北师大版九年级数学上册第一章测试题及答案_证明(二)
北师大九年级数学上册全套单元测试题【含答案】

北师大九年级数学上册全套单元测试题【含答案】2010~2011学年度上期目标检测题九年级 数学第一章 证明(Ⅱ)班级 姓名 学号 成绩一、判断题(每小题2分,共10分)下列各题正确的在括号内画“√”,错误的在括号内画“×”.1、两个全等三角形的对应边的比值为1 . ( )2、两个等腰三角形一定是全等的三角形. ( )3、等腰三角形的两条中线一定相等. ( )4、两个三角形若两角相等,则两角所对的边也相等. ( )5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30°.( )二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A 、∠A=∠DB 、∠C=∠FC 、∠B=∠ED 、∠C=∠D2、下列命题中是假命题的是( )A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,则这个三角形是等腰三角形3、如图(一),已知AB=AC ,BE=CE ,D 是AE 上的一点,则下列结论不一定成立的是( )A 、∠1=∠2B 、AD=DEC 、BD=CD D 、∠BDE=∠CDE4、如图(二),已知AC 和BD 相交于O 点,AD ∥BC ,AD=BC ,过O (一)任作一条直线分别交AD 、BC 于点E 、F ,则下列结论:①OA=OC②OE=OF ③AE=CF ④OB=OD ,其中成立的个数是( )A 、1B 、2C 、3D 、45、若等腰三角形的周长是18,一条边的长是5,则其他两边的长是( ) (二)A 、5,8B 、6.5,6.5C 、5,8或6.5,6.5D 、8,6.56、下列长度的线段中,能构成直角三角形的一组是( )A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图(三),AC=AD BC=BD ,则下列结果正确的是( ) (三)A 、∠ABC=∠CAB B 、OA=OBC 、∠ACD=∠BDCD 、AB ⊥CD8、如图(四),△ABC 中,∠A=30°,∠C=90°AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是( )A 、AD=DB B 、DE=DCC 、BC=AED 、AD=BC (四)9、如图(五),在梯形ABCD 中,∠C=90°,M 是BC 的中点,DM 平分∠ADC ,∠CMD=35°,则∠MAB 是( )A 、35°B 、55°C 、70°D 、20°10、如图(六),在Rt △ABC 中,AD 平分∠BAC ,AC=BC , (五) ∠C=Rt ∠,那么,DCAC 的值为( ) A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ (六)三、填空题,(每空2分,共20分)1、如图(七),AD=BC ,AC=BD AC 与BD 相交于O 点,则图中全等三角形共有 对. (七)2、如图(八),在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,若根据“ASA ”说明△ABC ≌△DEF ,则应添加条件 = . (八) 或 ∥ .3、一个等腰三角形的底角为15°,腰长为4cm ,那么,该三角形的面积等于 .4、等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于 .5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是 于D ,则CD= .9、如图(十)的(1)中,ABCD 是一张正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在(2)中EF 上,折痕交AE 于点G ,那么∠ADG= .四、作图题(保留作图的痕迹,写出作法)(共6分) (十)如图(十一),在∠AOB 内,求作点P ,使P 点到OA ,OB 的 距离相等,并且P 点到M ,N 的距离也相等.(十一)五、解答题(5分)如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.(十二)六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分)1、已知:如图(十三),AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点.(十三)2、已知:如图(十四),AB=AD , CB=CD ,E ,F 分别是AB ,AD 的中点.求证:CE=CF .(十四)3、如图(十五),△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F.求证:(1)AD ⊥EF ;(2)当有一点G 从点D 向A 运动时,DE ⊥AB 于E ,DF ⊥AC 于F ,此时上面结论是否成立?(十五)4、如图(十六),△ABC 、△DEC 均为等边三角形,点M 为线段AD 的中点,点N 为线段BE 的中点,求证:△CNM 为等边三角形.(十六)2010~2011学年度上期目标检测题九年级 数学第二章 一元二次方程班级 姓名 学号 成绩一、填空题(每小题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 , 常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,则a 的值是 .6.已知322--x x 与7+x 的值相等,则x 的值是 . 7.(1)22___)(96+=++x x x ,(2)222)2(4___p x p x -=+-. 8.如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 ,b 是 .9.若1x 、2x 为方程0652=-+x x 的两根,则21x x +的值是,21x x 的值是. 10.用22cm 长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是__ __.11.甲、乙两人同时从A 地出发,骑自行车去B 地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A 、B 两地相距30千米,则乙每小时 千米.二、选择题(每小题3分,共18分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、已知关于的方程,(1)ax 2+bx+c=0;(2)x 2-4x=8+x 2;(3)1+(x-1)(x+1)=0;(4)(k 2+1)x 2 + kx + 1= 0中,一元二次方程的个数为( )个A 、1B 、2C 、3D 、42、如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是 ( )A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是( )A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x5、如果022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 ( )A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( )A 、 5%B 、 10%C 、15%D 、 20% 三、按指定的方法解方程(每小题3分,共12分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法) 3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法) 四、适当的方法解方程(每小题4分,共8分)1.036252=-x 2. 0)4()52(22=+--x x 五、完成下列各题(每小题5分,共15分)1、已知函数222a ax x y --=,当1=x 时,0=y , 求a 的值. 2、若分式1|3|432----x x x 的值为零,求x 的值. 3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根.(1)若方程只有一个实根,求出这个根;(2)若方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值. 六、应用问题(第1小题5分,第2小题6分,共11分)1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?(1丈=10尺)2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.2010~2011学年度上期目标检测题九年级 数学第三章 证明(Ⅲ)班级 姓名 学号 成绩一、选择题(每题4分,共40答案的番号填在括号内. 1、如图1中,O 为对角线AC 、BD 则图中共有相等的角( )A 、4对B 、5对C 、6对D 、8对 2、如图2,已知E 、F 的中点, 连接AE 、CF 所形成的四边形AECF 的面 的面积的比为( )A 、1:1B 、1:2C 、1:3D 、1:43、过四边形ABCD 的顶点A 、B 、C 、D 作BD 、AC 的平行线围成四边形EFGH,若EFGH 是菱形,则四边形ABCD 一定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形ABCD 中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是BC 、CD 的中点, 那么=∠EAF ( )A 、075B 、055C 、450D 、0605、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是( )A 、56B 、55C 、54D 、356、矩形的内角平分线能够组成一个( )A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形ABCD 的一组邻边AD 、CD 向形外作等边三角形ADE 、CDF ,则下列结论中错误的是( )A 、BD 平分EBF ∠B 、030=∠DEFC 、BD EF ⊥ D 、045=∠BFD8、已知正方形ABCD 的边长是10cm ,APQ ∆是等边三角形,点P 在BC 上,点Q 在CD 上,则BP 的边长是( )A 、55cmB 、3320cm C 、)31020(-cm D 、)31020(+cm 9、若两个三角形的两条中位线对应相等且两条中位线与一对应边的夹角相等,则这两个三角形的关系是( )A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是( )A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角 二、填空题(每空1分,共11分)1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .4、在ABC ∆中,D 为AB 的中点,E 为AC 上一点,AC CE 31=,BE 、CD 交于点O ,cm BE 5=,则=OE .5、顺次连接任意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片ABCD 沿对角线AC 对折后,AD 与BC 交于点E ,则DE 的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,则菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、已知四边形ABCD 是菱形,AEF ∆是正三角形,E 、F 分别在BC 、CD 上,且CD EF =,则=∠BAD .