得∴y=﹣x2+x+.∴m的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)要使△ADF的周长取得最小,只需AF+DF最小。

2014年湖北省宜昌市中考数学参考答案与试题解析

2014年湖北省宜昌市中考数学参考答案与试题解析

2014年某某省某某市中考数学参考答案与试题解析本试题共24小题,满分120分,考试时间120分钟.注意事项:1.本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交.3.参考公式:弧长:180n l R π=;二次函数c bx ax y ++=2顶点坐标是(ab ac a b 44,22--).一、选择题 (下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.每小题3分,计45分.) 1.三峡大坝全长约2 309米,这个数据用科学记数法表示为()米.A .2.309×103B .23.09×102C .0.2309×104D . 2.309×10-32.在-2,0,3, 6 这四个数中,最大的数是().A .-2B .0C .3D .63.平行四边形的内角和为().A .180 ºB .270 ºC .360 ºD .540 º4.作业时间是中小学教育质量综合评价指标的考查要点之一.腾飞学习小组五个同学每天课外作业时间分别是(单位:分钟):60, 80, 75,45,120. 这组数据的中位数是().A .45B .75C .80D .605. 如图所示的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是().A .B .C .D .6.已知三角形两边长分别为3和8,则该三角形第三边的长可能是().主视方向(第5题)(第1题)A .5B .10C .11D .12 7.下列计算正确的是().A .2323a a a +=B .326a a a ⋅=C .623a a a ÷=D .333()ab a b =8.2014年3月,YC 市举办了首届中学生汉字听写大会. 从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是(). A .32 B .13 C .14D .19.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A ,B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为12m ,由此他就知道了A ,B 间的距离. 有关他这次探究活动的描述错误..的是(). A .AB = 24mB .MN ∥ABC .△CMN ∽△CABD .CM :MA =1:210.如图,在△ABC 中,AB =AC ,△A =30º,以B 为圆心,BC 的长为半径画弧,交AC 于点D ,连接BD ,则△ABD =(). A .30º B .45º C .60ºD .90º 11.要使分式3x -1有意义,则x 的取值X 围是().A .1x ≠B .1x >C .1x <D .1x ≠-DABC(第10题)(第9题) N MCB12.如图,点A ,B ,C ,D 都在△O 上,AC ,BD 相交于点E ,则∠ABD =().A .∠ACDB .∠ADBC .∠AED D .∠ACB13.如图,在4×4的正方形网格中,每个小正方形的边长为1.若将△AOC 绕点O 顺时针旋转90º得到△BOD ,则△AB 的长为(). A .π B . 6πC .3π D .π14.如图,M ,N 两点在数轴上表示的数分别是,,则下列式子中成立的是().A .0m n +<B .m n -<-C .0m n ->D .22m n +<+(第14题)15.二次函数y =ax 2+b (b >0)与反比例函数y = ax 在同一坐标系中的图象可能是().A .B .C .D .二、解答题.(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分.)16. (6分) 计算:24|2|(6)()3+-+-⨯-.m n y xy xy x 0yx0(第13题)CBDOA(第12题) EOAC3-112MN17. (6分) 化简:2()()2a b a b b +-+.18.(7分) 如图,在Rt△ABC 中,△ACB =90º,△B =30º,AD 平分△CAB .(1)求△CAD 的度数;(2)延长AC 至E ,使CE =AC ,求证:DA =DE . (第18题)19.(7分) 下表中,y 是x 的一次函数.(1)求该函数的表达式,并补全表格;(2)已知该函数图象上一点M (1,-3)也在反比例函数y = mx图象上,求这两个函数图象的另一交点N 的坐标. 20.(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式.有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:DCEAB(第20题)人数交通方式开私家车坐公交车骑自行车步行36m 8骑自行车步行10%开私家车 25%坐公交车 45%(1)填空:样本中的总人数为人;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行、坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使得骑自行车的人数不低于开私家车的人数?21.(8分)已知:如图,四边形ABCD为平行四边形,以CD为直径作△O,△O与边BC相交于点F. △O的切线DE与边AB相交于点E,且AE=3 EB.(1)求证:△ADE△△CDF;(2)当CF:FB=1:2时,求△O与ABCD的面积之比.(第21题)22.(10分)在“文化某某·全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查.2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人. (1)求2014年全校学生人数;(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本.(注:阅读总量=人均阅读量×人数) ①求2012年全校学生人均阅读量;②.如果2013年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a ,2014年全校学生人均阅读量比2012年增加的百分数也是a ,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%.求a 的值.23. (11分)在矩形ABCD 中,ABa AD,点G ,H 分别在边AB ,DC 上,且HA =HG .点E 为AB 边上的一个动点,连接HE ,把△AHE 沿直线HE 翻折得到△FHE .(1)如图1,当DH =DA 时,△ 填空:△HGA =度;△ 若EF △HG ,求△AHE 的度数,并求此时a 的最小值;(2)如图3,△AEH =60º, EG =2 BG ,连接FG ,交边DC 于点P ,且FG △AB ,G 为垂足.求a 的值.GCBDAH(图1 本图仅供参考)(图2 备用)GDA HEF24.(12分)如图, 在平面直角坐标系中,已知点P (0,4),点A 在线段OP 上,点B 在x 轴正半轴上,且AP =OB =t ,0<t <4. 以AB 为边在第一象限内作正方形ABCD ;过点C ,D依次向x 轴,y 轴作垂线,垂足为M ,N .设过O ,C 两点的抛物线为2y ax bx c =++.(1)填空:△AOB △△△△BMC (不需证明);用含t 的代数式表示A 点纵坐标:A (0,); (2)求点C 的坐标,并用含a ,t 的代数式表示b ;(3)当t =1时,连接OD ,若此时抛物线与线段..OD 只有唯一的公共点O ,求a 的取值X 围;(4)当抛物线开口向上,对称轴是直线122x t=-,顶点随着t 的增大向上移动时,求t 的取值X 围.yCDP (N )A2014年某某省某某市中考数学参考答案一.选择题.(本大题共15小题,每小题3分,计45分)二.解答题.(本大题共9小题,计75分)16.解:原式= 2+2+4 ……………………………………………………………(4分)=8 …………………………………………………………………………(6分)17.解:原式=a2-b2+2b2………………………………………………………(4分)= a2+b2…………………………………………………………………(6分)18.解:(1)△∠ACB=90,∴∠CAB+∠B=90.……………………………(1分)又△∠B=30,∴∠CAB=60. ……………………………………………(2分)△AD 平分△CAB ,∴∠CAD =12 ∠CAB , ∴∠CAD =30. ……………(3分)(2)【方法1】△∠ACB =90 ,∴DC ⊥AE .…………………………………………(4分) 又△CE=AC , ∴DC 垂直平分AE.………………………………………(6分) ∴DA=DE . ……………………………………………………………………(7分) 【方法2】△∠ACD +∠ECD =180°,且∠ACD =90°, △∠ECD =90°.△∠ACD =∠ECD . ……………………………………………………………(4分) 在△ACD 和△ECD 中,△AC =EC ,△ACD =△ECD ,CD =CD ,△△ACD △△ECD . ……………………………………………………(6分) △DA =DE . ……………………………………………………(7分) 19.解:(1) 设该一次函数为:(0)y kx b k =+≠,△当2x =-时,6y =;当1x =时,3y =-,∴263k b k b -+=⎧⎨+=-⎩. ………………………………………………………(2分)解之得:3k b =-⎧⎨=⎩……………………………………………………(3分)∴一次函数的表达式为:3y x =-5421-2x表格补全:……………………………………………………………………………(4分) (2)△点M (1,-3)在反比例函数my x=(m ≠0)图象上 ∴31m-=, ∴3m =- ∴反比例函数的关系式为:3y x=-……………………………………(5分) 联立:33y x y x=-⎧⎪⎨=-⎪⎩, 整理得:21x =解之得:x 1=1,x 2=-1………………………………………………(6分) △当x 1=1时,y 1=-3,当x 2=-1时,y 2=3.