命题、充分与必要条件
命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件p ⇒q 且q ppq 且q ⇒p p ⇔qpq 且qp1.下列命题是真命题的为( ) A .若1x =1y ,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y 易得x =y ;由x 2=1,得x =±1;若x =y <0,则x 与y 均无意义; 若x =-2,y =1,虽然x <y ,但x 2>y 2. 所以真命题为A.2.已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A A ∩B ={4}⇒m 2+1=4⇒m =±3,故“m =3”是“A ∩B ={4}”的充分不必要条件.3.已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为________________________________________________________________________.答案:若方程x 2+x -m =0无实根,则m ≤01.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C ∵x >1,∴x 3>1,又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件.2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角考点一 命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.(易错题)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.如“题组练透”第3题②易忽视.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A a·b=|a||b|cos〈a,b〉.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.由于{x|1<x<3}是{x|x>1或x<-2}的真子集,所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.若p:|x|=x,q:x2+x≥0.则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0或x≤-1}=B,∵A B,∴p是q的充分不必要条件.2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.考点三充分必要条件的应用………………………(题点多变型考点——纵引横联) [典型母题]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S 的必要条件,求m的取值范围.[解]由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.则{1-m≤1+m,1-m≥-2,1+m≤10,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[类题通法]根据充要条件求参数的值或取值范围的关键:先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.[越变越明][变式1] 母题条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[变式2] 母题条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由母题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).本题运用等价法求解,也可先求綈P ,綈S ,再利用集合法列出不等式,求出m 的范围.的必要不充分条件,求m 的取值范围.解:记P ={x |(x -m )2>3(x -m )}={x |(x -m )(x -m -3)>0}={x |x <m 或x >m +3},S ={x |x 2+3x -4<0}={x |(x +4)(x -1)<0}={x |-4<x <1},p 是s 成立的必要不充分条件,即等价于SP .所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1. 即m 的取值范围为(-∞,-7]∪[1,+∞).一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件[破译玄机]解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 当c =0时,ac 2=bc 2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.4.已知p :|x |<2;q :x 2-x -2<0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由x 2-x -2<0,得(x -2)(x +1)<0,解得-1<x <2;由|x |<2得-2<x <2.注意到由-2<x <2不能得知-1<x <2,即由p 不能得知q ;反过来,由-1<x <2可知-2<x <2,即由q 可得知p .因此,p 是q 的必要不充分条件.5.已知集合A ,B ,全集U ,给出下列四个命题: ①若A ⊆B ,则A ∪B =B ; ②若A ∪B =B ,则A ∩B =B ; ③若a ∈(A ∩∁U B ),则a ∈A ; ④若a ∈∁U (A ∩B ),则a ∈(A ∪B ) 其中真命题的个数为( ) A .1B .2C.3D.4解析:选B①正确;②不正确,由A∪B=B可得A⊆B,所以A∩B=A;③正确;④不正确.二保高考,全练题型做到高考达标1.