三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)1、如图3,AB//CD ,090=∠ACB ,E 是AB CE=CD ,DE 和AC 相交于点F.求证:(1)AC DE ⊥; (2)ACE ACD ∠=∠.2、如图4,ABCD 为平行四边形,DFEC 和BCGH 34四、(第1、2小题各6分,第3小题7分,共1、如图5,正方形纸片ABCD 的边BC 上有一点E ,E 重合,则纸片折痕的长是多少?2、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD3、如图7,已知P 是矩形ABCD 的内的一点.求证:2010~2011学年度上期目标检测题九年级 数学半期检测题(总分120分,100分钟完卷)班级 姓名 学号 成绩一、选择题(每小题3分,共36案的番号填在括号内.1、下列数据为长度的三条线段可以构成直角三角形的是((A )3、5、6 (B )2、3、4(C ) 6、7、9 (D )9、12、15 2、如图(一):AB=AC ,D 、E 、F 分别是三边中点,则图中全等三角形共有( )(A ) 5对 (B ) 6对 (C ) 7对 (D ) 8对 3、△ABC 中,∠A=150º,AB=10,AC=18,则△ABC (A )45 (B )90 (C )180 (D )不能确定4、已知△ABC 中,∠C=90º,∠A=30º,BD 平分∠B 交AC 于点D ,则点D ( )(A )是AC 的中点 (B )在AB 的垂直平分线上(C )在AB 的中点 (D )不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( )(A )1 (B ) -1 (C ) 1或-1 (D )21 6、方程x x 52=的根是( )(A )5=x (B )0=x (C ) 5,021==x x (D ) 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为( )(A )100)2(2++x (B )100)2(2--x (C )100)2(2-+x (D ) 100)2(2+-x8、两个连续奇数的乘积是483,则这两个奇数分别是( )(A ) 19和21 (B ) 21和23 (C ) 23和25 (D ) 20和229、根据下列条件,能判定一个四边形是平行四边形的是( )(A )两条对角线相等 (B )一组对边平行,另一组对边相等(C )一组对角相等,一组邻角互补 (D )一组对角互补,一组对边相等10、能判定一个四边形是矩形的条件是( )(A )对角线相等 (B )对角线互相平分且相等(C )一组对边平行且对角线相等 (D )一组对边相等且有一个角是直角11、如果一个四边形要成为一个正方形,那么要增加的条件是( )(A )对角线互相垂直且平分 (B )对角互补(C )对角线互相垂直、平分且相等 (D )对角线相等12、矩形的四个内角平分线围成的四边形( )(A )一定是正方形 (B )是矩形 (C )菱形 (D )只能是平行四边形 二、填空题(每空2分,共38分)1、直角三角形两直角边分别是5cm 和12cm ,则斜边长是 ,斜边上的高 是 cm.2、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△ABC 中,AB=AC ,∠BAC=120AD ⊥AC ,DC=8,则BD= .5、已知:如图(三),△ABC 中,AB=AC ,∠AB 的中垂线交AC 于点D ,交AB 于点E , 则∠C= ,∠DBC= .6、若关于x 的方程42322-=+x x kx 则k 的取值范围是 .7、关于x 的方程124322+-=-a ax x x ,若常数项为0,则a = .8、如果m x x ++32是一个完全平方式,则m = .9、已知9)2(222=++y x ,则=+22y x . 10、方程012=--x x 的根是 .11、已知04322=--y xy x ,则yx 的值是 . 12、如图(四),平行四边形ABCD 中,AD=6cm ,AB=9cm,AE 平分∠DAB ,则CE= cm. (四)13、已知矩形ABCD 的周长是24 cm,点M 是CD 中点,∠AMB=90°,则AB= cm,AD= cm.14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 .15、等腰梯形上底长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是 .三、解方程(每小题4分,共16分)1、0862=--x x (用配方法).2、23142-=--x x x (用公式法).3、04)5(=+-x x x (用因式分解法).4、02)12(2=++-x x .四、解答题(每小题5分,共15分)1、为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2002年我省退耕还林1600亩,计划2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校准备在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较合适?3、如图(五),ΔABC 中,AB=20,AC=12,AD 是中线,且AD=8,求BC 的长. 五、证明(计算)(每小题5分,共15分)1、已知:如图(六),点C 、D 在BE 上,BC=DE ,AB ∥EF ,AD ∥CF.求证:AD=CF.2、如图(七),正方形ABCD 中,E 为CD 上一点,F 为BC (1)求证:△BCE ≌△DCF ;(2)若∠BEC=600,求∠EFD3、已知:如图(八),在直角梯形ABCD 中,AB ∥CD ,AD ⊥求证:CD=CE.(八)2010~2011学年度上期目标检测题九年级数学第四章视图与投影班级姓名学号成绩一、选择题(每小题4分,共32分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是相同的长方形,府视图为圆,则这个几何体为()A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A、先变长,后变短B、先变短,后变长C、方向改变,长短不变D、以上都不正确3、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是()A、20米B、16米C、18米D、15米4、下列说法正确的是()A、物体在阳光下的投影只与物体的高度有关B、小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C、物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D、物体在阳光照射下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的是()图17、如图2所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为()图 2A、0.36πm2B、0.81πm2C、2πm2D、3.24πm28、如图(三)是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是()(三)A、(1)(2)(3)(4)B、(4)(3)(1)(2)C、(4)(3)(2)(1)D、(2)(3)(4)(1)二、填空题(每小题3分,共21分)1、主视图、左视图、府视图都相同的几何体为(写出两个).2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米.5、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影 .三、解答题(本题7个小题,共47分)1、某糖果厂为儿童设计一种新型的装糖果的不倒翁(如图4所示)请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.图 75、如图8为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况,(1)当太阳光与水平线的夹角为30°角时,求甲楼的影3 1.73);(2)若要甲楼的影子刚好不落在乙楼的子在乙楼上有多高(精确到0.1m,墙上,此时太阳与水平线的夹角为多少度?图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子[如图(9)所示],已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值)图 97、一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗?图 102010~2011学年度上期目标检测题九年级 数学第五章 反比例函数班级 姓名 学号 成绩一、填空题(每小题3分,共30分)1、近视眼镜的度数y (度)与镜片焦距x 成反比例.已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 .2、如果反比例函数xk y =的图象过点(2,-3),那么k = . 3、已知y 与x 成反比例,并且当x=2时,y=-1,则当y=3时,x 的值是 . 4、已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y 的值是 . 