△另一交点N 的坐标为:(-1,3). ……………………………………(7分) 20.(1)样本中的总人数为 80 人; ……(1分) 开私家车的人数m = 20 ;…………… (2分) 扇形统计图中“骑自行车”所在扇形的圆心角为 72 度;………………(3分) (2)条形统计图补全如右图所示……………… (4分) (3)设原来开私家车的人中有x 人改为骑自行车,1620200020008080x x ⨯+≥⨯-……………(7分) 解之得:50x ≥……………………………(8分)∴原来开私家车的人中至少有50人改为骑自行车,才能使得骑自行车的人数不低于开私家车的人数.(其它解法,参照给分)FOCDE BA(第21题)21.解:(1)【方法1】△CD 为△O 的直径,∴∠DFC =90.…………(1分) △四边形ABCD 为平行四边形 ∴∠A =∠C ,AD ∥BC , ∴∠ADF =∠DFC =90.又△DE 为△O 的切线,∴ED ⊥DC ,∴∠EDC =90,………………(2分) ∴∠ADF =∠EDC =90,∴∠ADE =∠CDF .又△∠A =∠C ,∴△ADE △△CDF . ……………………………(3分) 【方法2】△CD 为△O 的 直径,∴∠DFC =90. …………………………… (1分) △DE 为△O 的切线,∴ED ⊥DC . ……………………………………(2分) △四边形ABCD 为平行四边形,∴∠A =∠C ,AB ∥DC , ∴ED ⊥AB . ∴∠AED =90.又△∠DFC =90, △△AED =△DFC .又△△A =△C , △△ADE △△CDF . ………………………………(3分) (2)解:△CF :FB =1:2,△设CF =x , FB =2x ,则BC =3x . △AE =3EB , △设EB =y , 则AE =3y , AB =4y .△四边形ABCD 为平行四边形, △AD =BC =3x ,AB =DC =4y . △△ADE △△CDF , △AD AE =CDCF , △x y 33=y x4,又△x ,y 均为正数, △x =2y , ………………………………………(5分) △BC =6y ,CF =2y .在Rt △DFC 中,△DFC =90, 由勾股定理得:()()2222423DF DC FC y y y -=-=…(6分)△△O 的面积为:()222211144244DC DC y y ππππ⎛⎫⋅=⋅== ⎪⎝⎭ 四边形ABCD 的面积为:2623123BC DF y y y ⋅=⋅=…………(7分)△△O 与四边形ABCD 的面积之比为:224:123:33y y ππ=…(8分)(其它解法,参照给分)22.解:(1)2013年学生人数为1000×(1+10%)=1100(人),△1100+100=1200即2014年全校学生人数为1200人. …………(1分) (2)△设2012年全校学生人均阅读量为x 本, 2013年全校学生人均阅读量为(x +1)本,1100(x +1)=1000x +1700 ……………………………………(2分) △x =6 …………………………………………………………………(3分) △2012年读书社人均阅读量为2.5×6=15本,2014年读书社人均阅读量为15(1+a )2本, …………………………(4分) 2014年全校学生人均阅读量为6(1+a )本,……………………………(5分) 80×15(1+a )2=1200×6×(1+a )×25%.………………………(8分) △ 2(1+a )2=3(1+a )△a >0 △1+a >0 (或解出另一根a =-1后舍去) 2(1+a )=3△a =0.5 ………………………(10分)(其它解法,参照给分)23.解:(1)△45°. …………………………………………(1分)△分两种情况. 第一种情况(如图): ∵△HAG =△HGA =45°,FGBCDAHE△△AHG =180°-45°-45°=90°.由折叠可知:△HAE =△F =45°,△AHE =△FHE . 又△EF △HG ,△△FHG =△F =450, △△AHF =△AHG -△FHG = 90°-45°=45°, 即:△AHE +△FHE =45°,△△AHE =22.5°. ………………………(2分)此时,当 B 与G 重合时,a 的值最小,最小值是2;………………… (3分)第二种情况(如图):△EF △HG ,△△HGA =△FEA =45°, 即:△AEH +△FEH =45°, 由折叠可知:△AEH =△FEH , △△AEH =△FEH =22.5°,△EF △HG ,△△GHE =△FEH =22.5°, △△AHE =90°+22.5°=112.5°. ……(4分) 此时,当 B 与E 重合时,a 的值最小. 设DH =DA =x ,则AH = GH =2x ,在Rt △AHG 中,△AHG =90,由勾股定理得:AG = 2AH =2x ,△△AEH =△FEH , △GHE =△FEH , △△AEH =△GHE , △GH =GE =2x , △AB =AE =2x +2x , △a 的最小值=2222x xx+=+………………………………………(5分) (2)[方法1]如图,过点H 作HQ △AB 于Q ,则△AQH =△GQH =90°, △在矩形ABCD 中,DC △AB ,又FG △AB , △FG △CD ,FG BCDA HE (第23题)△△FPH =△HPG =△PGQ =90°,△△FPH =△HQA , △HPG =△PGQ =△HQG =90°, △四边形HQGP 为矩形, …………(6分) △HQ =PG ,HP =QG . △HA =HG , HQ △AB △AQ =GQ ,△AQ =HP ,在Rt△AQH 和Rt△HPF 中, AH HF AQ HP=⎧⎨=⎩ , △Rt△AQH △ Rt△HPF ,…………………………………………………(7分) △HQ =FP又△HQ =PG , △PG =PF . △△D =△DPG =△AGP =90°, △四边形AGPD 为矩形, △AD =PG ,△PG =PF =AD .设AD =x ,GB =y 则AB =ax , PG =PF =AD =x ,FG =2x ,EG =2y ,AE =EF =ax -3y , 由折叠可知,△AEH =△FEH =60°,△△FEG =180°-60°-60°=60°,在Rt △EFG 中,FG =EG ×tan60°, 223,3x y x y =⋅∴=,………(9分) FG =EF sin60°,()3232x ax y =-⋅, △733a =………………………………………………………………(11分)[方法2]如图:过点H 作HQ △AB 于Q ,则△AQH =△GQH =90°, 在矩形ABCD 中,△D =△DAQ =90°,△△D =△DAQ =△AQH =90°, △四边形DAQH 为矩形,△AD =HQ . 设AD =x ,GB =y 则HQ =x , EG =2y .由折叠可知,△AEH =△FEH =60°,△△FEG =180°-60°-60°=60°,QP FGBD CAHE(第23题)在Rt △EFG 中,EG =EF ×cos60°,EF =4y , ……………………………(6分) 在Rt △HQE 中,3tan 603HQ EQ x ︒==,…………………………………(7分)△QG=QE+EG=33x +2y △HA =HG , HQ △AB△AQ =GQ=33x +2y ,△AE =AQ+QE=233x +2y 由折叠可知:AE =EF ,△233x +2y=4y △y=33x ,……………(9分) △AB=2AQ+GB =2(33x +2y)+y=733x ,△733AB a AD ==.…(11分) (其它解法,参照给分) 24.解:(1) 填空:△DNA 或△DP A ,A 点坐标为:()0,4A t -; ………………………………………………(2分) (2) 由题意可知:NA =OB =t ,则OA =4t -,△△AOB △△BMC ,△CM =OB =t ,BM =OA =4t -,△OM =OB +BM =t +4t -=4, △()4,C t ……………………………………………………………………(3分) 又抛物线2y ax bx c =++点O ,C 两点,△0164c t a b c=⎧⎨=++⎩,解之得:144b t a =- …………………………(4分)Q P FG BD CAHE (第23题)(3) 当t =1时,抛物线为:2144y ax a x ⎛⎫=+- ⎪⎝⎭,NA =OB =1,OA =3, △△AOB △△DNA ,△DN =OA =3,△()3,4D△直线OD 为:43y x =………………………………(5分) 联立21(4)443y ax a x y x ⎧=+-⎪⎪⎨⎪=⎪⎩消去y ,得: 21313(4)0,041212ax a x x a+--==+或,………………………………(6分) 所以,抛物线与直线OD 总有两个交点.讨论:△当a >0,时,13412a+>3,只有交点O ,所以a >0符合题意;…(7分)△当a <0时,若13412a +>3,则得:a ﹤1312-,又a <0,△a ﹤1312-.………………(8分)若13412a +≤0,则得:a ≥1348-,又a <0,△1348-≤a ﹤0. ……………(9分)综上所述:a 的取值X 围是:a >0或a ﹤1312-或1348-≤a ﹤0.(4) 抛物线为: 2(4)4t y ax a x =+-,顶点坐标为:212,(16)864t t a a a ⎛⎫-+-- ⎪⎝⎭.………………………………(10分)又△对称轴是直线122x t =-,△12282t a t-+=-,△214a t =……………(11分) △顶点坐标为:2112,(14)216t t ⎛⎫--- ⎪⎝⎭,即2112,()24t t ⎛⎫--- ⎪⎝⎭△抛物线开口向上,且随着t 的增大,抛物线的顶点向上移动, △只与顶点纵坐标有关, △t 的取值X 围为:104t <≤.………………………………………………(12分)(第24题 本图仅供参考)BMCDP (N )A Oyx。