已知复数z=a+3ii(a∈R,i为虚数单位),则“a>0”是“z在复平面内对应的点位于第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C z=a+3ii=-(a+3i)i=3-a i,若z位于第四象限,则a>0,反之也成立,所以“a>0”是“z在复平面内对应的点位于第四象限”的充要条件.2.命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是()A.a,b∈R,若a≠b≠0,则a2+b2=0B.a,b∈R,若a=b≠0,则a2+b2≠0C.a,b∈R,若a≠0且b≠0,则a2+b2≠0D.a,b∈R,若a≠0或b≠0,则a2+b2≠0解析:选D a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0.3.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”B.“x=-1”是“x2-x-2=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题是真命题D.“tan x=1”是“x=π4”的充分不必要条件解析:选C由原命题与否命题的关系知,原命题的否命题是“若x2≠1,则x≠1”,即A不正确;因为x2-x-2=0,所以x=-1或x=2,所以由“x=-1”能推出“x2-x-2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推得tan x =1,但由tan x =1推不出x=π4,所以“tan x =1”是“x =π4”的必要不充分条件,即D 不正确. 5.若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-2解析:选A 因为|x |≤2,则p :-2≤x ≤2,q :x ≤a ,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a ≥2.6.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:∵等比数列{a n }的前n 项和为S n ,又S 4=2S 2, ∴a 1+a 2+a 3+a 4=2(a 1+a 2),∴a 3+a 4=a 1+a 2,∴q 2=1⇔|q |=1,∴“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要8.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________. 解析:α:x ≥a ,可看作集合A ={x |x ≥a }, ∵β:|x -1|<1,∴0<x <2, ∴β可看作集合B ={x |0<x <2}. 又∵α是β的必要不充分条件, ∴B A ,∴a ≤0. 答案:(-∞,0]10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析:选C C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”. 若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1 D .a ≤0或a >1解析:选A 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无交点.数形结合可得,a ≤0或a >1,即函数f (x )有且只有一个零点的充要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y =-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,应排除B ;同理,排除C.3.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m | m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0即⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m | m ≥32关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是(-∞,-1].。
充分和必要条件的概念

充分和必要条件的概念一、引言充分和必要条件是数学中的重要概念,它们在证明定理和推理过程中起着至关重要的作用。
在数学中,我们常常需要判断某个命题是否成立,而充分和必要条件就是帮助我们做出这种判断的工具。
本文将从定义、性质、应用等方面分析充分和必要条件的概念。
二、定义1. 充分条件:如果一个命题P能够推出另一个命题Q,则称P是Q的充分条件。
2. 必要条件:如果一个命题Q成立是P成立的前提,则称P是Q的必要条件。
三、性质1. 充分必要条件:如果P是Q的充分条件,同时P也是Q的必要条件,则称P与Q等价。
2. 充分非必要条件:如果P是Q的充分条件,但不是Q的必要条件,则称P比Q强。
3. 非充分必要条件:如果P不是Q的充分条件,但是Q的必要条件,则称P比Q弱。
4. 非充非必要条件:如果既不满足P是Q的充分条件,也不满足P是Q的必要条件,则称两者无关。
四、应用1. 定理证明:在证明定理时,我们需要找到该定理的充分条件和必要条件,从而得出结论。
2. 推理过程:在推理过程中,我们需要判断某个命题是否成立,这时就可以利用充分和必要条件来进行判断。
3. 实际问题:在实际问题中,我们常常需要找到某个条件对于结果的影响,这时就可以利用充分和必要条件进行分析。
五、举例说明1. 定理证明:对于一个正整数n,如果n是偶数,则n的平方也是偶数。
其中,“n是偶数”是n平方为偶数的充分条件,“n的平方是偶数”是n为偶数的必要条件。
2. 推理过程:如果一个人能够通过高考,则他一定具备高中文化水平。
其中,“通过高考”是“具备高中文化水平”的充分条件,“具备高中文化水平”是“通过高考”的必要条件。
3. 实际问题:如果一辆汽车速度超过80公里/小时,则其行驶距离会增加。