5、若点A (6,y 1)和B (5,y 2)在反比例函数x y 4-=的图象上,则y 1与y 2的大小关系是 .6、已知函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、若函数12)1(---=m m x m y 是反比例函数,则m 的值是 .8、直线y=-5x+b 与双曲线x y 2-=相交于 点P (-2,m ),则b= .9、如图1,点A 在反比例函数图象上,过点A 作AB 垂直于x 轴,垂足为B ,若S △AOB =2,则这个反比例函数的解析式为 . 图 110、如图2,函数y=-kx(k≠0)与xy 4-=的图 象交于点A 、B ,过点A 作AC 垂直于y 轴,垂足为C ,则△BOC 的面积为 . 图 2二、选择题(每小题3分,共30分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、如果反比例函数的图象经过点P (-2,-1),那么这个反比例函数的表达式为( )A 、x y 21=B 、x y 21-=C 、x y 2=D 、xy 2-= 2、已知y 与x 成反比例,当x=3时,y=4,那么当y=3时,x 的值等于( )A 、4B 、-4C 、3D 、-33、若点A (-1,y 1),B(2,y 2),C (3,y 3)都在反比例函数xy 5=的图象上,则下列关系式正确的是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是( )A 、m <0B 、m >0C 、m <5D 、m >55、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )A 、(-1,-2)B 、(-1,2)C 、(1,-2)D 、(-2,1)6、若一次函数b kx y +=与反比例函数xk y =的图象都经过点(-2,1),则b 的值是( ) A 、3 B 、-3 C 、5 D 、-57、若直线y=k 1x(k 1≠0)和双曲线xk y 2=(k 2≠0)在同一坐标系内的图象无交点,则k 1、k 2的关系是( )A 、k 1与k 2异号B 、k 1与k 2同号C 、k 1与k 2互为倒数D 、k 1与k 2的值相等8、已知点A 是反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内,则这个反比例函数的表达式为( )A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、如果点P 为反比例函数x y 6=的图像上的一点,PQ 垂直于x 轴,垂足为Q ,那么 △POQ 的面积为( )A 、12B 、6C 、3D 、1.510、已知反比例函数xk y =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题(本题6个小题,共40分)1、(6分)已知矩形的面积为6,求它的长y 与宽x 之间的函数关系式,并在直角坐标系中作出这个函数的图象.2、(6分)一定质量的氧气,它的密度ρ(kg/m 3)是它的体积v (m 3)的反比例函数,当v =10m 3时,ρ=1.43kg/m 3. (1)求ρ与v 的函数关系式;(2)求当v =2m 3时,氧气的密度ρ.3、(7分)某蓄水池的排水管每时排水8m 3,6小时(h )可将满水池全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q (m 3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t 与Q之间的关系式(4)如果准备在5h 内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?4、(7分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x (元)与日销售量y (个)之间有如下关系:(2)猜测并确定y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为W元,求出W与x 之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?5、(7分)如图3,点A是双曲线x k y =与直线y=-x-(k+1)在第二象限内的交点, AB⊥x 轴于B ,且S△ABO =23. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC 的面积.图 36、(7分)已知反比例函数xk y 2=和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)如图4,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.图 42010~2011学年度上期目标检测题九年级 数学第六章 频率与概率班级 姓名 学号 成绩一、选择题(每小题4分,共40分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事件发生的概率不可能是( )A 、0B 、1C 、21D 、23 2、下列说法正确的是( ) A 、投掷一枚图钉,钉尖朝上、朝下的概率一样 B 、统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是21 C 、投掷一枚均匀的硬币,正面朝上的概率是21 D 、投掷一枚均匀的骰子,每一种点数出现的概率都是61,所以每投6次,一定会出现一次“1点”.3、关于频率和概率的关系,下列说法正确的是( )A 、频率等于概率B 、当实验次数很大时,频率稳定在概率附近C 、当实验次数很大时,概率稳定在频率附近D 、实验得到的频率与概率不可能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A 、38%B 、60%C 、约63%D 、无法确定5、随机掷一枚均匀的硬币两次,两次都是正面的概率是( )A 、21B 、31C 、41 D 、无法确定 6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A 、10个B 、20个C 、30个D 、无法确定7、某商场举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是( )A 、100001B 、1000050C 、10000100D 、10000151 8、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是( ) A 、21 B 、31 C 、41 D 、61 9、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A 、至少有两名学生生日相同B 、不可能有两名学生生日相同C 、可能有两名学生生日相同,但可能性不大D 、可能有两名学生生日相同,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,则某人偶然遇到一辆自行车,其牌照编号大于9000的概率是( )A 、101 B 、109 C 、1001 D 、1009 二、填空题(每小题3分,共24分) 1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .2、某电视台综艺节目组接到热线电话3000个.现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率是 .3、袋中装有一个红球和一个黄球,它们除了颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌游戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和若干个白球,从口袋中一次摸出10个球,求出黑球数与10的比值,不断重复上述过程,总共摸了10次,黑球数与10的比值的平均数为1/5,因此可估计口袋中大约有 个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,任意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色(即配成紫色)的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.小亮忘了密码的前面两个数字,他随意按下前两个数字,则他一次就能打开锁的概率是 .8、某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000是 .三、解答题(本题有5个小题,共36分)1、(7分)有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?2、(7分)一则广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,小明看到这则广告后,想:“50%=21,那么我抽二张就会有一张中奖,抽10张就会有1张中一等奖”.你认为小明的想法对吗?请说明理由.3、(7分)桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?请说明理由.4、(7分)为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回鱼塘,经过一段时间,待有标记的鱼完全混合于鱼群后,又捕捞了两次,第一次捕捞了200条鱼,其中有24条有标记,第二次捕捞了220条,其中有18条有标记.请问你能否估计出鱼塘中鱼的数量?若能,鱼塘中大约有多少条鱼?若不能,请说明理由.5、(8分)小红计划到外婆家度暑假,为此她准备了一件粉色衬衣,一件白色衬衣,又买了三条不同款式的裙子:一步裙、太阳裙和牛仔裙.(1)她一共有多少种搭配方法?(2)如果在30天中她每天都变换一种搭配,她有几天穿白衬衣?几天穿牛仔裙?有几天白衬衣配牛仔裙?2010~2011学年度上期目标检测题九年级 数学第一章 证明(Ⅱ)参考答案一、判断题 1 √,2 ×,3 ×,4 ×,5 ×二、选择题 1、C 2、C 3、B 4、D 5、C 6、D 7、D 8、D 9、A 10、B三、填空题 1、三;2、∠ACB=∠DFE ,AB ∥DE ;3、4cm 2 ;4、90°;5、如果两个内角是锐角,那么另一个内角是钝角;6、三角形有两个内角是钝角; 7、cm 52;8、4cm ;9、15°.四、作图题 (略)五、解答题:设旗杆的高度为x 米 列方程 ()22251+=+x x 解 12=x六、证明题: 1、证明(略)2、连结AC 先证△ABC ≌△ADC 再证△AEC ≌△DFC3、先证△AED ≌△AFD 得AE=AF ∠EAD=∠FAD 由等腰三角形三线合一得 AD ⊥EF(或 证AE=AF DE=DF 得A 点在EF 的中垂线上,D 点在EF 的中垂线上 )。