2014年湖北恩施州数学中考试题

2014年湖北恩施州数学中考试题

B DAC P E 1、已知:如图,圆内接四边形ABCD 的两边AB 、DC 的延长线相交于点E ,DF 过圆心O 交AB 于点F ,AB =BE ,连结AC ,且OD =3,AF =FB =5,求AC 的长.2.已知:如图26,⊙o 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D , CD=27,AB=BC=3。

求BD 和AC 的长.3、如图,△ABF 、△ADF 均内接于⊙O ,AB 是⊙O 的直径,AD 平分BAF ∠,直线l 与⊙O 相切于D 且与AF 的延长线相交于点E 。

(1)求证:BF ∥DE ;(2)若2DE =,3AF =,试求AD 的长;4. 如图9—1,一个圆球放置在V 形架中.图9—2是它的平面示意图,CA 和CB 都是⊙O 的切线,切点分别是A ,B .如果⊙O 的半径为23cm ,且AB =6cm ,求∠ACB .5.如图6,⊙O 为△ABC 的外接圆,且AB =AC ,过点A 的直线⊙O 于D ,交BC 延长线于F ,DE 是BD 的延长线,连结CD.(1)求证:∠EDF =∠CDF ; (2)求证:2AB AF AD =⋅; (3)若BD 正好是⊙O 的直径,且∠EDC =120°,BC =6cm ,求AF 的长.6、如图,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB 于点E ,∠POC =∠PCE 。

(1) 求证:PC 是⊙O 的切线;(2) 若OE :EA =1:2,PA =6,求⊙O 的半径; (3) 求sin ∠PCA 的值。

7、如图7,已知BC 是⊙O 的直径,AH ⊥BC ,垂足为D ,点A 为»BF 的中点,BF 交AD 于点E ,且BE g EF =32,AD =6.(1) 求证:AE =BE ; (2) 求DE 的长; (3) 求BD 的长 .8、如图,B 为线段AD 上一点,△ABC 和△BDE 都是等边三角形,连结CE 并延长交AD 的延长线于F ,△ABC 的外接圆⊙O 交CF 于M . ⑴ 求证:BE 是⊙O 的切线; ⑵ 求证:AC 2=CM ·CF ;⑶ 若CM =277 ,MF =1277 ,求BD ;⑷ 若过点D 作DG ∥BE 交EF 于G ,过G 作 GH ∥DE 交DF 于H ,则易知△DGH 是等边三角形。

2014年湖北省宜昌市中考数学试卷(精细解析)

2014年湖北省宜昌市中考数学试卷(精细解析)