其中,“速度超过80公里/小时”是“行驶距离增加”的充分条件,“行驶距离增加”是“速度超过80公里/小时”的必要条件。
六、总结在数学中,充分和必要条件是重要的概念,它们在定理证明、推理过程和实际问题中都有广泛的应用。
命题及充分条件和必要条件

命题及其关系(学生版)高考明方向1.理解命题的概念,了解“若P,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系。
2.理解充分条件、必要条件与充要条件的含义。
知识点一命题及四种命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.注意:命题必须是陈述句,疑问句、祈使句、感叹句都不是命题。
2.四种命题及其关系(1)四种命题间的相互关系.(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性; 逆命题与否命题互为逆否命题。
②两个命题为互逆命题或互否命题,它们的真假性无关.注意: 1、一个命题不可能同时既是真命题又是假命题2、常见词语的否定原词语例1. 命题“若x, y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数变式训练1.下列命题中正确的是( )①"若a≠0,则ab≠0”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x- 312是有理数,则x是无理数”的逆否命题.A.①②③④B.①③④C.②③④D.①④例2.原命题为“若z1,z2互为共轭复数,则”,关于其逆命题,否命题,逆否命题的真假性的判断依次如下,正确的是()A.真,假,真B. 假,假,真C. 真,真,假D. 假,假,假变式训练2.已知,原命题是“若,则m,n中至少有一个不小于0”,那么原命题与其逆命题依次是()A:真命题、假命题B:假命题、真命题C:真命题、真命题D:假命题、假命题例3.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A. 若a+b+c≠3,则a2+b2+c2<3B. 若a+b+c=3,则a2+b2+c2<3C. 若a+b+c≠3,则a2+b2+c2≥3D. 若a2+b2+c2≥3,则a+b+c=3变式训练3.命题:“若xy=0,则x=0或y=0”的否定是:知识点二充分条件与必要条件1、充分条件与必要条件的概念(1)充分条件: 则p是q的充分条件即只要有条件p就能充分地保证结论q的成立,亦即要使q成立,有p成立就足够了,即有它即可。
命题的充分条件与必要条件

命题的充分条件与必要条件命题是我们日常生活中经常遇到的一种表达方式,它是陈述一个观点或者提出一个问题,并要求判断该观点的真假或者回答该问题的正确性。
在逻辑学中,命题可以分为真命题和假命题,而判断一个命题的真假则需要借助充分条件和必要条件的理论。
本文将围绕命题的充分条件与必要条件展开论述,探讨其概念、关系以及应用。
一、充分条件的概念充分条件是指在某个关系中,当满足该条件时,命题成立。
从逻辑学的角度来看,充分条件可通过蕴涵关系来表示。
蕴涵是指如果一个命题A蕴涵另一个命题B,那么当A成立时,B一定成立。
因此,在一个蕴涵关系中,A是充分条件,而B是必要条件。
例如,命题A:“一个人是成年人的充分条件是年满18岁”,在这个命题中,年满18岁是成为成年人的充分条件,也就是说,只要一个人年满18岁,就可以确定其是成年人。
二、必要条件的概念必要条件是指在某个关系中,当满足该条件时,命题才能成立。
与充分条件相对应,必要条件可以通过逆否命题来表示。
逆否命题是指将命题的否定和倒置进行推理得到的新命题。
例如,命题B:“一个人是成年人的必要条件是不是未成年人”,在这个命题中,不是未成年人是成为成年人的必要条件,也就是说,只有一个人不是未成年人,才能确定其是成年人。
三、充要条件的关系充要条件是指一个命题既是充分条件也是必要条件,也就是说充分条件和必要条件同时满足。
例如,命题C:“一个人是成年人的充要条件是年满18岁并且不是未成年人”,在这个命题中,年满18岁并且不是未成年人即是成为成年人的充分条件,也是必要条件。
四、应用举例命题的充分条件与必要条件在数学和科学领域有着广泛应用。
在数学中,例如研究一个数是素数的命题,其充分条件是这个数只能被1和它本身整除,而必要条件是这个数不是任何其他数的因子。
在科学研究中,命题的充分条件与必要条件常用于推理和验证理论。
总结:在判断命题的真假以及进行推理过程中,充分条件和必要条件是两个重要的概念。
高考数学 复习《充分条件、必要条件与命题的四种形式》

若 A B=A ,则 A B 真
(3) 若 x y 5,则x 2且y 3
若 x=2或y=3,则x y=5 假
典型例题 例5、已知p :|1 x 1 | 2; q : x2 2x 1 m2 0(m 0),
3 若p是q的必要不充分条件,求实数m的范围.
⑶充要条件
( p q)
⑷既不充分也不必要条件 ( p q 且q p )
练习: 在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:
⑴如图①所示,开关 A 闭合是灯泡 B 亮的_充__分__不__必__要_条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必 __要 ___不__充__分_条件;
典型例题
例 3、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若 x2 y2 0 ,则 x, y 全为 0
(2)正偶数不是质数
(3)若 a 0 ,则 a b 0
(4)相似的三角形是全等三角形
(1) (2) (3) (4) 原命题 真 假 真 假 逆命题 真 假 假 真 否命题 真 假 假 真 逆否命题 真 假 真 假
既不充分也不必要条件 4)若A=B ,则甲是乙的充要条件。
典型例题
例 1、指出下列命题中,p 是 q 的什么条件.
⑴p: x 1 0 ,q: x 1 x 2 0 ; 充分不必要
⑵p:两直线平行,q:内错角相等; 充要 ⑶p: a b ,q: a2 b2 ; 既不充分也不必要 ⑷p:四边形的四条边相等,q:四边形是正方形.