2022-2023学年北师大版九年级数学上册第一章特殊平行四边形单元测试题含答案

第一章 特殊平行四边形一 选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,下列说法不正确的是 ( )A.AB ∥DCB.AC=BDC.AC ⊥BDD.OA=OB(第1题) (第2题)2.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 为AD 的中点,连接OE ,若OE=3,则菱形ABCD 的周长为 ( )A.10B.12C.16D.243.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,P 为边BC 上一点,且BP=OB ,则∠COP= ( ) A.15° B.22.5° C.25°D.17.5°(第3题) (第4题)4.如图,在矩形ACBE 中,∠ABC=30°,AB 交CE 于点D ,若AC=2,则CD 的长为 ( )A.2B.3C.4D.55.如图,EF 过矩形ABCD 的对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的 ( )A.15B.14C.13D.310(第5题) (第6题)6.如图,已知▱ABCD 的对角线AC ,BD 相交于点O ,下列说法正确的是( ) A.当OA=OB 时,▱ABCD 为菱形 B.当AB=AD 时,▱ABCD 为正方形 C.当∠ABC=∠BCD 时,▱ABCD 为矩形 D.当AC ⊥BD 时,▱ABCD 为正方形7.如图,在矩形ABCD 中,BC=8,AB=4,点E ,F 分别为AD 和BC 的中点,连接CE ,DF ,交于点O ,连接AO ,则AO 的长为( )A.2√10B.5√2C.32√10 D.4√2(第7题)(第8题)8.如图,在四边形ABCD中,点E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD应满足的一个条件是()A.AD=BCB.AC⊥BDC.AC=BDD.AB=CD9.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB'C'D',边B'C'与DC 相交于点O,则OC的长是() A.2√2-2 B.2+√2 C.2-√2 D.√2(第9题)(第10题)10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B'处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是() A.12 B.24 C.12√3 D.16√3二填空题(共5小题,每小题3分,共15分)11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若∠A=26°,则∠DCA=.(第11题)(第12题)12.如图,在平面直角坐标系中,矩形木框OABC的顶点B的坐标为(1,2),若固定OA,向左推矩形木框OABC,使点B落在y轴上的点B'处,则点C的对应点C'的坐标为.13.对下列现象中蕴含的数学原理阐述正确的是(填序号).图(1)图(2)图(3)①如图(1),工人师傅在做矩形门窗时,不仅要测量出两组对边的长度相等,还要测量出两条对角线的长度相等,以确保门窗是矩形.其依据是“对角线相等的四边形是矩形”.②如图(2),将两张等宽的矩形纸条交叉叠放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是“有一组邻边相等的平行四边形是菱形”.③把一张矩形纸片按图(3)的方式折一下,然后沿EF裁剪,打开就可以得到正方形.其依据是“有一组邻边相等的矩形是正方形”.14.如图,P是正方形ABCD的对角线BD上一点,PE⊥DC于点E,PF⊥BC于点F,若CF=3,CE=4,则AP的长是.(第14题)(第15题)15.如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F为AC上一动点,连接EF,BF,则EF+BF的最小值是.三解答题(共6小题,共55分)16.(7分)如图,正方形ABCD中,点E,F分别在边CD,AD上,DE=AF,BE与CF相交于点G.(1)求证:BE=CF.(2)若BC=4,DE=1,求CF的长.17.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.18.(8分)如图,在矩形ABCD中,AB=3 cm,BC=6 cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止.点P,Q的速度都是1 cm/s.连接PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?19.(9分)如图(1),在菱形纸片ABCD中,∠A=45°.对其进行如下操作:如图(2),现将纸片进行折叠,使点A与点D重合,点C与点D重合,折痕分别为EG,FH,且两条折痕的延长线交于点O.(1)求∠EOF的度数;(2)四边形DGOH是菱形吗?请说明理由.图(1)图(2)20.(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.如图(1),在四边形ABCD中,AC⊥BD于点O,四边形ABCD就是“对角线垂直四边形”.(1)下列四边形,一定是“对角线垂直四边形”的是.①平行四边形,②矩形,③菱形,④正方形.(2)如图(2),在“对角线垂直四边形ABCD”中,点E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.图(1)图(2)(3)小明说:计算“对角线垂直四边形”的面积可以仿照求菱形的面积的方法,其面积是对角线长的乘积的一半.小明的说法正确吗?如果正确,请结合图(1)说明理由;如果不正确,请给出反例.21.(13分)如图(1),矩形ABCD的对角线AC,BD相交于点O,过点D作DP∥OC,且DP=OC,连接CP.(1)猜想:请你判断四边形CODP的形状,并说明理由.(2)证明:如果将矩形变为菱形,如图(2),请你判断四边形CODP的形状,并说明理由.(3)应用:如果将矩形变为正方形,如图(3),请你判断四边形CODP的形状,并说明理由.图(1)图(2)图(3)答案解析1.C根据矩形的性质可知,矩形的对角线不一定互相垂直.故选C.【归纳总结】矩形的有关性质①边,矩形的对边平行且相等;②角,矩形的四个角都是直角;③对角线,矩形的对角线互相平分且相等.2.D根据菱形的性质可知,O是AC的中点.∵E为AD的中点,∴OE为△ACD的中位线,∴CD=2OE=6.又菱形的四边相等,∴菱形ABCD的周长为6×4=24.故选D.【一题多解】由题意得∠AOD=90°.在Rt△AOD中,∵E为AD的中点,∴AD=2OE=2×3=6,∴菱形ABCD的周长为6×4=24.故选D.3.B∵四边形ABCD是正方形,∴∠BOC=90°,∠OBC=45°.∵BP=OB,∴∠BOP=∠BPO=12(180°-45°)=67.5°,∴∠COP=90°-67.5°=22.5°.故选B.4.A∵四边形ACBE是矩形,∴∠ACB=90°,D为AB的中点.∵AC=2,∠ABC=30°,∴AB=2AC=4,∴CD=12AB=2,故选A.5.B∵四边形ABCD为矩形,∴OB=OD,AB∥CD,∴∠EBO=∠FDO.在△EBO与△FDO中,∵∠EOB=∠FOD,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO,∴S阴影部分=S△AEO+S△EBO=S△AOB.∵S△AOB=12S△ABC=14S矩形ABCD,∴S阴影部分=14S矩形ABCD.故选B.【数学思想】本题利用全等三角形把不规则图形的面积转化为较简单的规则图形的面积,进而利用整体思想求解.6.C∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又OA=OB,∴AC=BD,由“对角线相等的平行四边形是矩形”,可判定▱ABCD为矩形,故选项A中说法错误.当AB=AD时,由菱形的定义可知,▱ABCD为菱形,故选项B中说法错误.∵在▱ABCD中,AB∥CD,∴∠ABC+∠BCD=180°.又∠ABC=∠BCD,∴∠ABC=90°.由矩形的定义,可判定▱ABCD为矩形,故选项C中说法正确.当AC⊥BD时,根据“对角线互相垂直的平行四边形是菱形”,可判定▱ABCD为菱形,但无法判定其为正方形,故选项D中说法错误.故选C.7.A连接EF,过点O作OM⊥AD于点M,易证四边形EFCD为正方形,∴OM=MD=12AB=2,∴AM=6.在Rt△AOM中,由勾股定理,得AO=√AM2+OM2=2√10.8.A∵点E,F,G,H分别是AB,BD,CD,AC的中点,∴GH∥AD,EF∥AD,FG∥BC,HE∥BC,且GH=12AD,EH=12BC,∴EF∥GH,HE∥FG,∴四边形EFGH是平行四边形.当AD=BC时,GH=EH,此时平行四边形EFGH是菱形.故选A.9.C如图,连接B'C,AC.∵旋转角∠BAB'=45°,∠BAC=45°,∴点B'在对角线AC上.∵AB=AB'=BC=1,∴AC=√2,∴B'C=√2-1.在等腰直角三角形OB'C中,OB'=B'C=√2-1,∴OC=√2(√2-1)=2-√2.故选C.10.D在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°.由翻折可知,∠EFB'=60°,∠A'B'F=∠B=90°,∠A'=∠A=90°,A'E=AE=2,A'B'=AB.在△EFB'中,∵∠B'EF=∠EFB'=60°,∴△EFB'是等边三角形.在Rt△A'EB'中,∵∠A'B'E=90°-60°=30°,∴B'E=2A'E=4,∴A'B'=2√3,即AB=2√3.∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB·AD=2√3×8=16√3.故选D.AB=AD,∴∠DCA=∠A=26°.11.26°【解析】∵∠ACB=90°,D是AB的中点,∴DC=1212.(-1,√3)【解析】∵四边形OABC是矩形,点B的坐标为(1,2),∴OA=1,AB=2.由题意得AB'=AB=2,四边形OAB'C'是平行四边形,∴OB'=√AB'2-OA2=√3,B'C'=OA=1,∴点C的对应点C'的坐标为(-1,√3).13.②③【解析】①∵两组对边的长度相等,∴四边形是平行四边形.又对角线相等,∴该平行四边形是矩形(对角线相等的平行四边形是矩形),故①错误.