20####省##市中考数学试卷一、单项选择题〔共15小题,每小题3分,满分45分〕1.〔3分〕〔2014•##〕三峡大坝全长约2309米,这个数据用科学记数法表示为〔〕米.A.2.309×103B.23.09×102C.0.2309×104D.2.309×10﹣3考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2309=2.309×103,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以与n的值.2.〔3分〕〔2014•##〕在﹣2,0,3,这四个数中,最大的数是〔〕A.﹣2B.0C.3D.考点:实数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<0<<3,故选:C.点评:本题考查了实数比较大小,是解题关键.3.〔3分〕〔2014•##〕平行四边形的内角和为〔〕A.180°B.270°C.360°D.640°考点:多边形内角与外角.分析:利用多边形的内角和=〔n﹣2〕•180°即可解决问题解答:解:解:根据多边形的内角和可得:〔4﹣2〕×180°=360°.故选:C.点评:本题考查了对于多边形内角和定理的识记.n边形的内角和为〔n﹣2〕•180°.4.〔3分〕〔2014•##〕作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五个同学每天课外作业时间分别是〔单位:分钟〕:60,80,75,45,120.这组数据的中位数是〔〕A.45B.75C.80D.60考点:中位数.分析:根据中位数的概念求解即可.解答:解:将数据从小到大排列为:45,60,75,80,120,中位数为75.故选B.点评:本题考查了中位数的定义,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数.5.〔3分〕〔2014•##〕如图的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是〔C〕A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看得到的图形,可得答案.解答:解:从上面看外边是一个矩形,里面是一个圆,故选:C.点评:本题考查了简单组合体的三视图,俯视图是从上面看得到的图形.6.〔3分〕〔2014•##〕已知三角形两边长分别为3和8,则该三角形第三边的长可能是〔〕A.5B.10C.11D.12考点:三角形三边关系.分析:根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.解答:解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.点评:本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.7.〔3分〕〔2014•##〕下列计算正确的是〔〕A.a+2a2=3a3B.a3•a2=a6C.a6+a2=a3D.〔ab〕3=a3b3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项法则,同底数幂的乘法,积的乘方分别求出每个式子的结果,再判断即可.解答:解:A、a和2a2不能合并,故本选项错误;B、a3•a2=a5,故本选项错误;C、a6和a2不能合并,故本选项错误;D、〔ab〕3=a3b3,故本选项正确;故选D.点评:本题考查了合并同类项法则,同底数幂的乘法,积的乘方的应用,主要考查学生的计算能力.8.〔3分〕〔2014•##〕20##3月,YC市举办了首届中学生汉字听写大会,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是〔〕A.B.C.D.1考点:概率公式.分析:四套题中抽一套进行训练,利用概率公式直接计算即可.解答:解:∵从甲、乙、丙、丁4套题中随机抽取一套训练,∴抽中甲的概率是,故选C.点评:本题考查了概率的公式,能记住概率的求法是解决本题的关键,比较简单.9.〔3分〕〔2014•##〕如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是〔〕A.AB=24mB.MN∥ABC.△CMN∽△CABD.CM:MA=1:2考点:三角形中位线定理;相似三角形的应用.专题:应用题.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN∥AB,MN=AB,再根据相似三角形的判定解答.解答:解:∵M、N分别是AC,BC的中点,∴MN∥AB,MN=AB,∴AB=2MN=2×12=24m,△CMN∽△CAB,∵M是AC的中点,∴CM=MA,∴CM:MA=1:1,故描述错误的是D选项.故选D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定,熟记定理并准确识图是解题的关键.10.〔3分〕〔2014•##〕如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=〔〕A.30B.45C.60D.90考点:等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.解答:解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=〔180°﹣∠A〕=〔180°﹣30°〕=75°,∵以B为圆心,BC的长为半径圆弧,交AC于点D,∴BC=BD,∴∠CBD=180°﹣2∠ACB=180°﹣2×75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.故选B.点评:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.11.〔3分〕〔2014•##〕要使分式有意义,则的取值范围是〔〕A.x≠1B.x>1C.x<1D.x≠﹣1考点:分式有意义的条件.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:〔1〕分式无意义⇔分母为零;〔2〕分式有意义⇔分母不为零;〔3〕分式值为零⇔分子为零且分母不为零.12.〔3分〕〔2014•##〕如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=〔A〕A.∠ACDB.∠ADBC.∠AEDD.∠ACB考点:圆周角定理.分析:根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C.解答:解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,∴∠ABD=∠ACD,故本选项正确;B、∵∠ABD对的弧是弧AD,∠ADB对的弧也是AB,而已知没有说弧AD=弧AB,∴∠ABD和∠ACD不相等,故本选项错误;C、∠AED>∠ABD,故本选项错误;D、∵∠ABD对的弧是弧AD,∠ACB对的弧也是AB,而已知没有说弧AD=弧AB,∴∠ABD和∠ACB不相等,故本选项错误;故选A.点评:本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等哦圆中,同弧或等弧所对的圆周角相等.13.〔3分〕〔2014•##〕如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为〔D〕A.πB.6πC.3πD.1.5π考点:旋转的性质;弧长的计算.分析:根据弧长公式列式计算即可得解.解答:解:的长==1.5π.故选D.点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.14.〔3分〕〔2014•##〕如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是〔〕A.m+n<0B.﹣m<﹣nC.|m|﹣|n|>0D.2+m<2+n考点:实数与数轴.分析:根据M、N两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解答:解:M、N两点在数轴上的位置可知:﹣1<M<0,N>2,∵M+N>O,故A错误,∵﹣M>﹣N,故B错误,∵|m|﹣|n|<,0故C错误.∵2+m<2+n正确,∴D选项正确.故选:D.