1.互为逆否关系的一对命题,同真或同假。 2.互逆关系的一对命题,不一定同真假。 3.互否关系的一对命题,不一定同真假。
典型例题
充分条件假言命题和必要条件假言命题

充分条件假言命题和必要条件假言命题1. 引言在逻辑学中,条件命题是一种形式为“如果…,那么…”的命题。
充分条件假言命题和必要条件假言命题则是对条件命题进行进一步的分类和分析。
本文将详细介绍充分条件假言命题和必要条件假言命题的概念、特点以及它们在逻辑推理中的应用。
2. 充分条件假言命题2.1 概念充分条件假言命题是指一个复合命题,其形式为“如果p,则q”,表示p是q发生的充分条件。
其中,p称为前件(antecedent),q称为后件(consequent)。
2.2 特点充分条件假言命题具有以下特点:•前件与后件之间存在因果关系:p作为触发某种结果q发生的原因或先决条件。
•后件蕴含前件:即当后件q成立时,前件p必然成立;反过来并不一定成立。
•表示一种可能性:充分条件假言命题描述了某种情况下的可能结果。
2.3 示例以下是一些典型的充分条件假言命题示例:•如果下雨,那么地面湿润。
•如果你不好好学习,那么考试会不及格。
•如果我饿了,我会吃饭。
2.4 应用充分条件假言命题在逻辑推理和证明中具有重要的应用。
通过分析充分条件假言命题的前件和后件之间的关系,可以得出结论或进行推理。
例如,在数学证明中,常常使用充分条件假言命题来说明定理的充要条件。
通过证明定理的充分条件成立,可以得出结论定理也成立。
3. 必要条件假言命题3.1 概念必要条件假言命题是指一个复合命题,其形式为“只有当p时,才能q”,表示p是q发生的必要条件。
其中,p称为充分条件(sufficient condition),q称为必要条件(necessary condition)。
3.2 特点必要条件假言命题具有以下特点:•前件与后件之间存在因果关系:只有满足前件p时才能发生后件q。
•前件蕴含后件:即当前件p成立时,后件q必然成立;反过来并不一定成立。
•表示一种限制或约束:必要条件假言命题描述了发生某种结果q所必需的条件p。
3.3 示例以下是一些典型的必要条件假言命题示例:•只有当你学习努力,才能取得好成绩。
充分性和必要性

充分性和必要性概念解释充分性和必要性是逻辑学中的重要概念,用于描述命题间的关系和条件。
在推理过程中,充分性和必要性是非常重要的概念,能够帮助人们更好地分析问题和进行逻辑推理。
充分性(Sufficiency)是指一个命题作为条件能够推出另一个命题。
如果一个条件命题的充分性成立,那么当条件命题为真时,结论命题一定为真。
例如,命题A→B中的A为充分条件,B为必要条件。
当A为真时,B一定为真,但当A为假时,B可能为真也可能为假。
必要性(Necessity)是指一个命题作为结论能够推出另一个命题。
如果一个条件命题的必要性成立,那么当结论命题为真时,条件命题一定为真。
例如,命题A→B中的B为必要条件,A为充分条件。
当B为真时,A一定为真,但当B为假时,A可能为真也可能为假。
充分性和必要性的关系充分性和必要性是相对的关系,两者互为逆否命题。
充分条件是条件命题中能够推导出结论命题的部分,而必要条件是结论命题中能够推导出条件命题的部分。
在命题逻辑中,充分性和必要性是非常重要的概念,能够帮助人们进行逻辑推理,判断命题的真假。
应用举例在现实生活中,充分性和必要性的概念被广泛应用于各个领域。
以下是几个应用举例:1. 数学推理:在数学中,充分性和必要性的概念被广泛运用。
例如,在证明一个数学定理时,人们常常需要提供充分条件和必要条件。
只有当充分条件和必要条件都满足时,才能够得出该定理的结论。
2. 科学研究:在科学研究中,充分性和必要性的概念也非常重要。
科学家们通过收集大量的数据和进行实验,确定因果关系,并找出充分条件和必要条件。
只有当充分条件和必要条件满足时,才能够得出科学结论。
3. 法律判决:在法律领域中,充分性和必要性的概念被广泛应用于判断一个行为是否违法,以及对犯罪嫌疑人的审判和判决。
法官和律师需要找出充分条件和必要条件,以确定罪行和相应的刑罚。
4. 经济决策:在经济学中,充分性和必要性的概念也非常重要。
经济学家通过分析各种因素,找出影响经济决策的充分条件和必要条件。
充分条件必要条件与命题的四种形式

若 原 命 题 为 “ 若 p , 则 q” , 则 其 逆 命 题 是 __若__q_,__则__p_____;否命题是 _若__非__p_,__则__非__q__;逆 否命题是__若__非__q_,__则__非__p___.