②如图,由矩形的对边平行,可得AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.过点D分别作AB,BC边上的高DE,DF,则DE=DF.∵平行四边形ABCD的面积=AB×DE=BC×DF,∴AB=BC,∴平行四边形ABCD为菱形(有一组邻边相等的平行四边形是菱形),故②正确.③根据折叠可知,所得到的四边形有三个直角,∴该四边形为矩形.又有一组邻边相等,∴该矩形为正方形(有一组邻边相等的矩形是正方形),故③正确.故正确的阐述为②③.14.5【解析】如图,连接PC.∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP.∵PD=PD,∴△APD≌△CPD,∴AP=CP.∵四边形ABCD是正方形,∴∠DCB=90°.∵PE⊥DC,PF⊥BC,∴四边形PFCE是矩形,∴PC=EF.在Rt△CEF中,EF=√CE2+CF2=√42+32=5,∴AP=CP=EF=5.15.3√3【解析】∵四边形ABCD是菱形,∴点B,D关于AC对称,AB=AD.如图,连接BD,ED,则ED 的长即为EF+BF的最小值.∵∠DAB=60°,∴△ABD是等边三角形.∵E为AB的中点,∴DE⊥AB,AE=12AB=3.在Rt△ADE中,根据勾股定理,得ED=√AD2-AE2=√62-32=3√3,∴EF+BF 的最小值为3√3.16.【参考答案】(1)证明:∵四边形ABCD是正方形,∴BC=CD=DA,∠BCE=∠CDF=90°.(2分)∵DE=AF,∴CE=DF.(3分)在△BCE和△CDF中,{BC=CD,∠BCE=∠CDF, CE=DF,∴△BCE≌△CDF,∴BE=CF.(5分) (2)∵CD=AD=BC=4,AF=DE=1,∴DF=3.在Rt△CDF中,CF=√CD2+DF2=5.(7分) 17.【参考答案】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(3分)(2)如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF.又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.(8分)18.【参考答案】(1)由题意得,BQ=DP=t,AP=CQ=6-t.在矩形ABCD中,∠B=90°,AD∥BC.要使四边形ABQP是矩形,则BQ=AP,即t=6-t,解得t=3.故当t=3时,四边形ABQP是矩形.(4分) (2)由题意得,四边形AQCP是平行四边形.要使平行四边形AQCP是菱形,则AQ=CQ,即√32+t2=6-t,解得t=94.故当t=94时,四边形AQCP是菱形.(8分)19.【参考答案】(1)由折叠可知∠DEG=∠DFH=90°.∵四边形ABCD是菱形,∴AB∥CD,∠C=∠A=45°,∴∠A+∠ADC=180°,∴∠ADC=135°.∵∠EOF+∠DEG+∠DFH+∠ADC=360°,∴∠EOF=360°-90°-90°-135°=45°.(4分) (2)是菱形.(5分)理由:由折叠可知∠ADG=∠A=45°,∠CDH=∠C=45°.∵∠ADC=135°,∴∠GDC=∠ADH=90°.∵∠AEG=∠CFH=90°,∴GE∥DH,GD∥HF,∴四边形DGOH是平行四边形.(7分)∵∠A=∠C,AD=CD,∠ADG=∠CDH,∴△ADG≌△CDH,∴DG=DH,∴四边形DGOH是菱形.(9分)20.【参考答案】(1)③④(2分) (2)∵点E,F,G,H分别是边AB,BC,CD,DA的中点,∴HG∥AC,EF∥AC,∴HG∥EF.同理可得HE∥GF.∴四边形EFGH是平行四边形.(4分)∵DB⊥AC,∴HE⊥HG,∴∠EHG=90°,∴四边形EFGH是矩形.(6分) (3)正确.(7分)理由:S四边形ABCD=S△ADC+S△BAC=12AC·OD+12AC·BO=12AC(OD+OB)=12AC·BD,即“对角线垂直四边形”的面积是对角线长的乘积的一半.(10分)【提分技法】解决中点四边形的有关方法(1)解决中点四边形问题,往往借助三角形的中位线的性质证明四边形的对边相等或平行.(2)中点四边形的形状由原来四边形对角线的特征决定.连接矩形各边中点得到的四边形是菱形;连接菱形各边中点得到的四边形是矩形;连接正方形各边中点得到的四边形是正方形.21.【解题思路】(1)由DP∥OC且DP=OC,得四边形CODP是平行四边形,根据矩形的性质得OC=OD,从而可证得四边形CODP是菱形;(2)由DP∥OC且DP=OC,得四边形CODP是平行四边形,又根据菱形的性质得∠DOC=90°,从而证得四边形CODP是矩形;(3)由DP∥OC且DP=OC,得四边形CODP 是平行四边形,又由正方形的性质得∠DOC=90°,OD=OC,从而证得四边形CODP是正方形.【参考答案】(1)四边形CODP是菱形.(1分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.(2分)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OD=12BD,∴OC=OD,∴四边形CODP是菱形.(4分) (2)四边形CODP是矩形.(5分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形CODP是矩形.(8分) (3)四边形CODP是正方形.(9分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OC=12AC,OD=12BD,∴∠DOC=90°,OC=OD,(12分)∴四边形CODP是正方形.(13分)。
北师大版数学九年级上册课本答案

北师大版数学九年级上册课本答案【篇一:北师版九年级数学上册第一章测试卷(含答案)】卷满分120分考试时间120分钟)一、选择题(共10小题,每小题3分,计30分)1、下列各组图形中,是全等三角形的一组是()a.底边长都为15cm的两个等腰三角形b.腰长都为15cm的两个等腰三角形d.边长为12cm的两个等边三角形2、等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为()a.7b.3c.7或3d.53、一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是()a.等腰三角形b.等边三角形c.直角三角形d.等腰直角三角形4、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()a.有两个角是直角b.有两个角是钝角c.有两个角是锐角d.一个角是钝角,一个角是直角6、如图1-2,在一次强台风中一棵大树在离地面5m处折断倒下,倒a.10mb.15mc.25md.30mcba d 图1-1图1-27、下列命题①对顶角相等②如果三角形中有一个角是钝角,那么另外两个角是锐角③若两直线平行,则内错角相等④三边都相等的三角形是等边三角形。
其中逆命题正确的有()a.①③b.②④c.①②d.③④8、如图1-3(1)在△abc中,d、e分别是ab,ac的中点,将△ade沿线段de向下折叠,得到图形1-3(2),下列关于图(2)的四个结论中,一定不成立的是()c.△dba是等腰三角形d.de∥bce c 图1-3 b c (2)(1) aa.1b.2c.3d.4be aa c图1-4图1-5二、填空题(共6小题,每小题3分,计18分)11、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果③如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c 其中属于真命题的是(填写所有真命题的序号)12、一个三角形三边之比为2:5:3,这个三角形的形状是13、把“同角的余交相等”改写成“如果??,那么??”的形式为cd=3,则ab的长度为15、如图1-7,p是正方形abcd内一点,将△abp绕点b顺时针方向旋转能与△cbp?重合,若pb=3,则pp?的长度为a p dbd b cc n c a b ?图1-6 图1-7图1-8三、解答题(共6小题,计72分,解答应写过程)ad图1-918、(10分)已知:如图1-10,de为△abc的边ab的垂直平分线,m d cd为△abc的外角平分线,与de交于点d,dm⊥bc的延长线于点m,dn⊥ac于点n,求证:an=bm。
第一章特殊的平行四边形 复习测试 2021-2022学年北师大版九年级数学上册(word含答案)

北师大版九年级数学上册第一章特殊的平行四边形复习测试一.选择题1.对角线互相垂直平分的四边形是()A.平行四边形B.菱形C.矩形D.任意四边形2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.下列关于∠ABCD的叙述,正确的是()A.若AB∠BC,则∠ABCD是菱形B.若AC=BD,则∠ABCD是矩形C.若AC平分∠BAD,则∠ABCD是正方形D.若AC∠BD,则∠ABCD是正方形4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.CE∠DE C.∠ADB=90°D.BE∠DC5.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE 6.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.87.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠CBF为()A.75°B.60°C.55°D.45°8.如图,在菱形ABCD中,AC=8,BD=6,则∠ABC的周长是()A.14B.16C.18D.209.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,在正方形ABCD中,∠ABE和∠CDF为直角三角形,∠AEB=∠CFD =90°,AE=CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.711.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连接OE.若OE=3,则菱形ABCD的周长是()A.6B.12C.18D.2412.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∠BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=()A.60°B.45°C.30°D.22.5°二.填空题13.如图,在Rt∠ABC中,E是斜边AB的中点,若AC=8,BC=6,则CE=.14.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.15.