点评:本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.15.〔3分〕〔2014•##〕二次函数y=ax2+b〔b>0〕与反比例函数y=在同一坐标系中的图象可能是〔〕A.B.C.D.考点:二次函数的图象;反比例函数的图象.专题:数形结合.分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而确定该选项是否正确.解答:解:A、对于反比例函数y=经过第二、四象限,则a<0,所以抛物线开口向下,所以A选项错误;B、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,b>0,抛物线与y轴的交点在x轴上方,所以B选项正确;C、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,所以C选项正确;D、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,而b>0,抛物线与y轴的交点在x轴上方,所以D选项错误.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c〔a、b、c为常数,a≠0〕的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为〔0,c〕.也考查了反比例函数的图象.二、解答题〔共9小题,共75分〕16.〔6分〕〔2014•##〕计算:+|﹣2|+〔﹣6〕×〔﹣〕.考点:实数的运算.分析:本题涉与绝对值、二次根式化简、有理数的乘法三个考点.针对每个考点分别进行计算,然后再计算有理数的加法即可.解答:解:原式=2+2+4=8.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.17.〔6分〕〔2014•##〕化简:〔a+b〕〔a﹣b〕+2b2.考点:平方差公式;合并同类项.分析:先根据平方差公式算乘法,再合并同类项即可.解答:解:原式=a2﹣b2+2b2=a2+b2.点评:本题考查了平方差公式和整式的混合运算的应用,主要考查学生的化简能力.18.〔7分〕〔2014•##〕如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.〔1〕求∠CAD的度数;〔2〕延长AC至E,使CE=AC,求证:DA=DE.考点:全等三角形的判定与性质.分析:〔1〕利用"直角三角形的两个锐角互余"的性质和角平分的性质进行解答;〔2〕通过证△ACD≌△ECD来推知DA=DE.解答:〔1〕解:如图,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°;〔2〕证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°,∴∠ACD=∠ECD.在△ACD与△ECD中,,∴△ACD≌△ECD〔SAS〕,∴DA=DE.点评:本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.〔7分〕〔2014•##〕下表中,y是x的一次函数.x﹣2 1 2 4 5y 6 ﹣3 ﹣6 ﹣12 ﹣15〔1〕求该函数的表达式,并补全表格;〔2〕已知该函数图象上一点M〔1,﹣3〕也在反比例函数y=图象上,求这两个函数图象的另一交点N的坐标.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.分析:〔1〕设y=kx+b,将点〔﹣2,6〕、〔5,﹣15〕代入可得函数解析式,也可补全表格;〔2〕将点M的坐标代入,可得m的值,联立一次函数与反比例函数解析式可得另一交点坐标.解答:解:〔1〕设该一次函数为y=kx+b〔k≠0〕,∵当x=﹣2时,y=6,当x=1时,y=﹣3,∴,解得:,∴一次函数的表达式为:y=﹣3x,当x=2时,y=﹣6;当y=﹣12时,x=4.补全表格如题中所示.〔2〕∵点M〔1,﹣3〕在反比例函数y=上〔m≠0〕,∴﹣3=,∴反比例函数解析式为:y=﹣,联立可得,解得:或,∴另一交点坐标为〔﹣1,3〕.点评:本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练待定系数法的运用,难度一般.20.〔8分〕〔2014•##〕"低碳生活,绿色出行"是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:〔1〕填空:样本中的总人数为80;开私家车的人数m=20;扇形统计图中"骑自行车"所在扇形的圆心角为72度;〔2〕补全条形统计图;〔3〕该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?考点:条形统计图;一元一次不等式的应用;扇形统计图.专题:图表型.分析:〔1〕用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解;〔2〕求出骑自行车的人数,然后补全统计图即可;〔3〕设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.解答:解:〔1〕样本中的总人数为:36÷45%=80人,开私家车的人数m=80×25%=20;扇形统计图中"骑自行车"所占的百分比为:1﹣10%﹣25%﹣45%=20%,所在扇形的圆心角为360°×20%=72°;故答案为:80,20,72;〔2〕骑自行车的人数为:80×20%=16人,补全统计图如图所示;〔3〕设原来开私家车的人中有x人改为骑自行车,由题意得,×2000+x≥×2000﹣x,解得x≥50,答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.〔8分〕〔2014•##〕已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O 的切线DE与边AB相交于点E,且AE=3EB.〔1〕求证:△ADE∽△CDF;〔2〕当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.考点:切线的性质;勾股定理;平行四边形的性质;相似三角形的判定与性质.分析:〔1〕根据平行四边形的性质得出∠A=∠C,AD∥BC,求出∠ADE=∠CDF,根据相似三角形的判定推出即可;〔2〕设CF=x,FB=2x,则BC=3x,设EB=y,则AE=3y,AB=4y,根据相似得出=,求出x=2y,由勾股定理得求出DF=2y,分别求出⊙O的面积和四边形ABCD的面积,即可求出答案.解答:〔1〕证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴∠EDC=90°,∴∠ADF=∠EDC=90°,∴∠ADE=∠CDF,∵∠A=∠C,∴△ADE∽△CDE;〔2〕解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴BC=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π•〔DC〕2=π•DC2=π〔4y〕2=4πy2,四边形ABCD的面积为BC•DF=6y•2y=12y2,∴⊙O与四边形ABCD的面积之比为4πy2:12y2=π:3.点评:本题考查了平行四边形的性质,相似三角形的性质和判定,勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.22.〔10分〕〔2014•##〕在"文化##•全民阅读"活动中,某中学社团"精一读书社"对全校学生的人数与纸质图书阅读量〔单位:本〕进行了调查,20##全校有1000名学生,20##全校学生人数比20##增加10%,20##全校学生人数比20##增加100人.〔1〕求20##全校学生人数;〔2〕20##全校学生人均阅读量比20##多1本,阅读总量比20##增加1700本〔注:阅读总量=人均阅读量×人数〕①求20##全校学生人均阅读量;②20##读书社人均阅读量是全校学生人均阅读量的2.5倍,如果20##、20##这两年读书社人均阅读量都比前一年增长一个相同的百分数a,20##全校学生人均阅读量比20##增加的百分数也是a,那么20##读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.考点:一元二次方程的应用;一元一次方程的应用.