(2)四种命题间的关系
思考感悟 “否命题”与“命题的否定”有何不同? 提示: “否命题”与“命题的否定”是两个不 同的概念,如果原命题是“若p,则q”,那么这 个原命题的否定是“若p,则非q”,即只否定结 论,而原命题的否命题是“若非p,则非q”,即 既否定命题的条件,又否定命题的结论.
考点探究•挑战高考
考点突破
考点一 四种命题及其关系
在判断四种命题之间的关系时,首先要分清命题的 条件与结论,再比较每个命题的条件与结论之间的 关系,要注意四种命题关系的相对性,一旦一个命 题定为原命题,也就相应地有了它的“逆命题”、“ 否命题”和“逆否命题”.
例1 分别写出下列命题的逆命题、否命题、
.
∴这样的 m 不存在.
(2)由题意“x∈P”是“x∈S”的必要条件,则 S⊆P. ∴11- +mm≥ ≤-102 ,∴m≤3. 综上,可知 m≤3 时,x∈P 是 x∈S 的必要条 件.
【误区警示】 (2)中“x∈P”是“x∈S”的必 要条件,是由S⇒P即S是P的子集,并不一定是 真子集.
互 动 探 究 本 例 中 条 件 不 变 , 若 (2) 小 题 中 “x∈P”是“x∈S”的必要不充分条件,如 何求解? 解:∵“x∈P”是“x∈S”的必要不充分条件,
(3)∵ff-xx=1,
∴f(-x)=f(x),
∴y=f(x)是偶函数.
∴p⇒q.
取 f(x)=x2 为 R 上的偶函数,
但f-x在 fx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题、充分与必要条件
命题的基本概念:
原命题:若p,则q; 否命题:若非p ,则非q ; 逆命题:若q 则p; 逆否命题:若非q ,则非p;
1、下列四个命题其中真命题为:
(1)“若xy=1,则x,y 互为倒数”的逆命题; (2)“面积相等的三角形全等”的否命题;
(3)“若02,12=+-≤m x x m 则有实数解”的逆否命题; (4)“若xy=0,则x=0或y=0”的否命题; 2、命题“若4
π
α=
,则1tan =α”的逆否命题是:
3、命题“若x 、y 都是偶数,则x+y 也是偶数”的逆命题是:
4、下列三个命题其中真命题为:
(1)“若x+y=0,则x,y 互为相反数”的逆命题; (2)“若1≤q ,则022=++q x x 有实根”的逆否命题; (3)“直角三角形有两个锐角”的逆命题;
5、在原名题及逆命题、否命题、逆否命题这四个命题中,真命题的个数可以使
6、判断哪些命题中的p 是q 的充分条件、必要条件、充要条件 (1)若x>1,则-3x<-3 ; (2)若x=1,x 2-3x+2=0; (2)若()3
x f x -=则()x f 为单调递减; (4)若2121,k k l l =则平行; (4)若02,12-x 2>-+<x x 则; (6)若x>1,则0log )2(2
1<+x
(7)若q>1,则{}n a 为递增数列; (8)若集合φ=⋂⊆⊆B A C C B C A 则u ,;
7、已知p:02082>--x x ,)0(012:22>>-+-a a x x q 若p 是q 的充分不必要条件,求a 的范围;
8、已知026)1(3:,12:22≤+++-+≤≤a x a x q a x a p ,若p 是q 的充分条件求a 的范围;。