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD 上移动,则PE+PC的最小值是.16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF =20°,则∠AED等于度.17.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别为AB,BC,CD,DA的中点,连接EG,HF交于点O.则EG2+FH2=.18.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=___ .三.解答题19.如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.如图,将∠ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:∠ABD∠∠BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.21.已知:如图,在∠ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:∠ABE∠∠CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∠AC交BC的延长线于点E,当AB=6,AC=8时,求∠BDE 的周长.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)∠当AE=cm时,四边形CEDF是矩形;∠当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)25.在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连接BE.【感知】如图∠,过点A作AF∠BE交BC于点F.易证∠ABF∠∠BCE.(不需要证明)【探究】如图∠,取BE的中点M,过点M作FG∠BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连接CM,若CM=1,则FG的长为.【应用】如图∠,取BE的中点M,连接CM.过点C作CG∠BE交AD于点G,连接EG、MG.若CM=3,则四边形GMCE的面积为.北师大版九年级数学上册第一章特殊的平行四边形复习测试答案提示一.选择题1.对角线互相垂直平分的四边形是()选:B.A.平行四边形B.菱形C.矩形D.任意四边形2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()选:D.A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.下列关于∠ABCD的叙述,正确的是()选:B.A.若AB∠BC,则∠ABCD是菱形B.若AC=BD,则∠ABCD是矩形C.若AC平分∠BAD,则∠ABCD是正方形D.若AC∠BD,则∠ABCD是正方形4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()选:D.A.AB=BE B.CE∠DE C.∠ADB=90°D.BE∠DC5.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()选:D.A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE6.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()选:A.A.2B.C.6D.87.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠CBF为()选:A.A.75°B.60°C.55°D.45°8.如图,在菱形ABCD中,AC=8,BD=6,则∠ABC的周长是()选:C.A.14B.16C.18D.209.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()选:D.A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,在正方形ABCD中,∠ABE和∠CDF为直角三角形,∠AEB=∠CFD =90°,AE=CF=5,BE=DF=12,则EF的长是()选:C.A.7B.8C.7D.7解:如图所示:∠四边形ABCD是正方形,∠∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠∠BAE+∠DAG=90°,在∠ABE和∠CDF中,,∠∠ABE∠∠CDF(SSS),∠∠ABE=∠CDF,∠∠AEB=∠CFD=90°,∠∠ABE+∠BAE=90°,∠∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∠∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在∠ABE和∠ADG中,,∠∠ABE∠∠ADG(AAS),∠AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∠EG=GF=FH=EF=12﹣5=7,∠∠GEH=180°﹣90°=90°,∠四边形EGFH是正方形,∠EF=EG=7;11.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连接OE.若OE=3,则菱形ABCD的周长是()选:D.A.6B.12C.18D.2412.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∠BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=()选:D.A.60°B.45°C.30°D.22.5°二.填空题13.如图,在Rt∠ABC中,E是斜边AB的中点,若AC=8,BC=6,则CE=5.14.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.15.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD 上移动,则PE+PC的最小值是.16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF =20°,则∠AED等于65度.17.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别为AB,BC,CD,DA的中点,连接EG,HF交于点O.则EG2+FH2=.答案36解析连接EF,FG,GH,HE,∠点E,F,G,H分别是AB,BC,CD,DA的中点,AC=3,∠EF∠AC∠GH,EF=GH=12BD=3,EH∠BD∠FG,EH=FG=12∠EF=FG=GH=EH,∠四边形EFGH是菱形.∠EG∠FH,OE=OG,OH=OF.∠EG2+FH2=(2OE)2+(2OH)2=4OE2+4OH2=4(OE2+OH2)=4EH2=36.18.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=__2n+1__.三.解答题19.如图,在菱形ABCD中,CE=CF.求证:AE=AF.证明:如图,连接AC,∠四边形ABCD是菱形,∠∠BCA=∠DCA,∠CE=CF,AC=AC,∠∠ECA∠∠FCA(SAS),∠AE=AF.20.如图,将∠ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:∠ABD∠∠BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∠CD,则BE∠CD.又∠AB=BE,∠BE=DC,∠四边形BECD为平行四边形,∠BD=EC.∠在∠ABD与∠BEC中,,∠∠ABD∠∠BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∠四边形ABCD为平行四边形,∠∠A=∠BCD,即∠A=∠OCD.又∠∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∠∠OCD=∠ODC,∠OC=OD,∠OC+OB=OD+OE,即BC=ED,∠平行四边形BECD为矩形.21.已知:如图,在∠ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:∠ABE∠∠CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.(1)证明:∠四边形ABCD是平行四边形,∠AB=CD,∠BAE=∠DCF,在∠ABE和∠CDF中,,∠∠ABE∠∠CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∠四边形ABCD是平行四边形,∠AD∠BC,AD=BC,∠AE=CF,∠DE=BF,∠四边形BEDF是平行四边形,∠OB=OD,∠DG=BG,∠EF∠BD,∠四边形BEDF是菱形.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∠AC交BC的延长线于点E,当AB=6,AC=8时,求∠BDE 的周长.解:(1)∠四边形ABCD是菱形,∠AD∠BC,AO=OC,∠,∠OM=ON.(2)∠四边形ABCD是菱形,∠AC∠BD,AD=BC=AB=6,∠BO==2,∠,∠DE∠AC,AD∠CE,∠四边形ACED是平行四边形,∠DE=AC=8,∠∠BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即∠BDE的周长是20.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.证明:(1)∠将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,∠QB=DF,AQ=AF,∠BAQ=∠DAF,∠∠EAF=45°,∠∠DAF+∠BAE=45°,∠∠QAE=45°,∠∠QAE=∠F AE,在∠AQE和∠AFE中,∠∠AQE∠∠AFE(SAS),∠∠AEQ=∠AEF,∠EA是∠QED的平分线;(2)由(1)得∠AQE∠∠AFE,∠QE=EF,由旋转的性质,得∠ABQ=∠ADF,∠ADF+∠ABD=90°,则∠QBE=∠ABQ+∠ABD=90°,在Rt∠QBE中,QB2+BE2=QE2,又∠QB=DF,∠EF2=BE2+DF2.