分析:〔1〕根据题意,先求出20##全校的学生人数就可以求出20##的学生人数;〔2〕①设2012人均阅读量为x本,则20##的人均阅读量为〔x+1〕本,根据阅读总量之间的数量关系建立方程就可以得出结论;②由①的结论就可以求出20##读书社的人均读书量,20##读书社的人均读书量,全校的人均读书量,由20##读书社的读书量与全校读书量之间的关系建立方程求出其解即可.解答:解:〔1〕由题意,得20##全校学生人数为:1000×〔1+10%〕=1100人,∴20##全校学生人数为:1100+100=1200人;〔2〕①设2012人均阅读量为x本,则20##的人均阅读量为〔x+1〕本,由题意,得1100〔x+1〕=1000x+1700,解得:x=6.答:20##全校学生人均阅读量为6本;②由题意,得20##读书社的人均读书量为:2.5×6=15本,20##读书社人均读书量为15〔1+a〕2本,20##全校学生的读书量为6〔1+a〕本,80×15〔1+a〕2=1200×6〔1+a〕×25%2〔1+a〕2=3〔1+a〕,∴a1=﹣1〔舍去〕,a2=0.5.答:a的值为0.5.点评:本题考查了列一元一次方程解实际问题的运用,一元二次方程的解法的运用,增长率问题的数量关系的运用,解答时根据阅读总量之间的关系建立方程是关键.23.〔11分〕〔2014•##〕在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.〔1〕如图1,当DH=DA时,①填空:∠HGA=45度;②若EF∥HG,求∠AHE的度数,并求此时的最小值;〔2〕如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.考点:四边形综合题.分析:〔1〕①根据矩形的性质和已知条件得出∠HAE=45°,再根据HA=HG,得出∠HAE=∠HGA,从而得出答案;②先分两种情况讨论:第一种情况,根据〔1〕得出∠AHG=90°,再根据折叠的性质得出∠HAE=∠F=45°,∠AHE=∠FHE,再根据EF∥HG,得出∠AHF=∠AHG﹣∠FHG,即可得出∠AHE=22.5°,此时,当B与G重合时,a的值最小,求出最小值;第二种情况:根据已知得出∠AEH+∠FEH=45°,由折叠的性质求出∠AHE的度数,此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在Rt△AHG中,∠AHG=90°,根据勾股定理得:AG=AH=2x,再根据∠AEH=∠FEH,∠GHE=∠FEH,求出∠AEH=∠GHE,得出AB=AE=2x+x,从而求出a的最小值;〔2〕先过点H作HQ⊥AB于Q,则∠AQH=∠GOH=90°,根据矩形的性质得出∠D=∠DAQ=∠AQH=90°,得出四边形DAQH为矩形,设AD=x,GB=y,则HQ=x,EG=2y,由折叠的性质可知∠AEH=∠FEH=60°,得出∠FEG=60°,在Rt△EFG中,根据特殊角的三角函数值求出EG和EQ的值,再由折叠的性质得出AE=EF,求出y的值,从而求出AB=2AQ+GB,即可得出a的值.解答:解:〔1〕①∵四边形ABCD是矩形,∴∠ADH=90°,∵DH=DA,∴∠DAH=∠DHA=45°,∴∠HAE=45°,∵HA=HG,∴∠HAE=∠HGA=45°;故答案为:45°;②分两种情况讨论:第一种情况:∵∠HAG=∠HGA=45°;∴∠AHG=90°,由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE, ∵EF∥HG,∴∠FHG=∠F=45°,∴∠AHF=∠AHG﹣∠FHG=45°,即∠AHE+∠FHE=45°,∴∠AHE=22.5°,此时,当B与G重合时,a的值最小,最小值是2;第二种情况:∵EF∥HG,∴∠HGA=∠FEA=45°,即∠AEH+∠FEH=45°,由折叠可知:∠AEH=∠FEH,∴∠AEH=∠FEH=22.5°,∵EF∥HG,∴∠GHE=∠FEH=22.5°,∴∠AHE=90°+22.5°=112.5°,此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在Rt△AHG中,∠AHG=90°,由勾股定理得:AG=AH=2x,∵∠AEH=∠FEH,∠GHE=∠FEH,∴∠AEH=∠GHE,∴GH=GE=x,∴AB=AE=2x+x,∴a的最小值是=2+;〔2〕如图:过点H作HQ⊥AB于Q,则∠AQH=∠GOH=90°,在矩形ABCD中,∠D=∠DAQ=90°,∴∠D=∠DAQ=∠AQH=90°,∴四边形DAQH为矩形,∴AD=HQ,设AD=x,GB=y,则HQ=x,EG=2y,由折叠可知:∠AEH=∠FEH=60°,∴∠FEG=60°,在Rt△EFG中,EG=EF×cos60°,EF=4y,在Rt△HQE中,EQ==x,∴QG=QE+EG=x+2y,∵HA=HG,HQ⊥AB,∴AQ=GQ=x+2y,∴AE=AQ+QE=x+2y,由折叠可知:AE=EF,∴x+2y=4y,∴y=x,∴AB=2AQ+GB=2〔x+2y〕+y=x,∴a==.点评:此题考查了四边形的综合,用到的知识点是矩形的性质、折叠的性质、勾股定理、特殊角的三角函数值等知识点,关键是根据题意做出辅助线,构造直角三角形.24.〔12分〕〔2014•##〕如图,在平面直角坐标系中,已知点P〔0,4〕,点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.〔1〕填空:△AOB≌△DNA或△DP A≌△BMC〔不需证明〕;用含t的代数式表示A点纵坐标:A〔0,4﹣t〕;〔2〕求点C的坐标,并用含a,t的代数式表示b;〔3〕当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;〔4〕当抛物线开口向上,对称轴是直线x=2﹣,顶点随着的增大向上移动时,求t的取值范围.考点:二次函数综合题.分析:〔1〕根据全等三角形的判定定理SAS证得:△AOB≌△DNA或DP A≌△BMC;根据图中相关线段间的和差关系来求点A的坐标;〔2〕利用〔1〕中的全等三角形的对应边相等易推知:OM=OB+BM=t+4﹣t=4,则C〔4,t〕.把点O、C的坐标分别代入抛物线y=ax2+bx+c可以求得b=t﹣4a;〔3〕利用待定系数法求得直线OD的解析式y=x.联立方程组,得,所以ax2+〔﹣﹣4a〕x=0,解得x=0或x=4+.对于抛物线的开口方向进行分类讨论,即a>0和a<0两种情况下的a的取值范围;〔4〕根据抛物线的解析式y=ax2+〔﹣4a〕x得到顶点坐标是〔﹣,﹣〔t﹣16a〕2〕.结合已知条件求得a=t2,故顶点坐标为〔2﹣,﹣〔t﹣〕2〕.哟抛物线的性质知:只与顶点坐标有关,故t的取值范围为:0<t≤.解答:解:〔1〕如图,∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA〔同角的余角相等〕.在△AOB与△DNA中,,∴△AOB≌△DNA〔SAS〕.同理△DNA≌△BMC.∵点P〔0,4〕,AP=t,∴OA=OP﹣AP=4﹣t.故答案是:DNA或△DP A;4﹣t;〔2〕由题意知,NA=OB=t,则OA=4﹣t.∵△AOB≌△BMC,∴CM=OB=t,∴OM=OB+BM=t+4﹣t=4,∴C〔4,t〕.又抛物线y=ax2+bx+c过点O、C,∴,解得b=t﹣4a;〔3〕当t=1时,抛物线为y=ax2+〔﹣4a〕x,NA=OB=1,OA=3.∵△AOB≌△DNA,∴DN=OA=3,∵D〔3,4〕,∴直线OD为:y=x.联立方程组,得,消去y,得ax2+〔﹣﹣4a〕x=0,解得x=0或x=4+,所以,抛物线与直线OD总有两个交点.讨论:①当a>0时,4+>3,只有交点O,所以a>0符合题意;②当a<0时,若4+>3,则a<﹣.又a<0所以a<﹣.若4+<0,则得a>﹣.又a<0,所以﹣<a<0.综上所述,a的取值范围是a>0或a<﹣或﹣<a<0.〔4〕抛物线为y=ax2+〔﹣4a〕x,则顶点坐标是〔﹣,﹣〔t﹣16a〕2〕.又∵对称轴是直线x=﹣+2=2﹣,∴a=t2,∴顶点坐标为:〔2﹣,﹣〔1﹣4t〕2〕,即〔2﹣,﹣〔t﹣〕2〕.∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,∴只与顶点坐标有关,∴t的取值范围为:0<t≤.点评:本题考查了二次函数综合题型.此题难度较大,需要熟练掌握待定系数法求二次函数解析式,全等三角形的判定与性质,二次函数图象的性质等知识点,综合性比较强,需要学生对所学知识进行系统的掌握.。

2014年湖北中考数学真题卷含答案解析

2014年湖北中考数学真题卷含答案解析

2014年武汉市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.在实数-2、0、2、3中,最小的实数是( )A.-2B.0C.2D.32.若代数式√x-3在实数范围内有意义,则x的取值范围是( )A.x≥-3B.x>3C.x≥3D.x≤33.光速约为300000千米/秒,将数字300000用科学记数法表示为( )A.3×104B.3×105C.3×106D.30×1044.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332那么这些运动员跳高成绩的众数是( )A.4B.1.75C.1.70D.1.655.下列代数运算正确的是( )A.(x3)2=x5B.(2x)2=2x2C.x3·x2=x5D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,则端点C的坐标为( )内将线段AB缩小为原来的12A.(3,3)B.(4,3)C.(3,1)D.(4,1)7.下图是由4个大小相同的正方体组合而成的几何体.其俯视图是( )8.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )A.9B.10C.12D.159.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…….按此规律第5个图中共有点的个数是( )A.31B.46C.51D.6610.如图,PA、PB切☉O于A、B两点,CD切☉O于点E,交PA、PB于C、D,若☉O的半径为r,△PCD 的周长等于3r,则tan∠APB的值是( )A.512√13 B.125C.35√13 D.23√13第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算:-2+(-3)= .12.分解因式:a3-a= .13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米.15.如图,若双曲线y=kx与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为.16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,共72分)下列各题解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)解方程:2x-2=3 x .18.(本小题满分6分)已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.19.(本小题满分6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.20.(本小题满分7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称的线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(本小题满分7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(本小题满分8分)⏜上两点,AB=13,AC=5.如图,AB是☉O的直径,C,P是AB⏜的中点,求PA的长;(1)如图①,若点P是AB⏜的中点,求PA的长.(2)如图②,若点P是BC图①图②23.(本小题满分10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(本小题满分10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm 的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连结PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连结AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(本小题满分12分)x2交于A、B两点.如图,已知直线AB:y=kx+2k+4与抛物线y=12(1)直线AB总经过一个定点C,请直接写出点C的坐标;时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(2)当k=-12(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.备用图答案全解全析:一、选择题1.A∵-2<0<2<3,∴最小的实数是-2,故选A.评析本题考查了实数的大小比较,属容易题.2.C要使√x-3在实数范围内有意义,则需x-3≥0,解得x≥3.故选C.评析本题考查二次根式有意义的条件,即被开方数大于等于零,属容易题.3.B300000用科学记数法可表示为3×105.故选B.评析本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,属容易题.4.D∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65,故选D.评析本题考查了众数的定义,众数是一组数据中出现次数最多的数,属容易题.5.C(x3)2=x6,故A选项错误;(2x)2=4x2,故B选项错误;x3·x2=x5,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.6.A∵线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,∴端点C的坐标为(3,3).故选A.内将线段AB缩小为原来的12评析本题主要考查位似图形的性质,属容易题.7.C从上面看可得到一行正方形,其个数为3,故选C.评析本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,属容易题.8.C由题图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为4=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为1030×0.4=12,故选C.评析 本题考查了折线统计图及用样本估计总体的思想,属容易题.9.B 第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,第n 个图中有1+1×3+2×3+3×3+…+3n 个点. 所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选B. 评析 本题是规律探索题,属容易题.10.B 连结OA 、OB 、OP,延长BO 交PA 的延长线于点F.∵PA、PB 切☉O 于A 、B 两点,CD 切☉O 于点E, ∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB.∵△PCD 的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=32r. 在Rt △OAF 和Rt △BFP 中,{∠FAO =∠FBP,∠OFA =∠PFB,∴Rt △AFO ∽Rt △BFP. ∴AF FB =AO BP =r 32r =23,∴AF=23FB. 在Rt △FBP 中,PF 2-PB 2=FB 2, ∴(PA+AF)2-PB 2=FB 2,∴(32r +23BF)2-(32r)2=BF 2,解得BF=185r,∴tan ∠APB=BFPB =185r 32r=125,故选B.评析 本题主要考查切线的性质,相似三角形的判定及三角函数的定义,属难题.二、填空题 11.答案 -5解析 -2+(-3)=-(2+3)=-5.