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)∠当AE= 3.5cm时,四边形CEDF是矩形;∠当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)(1)证明:∠四边形ABCD是平行四边形,∠CF∠ED,∠∠FCG=∠EDG,∠G是CD的中点,∠CG=DG,在∠FCG和∠EDG中,,∠∠FCG∠∠EDG(ASA)∠FG=EG,∠CG=DG,∠四边形CEDF是平行四边形;(2)∠解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM∠BC于M,∠∠B=60°,AB=3,∠BM=1.5,∠四边形ABCD是平行四边形,∠∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∠AE=3.5,∠DE=1.5=BM,在∠MBA和∠EDC中,,∠∠MBA∠∠EDC(SAS),∠∠CED=∠AMB=90°,∠四边形CEDF是平行四边形,∠四边形CEDF是矩形,故答案为:3.5;∠当AE=2时,四边形CEDF是菱形,理由是:∠AD=5,AE=2,∠DE=3,∠CD=3,∠CDE=60°,∠∠CDE是等边三角形,∠CE=DE,∠四边形CEDF是平行四边形,∠四边形CEDF是菱形,故答案为:2.25.在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连接BE.【感知】如图∠,过点A作AF∠BE交BC于点F.易证∠ABF∠∠BCE.(不需要证明)【探究】如图∠,取BE的中点M,过点M作FG∠BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连接CM,若CM=1,则FG的长为2.【应用】如图∠,取BE的中点M,连接CM.过点C作CG∠BE交AD于点G,连接EG、MG.若CM=3,则四边形GMCE的面积为9.解:感知:∠四边形ABCD是正方形,∠AB=BC,∠BCE=∠ABC=90°,∠∠ABE+∠CBE=90°,∠AF∠BE,∠∠ABE+∠BAF=90°,∠∠BAF=∠CBE,在∠ABF和∠BCE中,,∠∠ABF∠∠BCE(ASA);探究:(1)如图∠,过点G作GP∠BC于P,∠四边形ABCD是正方形,∠AB=BC,∠A=∠ABC=90°,∠四边形ABPG是矩形,∠PG=AB,∠PG=BC,同感知的方法得,∠PGF=∠CBE,在∠PGF和∠CBE中,,∠∠PGF∠∠CBE(ASA),∠BE=FG,(2)由(1)知,FG=BE,连接CM,∠∠BCE=90°,点M是BE的中点,∠BE=2CM=2,∠FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∠ME=3,同探究(1)得,CG=BE=6,∠BE∠CG,∠S四边形CEGM=CG×ME=×6×3=9,故答案为9.。
北师大版九年级数学上册-第一章-特殊的平行四边形-单元测试题(有答案)

九年级数学上册第一章特殊的平行四边形单元测试题班级:姓名:成绩:一.选择题(共10小题,每小题3分,共30分)1.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角2.如图,AC=AD,BC=BD,则正确的结论是()A.AB 垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.四边形ABCD是菱形3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.154.如图,O为矩形ABCD的对角线AC的中点,过点O作AC的垂线EF分别交AD、BC于点E、F,连结CE.若该矩形的周长为20,则△CDE的周长为()A.10 B.9 C.8 D.55.如图,在▱ABCD中,对角线AC与BD 交于点O,添加下列条件不能判定▱ABCD为矩形的只有()A.AC=BD B.AB=6,BC=8,AC=10 C.AC⊥BD D.∠1=∠26.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°7.如图,在正方形ABCD中,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点E,连接AE,BE得到△ABE,则△ABE与正方形ABCD的面积比为()A.1:2 B.1:3 C.1:4 D.8.已知四边形ABCD中,∠A=∠B=∠C=90°,如添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD9.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)二.填空题(共8小题,每小题3分,共24分)10.矩形(非正方形)四个内角的平分线围成的四边形是形.(填特殊四边形)11.如图,E是菱形ABCD的对角线BD上一点,过点E作EF⊥BC于点F.若EF =4,则点E到边AB的距离为.12.在菱形ABCD中,AC=12cm,若菱形ABCD的面积是96cm2,则AB=.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F 分别为AO、AD的中点,则EF的长是.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.15.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为.16.已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.17.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF 的中点,那么CH的长是.三.解答题(共7小题,共66分)18.已知:如图所示,菱形ABCD中,DE⊥AB于点E,且E为AB的中点,已知BD=4,求菱形ABCD的周长和面积.19.如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE =DF.求证;四边形ABCD是菱形.20.如图,在矩形ABCD中,AE⊥BD于点E,∠DAE=2∠BAE,求∠EAC的度数.21.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,22.如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC =,则点E到边AB 的距离为.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题1.解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.2.解:∵AC=AD,BC=BD,∴AB垂直平分CD,故选:A.3.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO =BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD 的面积=×6×8=24,故选:B.4.解:∵O为矩形ABCD的对角线AC的中点,∴AO=OC,∵过点O作AC的垂线EF分别交AD、BC于点E、F,∴AE=CE,∵矩形的周长为20,∴AD+DC=AB+BC=10,∴△CDE的周长为CD+DE+CE=CD+DE+AE=CD+AD=10,故选:A.5.解:A、正确.对角线相等的平行四边形是矩形.B、正确.∵AB=6,BC=8,AC=10,∴AB2+BC2=62+82=102,∴∠ABC=90°,∴平行四边形ABCD为矩形.C、错误.对角线垂直的平行四边形是菱形,D、正确,∵∠1=∠2,∴AO=BO,∴AC=BD,∴平行四边形ABCD是矩形.故选:C.6.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°故选:A.7.解:过E作EF⊥AB于F,由题意得,△BCE是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=30°,∴EF =BE,设正方形的边长为a,则AB=BE=BC=a,∴EF =a,∴S△ABE =AB•EF =•a a =a,S正方形ABCD=a2,∴△ABE与正方形ABCD的面积比为1:4,故选:C.8.解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.10.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO ==3∴点C坐标(6,3)故选:D.二.填空题11.解:∵AF,BE是矩形的内角平分线.∴∠ABF=∠BAF﹣90°.故∠1=∠2=90°.同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.∴OD=OC,△AMD≌△BNC,∴NC=DM,∴NC﹣OC=DM﹣OD,即OM=ON,∴矩形GMON为正方形,故答案为:正方.12.解:∵四边形ABCD为菱形,∴BD平分∠ABC,∵E为BD上的一点,EF=4,∴点E到AB的距离=EF=4,故答案为:4.13.解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD ∵S菱形ABCD =×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB ==10cm故答案为:10cm14.解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF =DO ==5,故答案为:5.15.解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.16.解:∵菱形ABCD的周长是20,∴AB=5,AC⊥BD,AO=CO,BO=DO=3,∴AO ==4∴AC=8,BD=6∴菱形ABCD 的面积=AC×BD=24,故答案为:2417.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.18.解:∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC =BC =,CF =CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,由勾股定理得:AF ===2,∵H是AF的中点,∴CH =AF =.故答案为:.三.解答题19.解:∵DE⊥AB于E,且E为AB的中点,∴AD=BD,∵四边形ABCD是菱形,∴AD=BA,∴AB=AD=BD,∴△ABD是等边三角形,∴∠DAB=60°;∵BD=4,∴DO=2,AD=4,∴AO ==2,∴AC=4;∴AB ===4,∴菱形ABCD的周长为4×4=16;菱形ABCD 的面积为:BD•AC =×4×4=8.20.