评析 本题考查有理数加法的运算,属容易题. 12.答案 a(a+1)(a-1)解析 a 3-a=a(a 2-1)=a(a+1)(a-1).评析 本题考查利用提公因式法和公式法分解因式,属容易题. 13.答案 37解析 ∵一个转盘被分成7个相同的扇形,红色的有3个,∴指针指向红色的概率为37. 14.答案 2 200解析 设小明的速度为a 米/秒,小刚的速度为b 米/秒,由题意,得{1 600+100a =1 400+100b,1 600+300a =1 400+200b,解得{a =2,b =4,∴这次越野跑的全程为1 600+300×2=2 200(米).评析 本题考查了行程问题的数量关系及二元一次方程组的解法,属容易题.15.答案9√34解析 过点C 作CE ⊥x 轴于点E,过点D 作DF ⊥x 轴于点F, 设BF=x,则DF=√3x,BD=2x.因为OC=3BD,所以OE=3x,CE=3√3x, 所以C(3x,3√3x),D(5-x,√3x). 因为点C 、D 都在双曲线上,所以3x ·3√3x=√3x ·(5-x), 解得x 1=12,x 2=0(舍去),所以C (32,3√32), 故k=3√32×32=9√34.评析 本题考查了反比例函数图象上点的坐标特征,解答本题的关键是利用k 的值相同建立方程,属中等偏难题. 16.答案 √41解析 作AD'⊥AD,且使AD'=AD,连结CD',DD',如图.由已知条件可得∠BAC+∠CAD=∠DAD'+∠CAD,即∠BAD=∠CAD'. 在△BAD 与△CAD'中,{BA =CA,∠BAD =∠CAD',AD =AD',∴△BAD ≌△CAD'(SAS), ∴BD=CD'.又∠DAD'=90°,由勾股定理得DD'=√AD 2+(AD')2 =√32=4√2,易知∠D'DA+∠ADC=90°,由勾股定理得CD'=√DC 2+(DD')2=√9+32=√41, ∴BD=CD'=√41.评析 本题考查了等腰直角三角形的性质、勾股定理、全等三角形的判定与性质,属难题. 三、解答题17.解析 方程两边同乘以x(x-2),得2x=3(x-2). 解得x=6.检验:当x=6时,x(x-2)≠0. ∴x=6是原分式方程的解.评析 本题考查了解分式方程,解分式方程一定要注意验根,属容易题. 18.解析 ∵直线y=2x-b 经过点(1,-1), ∴-1=2×1-b. ∴b=3.∴不等式2x-b ≥0即为2x-3≥0,解得x ≥32.19.证明 在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD. ∴∠A=∠C,∴AB ∥CD. 20.解析 (1)如图所示:(2)43.评析 本题考查利用旋转、轴对称变换作图,属容易题.21.解析 (1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:第二次第一次 R 1 R 2 G 1 G 2R 1 R 1R 1 R 1R 2 R 1G 1 R 1G 2 R 2 R 2R 1 R 2R 2 R 2G 1 R 2G 2 G 1 G 1R 1 G 1R 2 G 1G 1 G 1G 2 G 2 G 2R 1 G 2R 2 G 2G 1 G 2G 2由上表可知,有放回地摸2个球共有16个等可能结果. ①其中第一次摸到绿球,第二次摸到红球的结果有4个. ∴第一次摸到绿球,第二次摸到红球的概率P=416=14;②其中两次摸到的球中有1个绿球和1个红球的结果有8个. ∴两次摸到的球中有1个绿球和1个红球的概率P=816=12. 画树形图法按步骤给分(略). (2)23.22.解析 (1)如图,连结PB,BC.∵AB 是☉O 的直径,P 是AB⏜的中点, ∴PA=PB,∠APB=90°. ∵AB=13,∴PA=√22AB=13√22.(2)如图,连结PB,BC.连结OP 交BC 于D 点.∵P 是BC⏜的中点,∴OP ⊥BC 于D,BD=CD. ∵OA=OB,∴OD=12AC=52.∵OP=12AB=132,∴PD=OP -OD=132-52=4.∵AB 是☉O 的直径,∴∠ACB=90°.∵AB=13,AC=5,∴BC=12,∴BD=12BC=6.∴PB=√PD 2+BD 2=2√13.∵AB 是☉O 的直径,∴∠APB=90°,∴PA=√AB 2-PB 2=3√13.23.解析 (1)y={-2x 2+180x +2 000(1≤x <50),-120x +12 000(50≤x ≤90).(2)当1≤x<50时,y=-2x 2+180x+2 000=-2(x-45)2+6 050.∵-2<0,∴当x=45时,y 有最大值,最大值为6 050元.当50≤x ≤90时,y=-120x+12 000,∵-120<0,∴y 随x 的增大而减小.当x=50时,y 有最大值,最大值为6 000元.∴当x=45时,当天的销售利润最大,最大利润为6 050元.(3)41天.评析 本题考查利用函数的性质解决实际问题,属中等难度题.24.解析 (1)由题意知,BP=5t cm,CQ=4t cm,∴BQ=(8-4t)cm.当△PBQ ∽△ABC 时,有BP AB =BQ BC .即5t 10=8-4t 8,解得t=1. 当△QBP ∽△ABC 时,有BQ AB =BP BC .即8-4t 10=5t 8,解得t=3241.∴△PBQ 与△ABC 相似时,t=1或3241.(2)如图,过点P 作PD ⊥BC 于D.依题意,得BP=5t cm,CQ=4t cm.则PD=PB ·sin B=3t cm,∴BD=4t cm,CD=(8-4t)cm.∵AQ ⊥CP,∠ACB=90°,∴tan ∠CAQ=tan ∠DCP.∴CQ AC =PD CD .∴4t 6=3t 8-4t ,∴t=78.(3)证明:如图,过点P 作PD ⊥AC 于D,连结DQ 、BD,BD 交PQ 于M,则PD=AP ·cos ∠APD=AP ·cos ∠ABC=(10-5t)×810=(8-4t)cm.而BQ=(8-4t)cm,∴PD=BQ,又PD ∥BQ,∴四边形PDQB 是平行四边形.∴点M 是PQ 和BD 的中点. 过点M 作EF ∥AC 交BC,BA 于E,F 两点.则BE EC =BM MD =1,即E 为BC 的中点.同理,F 为BA 的中点.∴PQ 的中点M 在△ABC 的中位线EF 上.25.解析 (1)(-2,4).(2)如图,直线y=-12x+3与y 轴交于点N(0,3).在y 轴上取点Q(0,1),易得S △ABQ =5. 过点Q 作PQ ∥AB 交抛物线于点P.则PQ 的解析式为y=-12x+1,由{y =-12x +1,y =12x 2,解得{x =-2,y =2,或{x =1,y =12, ∴P 点坐标为(-2,2)或(1,12).(3)如图,设A (x 1,12x 12),B (x 2,12x 22),D (m,12m 2). 联立{y =kx +2k +4,y =12x 2,消去y 得x 2-2kx-4k-8=0. ∴x 1+x 2=2k,x 1·x 2=-4k-8.过点D 作EF ∥x 轴,过点A 作y 轴的平行线交EF 于点E,过点B 作y 轴的平行线交EF 于点F. 由△ADE ∽△DBF,得AE DF =DE BF . ∴12x 12-12m 2x 2-m =m -x 112x 22-12m 2,整理,得x 1x 2+m(x 1+x 2)+m 2=-4.∴2k(m -2)+m 2-4=0. 当m-2=0,即m=2时,点D 的坐标与k 无关,∴点D 的坐标为(2,2).又∵C(-2,4),所以CD=2√5,过点D 作DM ⊥AB,垂足为M.则DM ≤CD.当CD ⊥AB 时,点D 到直线AB 的距离最大,最大距离为2√5.评析本题考查解方程组、一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的判定与性质等知识,考查了通过解方程组求两函数图象交点坐标等,综合性比较强,属难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档