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°.又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形.21.解:∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∠BAD=90°,∴OA=OB,∵∠BAD=90°,∠DAE=2∠BAE,∴∠BAE=30°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣30°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠EAC=∠BAO﹣∠BAE=60°﹣30°=30°.22.解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE ===4.23.解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.∵点E是CD的中点,∴DE=CE =CD=6.∵AF=3DF,∴DF =AD=3.∴AF=3DF=9.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2.∴△BEF是直角三角形.24.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC =,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH =CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.25.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
北师大版九年级数学上册第一章同步测试题及答案

北师大版九年级数学上册第一章同步测试题及答案1.1菱形的性质与判定一、选择题1. 如图,在菱形ABCD 中,AB =4,∠B =60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则的△AEF 的面积是( )A. 4√3B. 3√3C. 2√3D. √32. 如图,在菱形ABCD 中,AB =8,点E ,F 分别在AB ,AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O .当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为( )A. 6.5B. 6C. 5.5D. 53. 如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则tan ∠BFE 的值是( )A. 12B. 2C. √33D. √3 4. 如图,在菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( ) A. 3.5 B. 4 C. 7 D. 145. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A. 18B. 18√3C. 36D. 36√36. 如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A. 6√3米B. 6米C. 3√3米D. 3米(x 7. 如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=kx<0)的图象经过顶点B,则k的值为()A. -12B. -27C. -32D. -368. 如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=√3,BD=4,则菱形ABCD的周长为()A. 4B. 4√3C. 4√7D. 289. 菱形具有而平行四边形不具有的性质是()A. 两组对边分别平行B. 两组对角分别相等C. 对角线互相平分D. 对角线互相垂直10. 某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A. 20mB. 25mC. 30mD. 35m11. 如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB 的度数是()A. 108°B. 72°C. 90°D. 100°12. 在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A. 60°B. 55°C. 45°D. 30°13. 菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 4814. 在菱形ABCD中,下列结论错误的是()A. BO=DOB. ∠DAC=∠BACC. AC⊥BDD. AO=DO15. 如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是()A. 30B. 24C. 18D. 6二、填空题(共5题)16. 如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF是菱形.17. 如图,在△ABC中,已知E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF 是菱形,在不改变图形的前提下,你需添加的一个条件是________就可以证明这个多边形是菱形18. 如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:_________,使四边形ABCD成为菱形.AB的长为半19. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是_________20. 如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:________ ,可使它成为菱形.三、解答题(共5题)21. 如图,已知在△ABC中,∠ACB=90°,CE是中线,△ACD与△ACE关于直线AC对称.(1)求证:四边形ADCE是菱形;(2)求证:BC=ED.22. 如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.23. 如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.24. 如图,四边形ABCD中,AB∥CD,CE∥AD交AB于E,AE=AD.求证:四边形AECD是菱形25. 如图,由两个等宽的矩形叠合而得到四边形ABCD.试判断四边形ABCD的形状并证明答案一、选择题1.【答案】B【解析】∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF 是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=AB×sin60°=2√3∴EF=AE=2√3∴AM=AE•sin60°=3,∴△AEF的面积是:12EF•AM=12×2√3×3=3√3.故选:B.2.【答案】C【解析】根据题意可得四边形AEOF和四边形CGOH为菱形,且OH=EB,设AE=x,则BE=8-x,根据菱形的周长之差为12,可得两个菱形的边长之差为3,即x-(8-x)=3,解得:x=5.5考点:菱形的性质3. 【答案】D【解析】根据菱形的性质,在菱形ABCD中,AB=BC,E为AB的中点,因此可知BE=12BC,又由CE⊥AB,可知△BCA为直角三角形,∠BCE=30°,∠EBC=60°,再由菱形的对角线平分每一组对角,可得∠EBF=12∠EBC=30°,因此可求∠BFE=60°,进而可得tan∠BFE=√3.故选D考点:菱形的性质,解直角三角形4. 【答案】A【解析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.点评:本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.5. 【答案】B【解析】过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=3√3,∴菱形ABCD的面积是6×3√3=18√3,故选B.考点:菱形的性质.6. 【答案】A【解析】本题考查的是菱形的性质,直角三角形的性质解决即可.因为菱形周长为24米,所以边长为6米,因为∠BAD=60°,所以∠BAO=30°,∴OA=3√3米,∴AC=6√3米. 故选A.7. 【答案】C【解析】∵A(﹣3,4),∴OA==5,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入得,4=,解得:k=﹣32.故选C . 8. 【答案】C【解析】∵E ,F 分别是AB ,BC 边上的中点,∴EF 是△ABC 的中位线,∴AC=2EF=2√3.∵菱形ABCD 的对角线AC ,BD 相交于O 点,∴∠AOB=90°,AO=12AC=√3,BO=12BD=2.∴AB=√A02+BO 2=√7,∴C 菱形ABCD=4AB=4√7.故选C.9. 【答案】D【解析】A 、不正确,两组对边分别平行;B 、不正确,两组对角分别相等,两者均有此性质正确;C 、不正确,对角线互相平分,两者均具有此性质;D 、菱形的对角线互相垂直但平行四边形却无此性质.故选D .10. 【答案】C【解析】如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG= ∠BGM=60°,∴△BMG 是等边三角形,∴BG=GM=2.5(m ),同理可证:AF=EF=2.5(m )∴AB=BG+GF +AF=2.5×3=7.5(m ),∴扩建后菱形区域的周长为7.5×4=30(m ),故选C .考点:菱形的性质.11. 【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC=72°,BD 为菱形ABCD 的对角线,∴∠ADP=∠CDP=12 ∠ADC=36°.∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA=PD.∴∠DAP=∠ADP=36°.∴∠APB= ∠DAP+∠ADP=72°.又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB=∠APB=72°.故选B.点睛:连接AP ,利用线段垂直平分线的性质和菱形的性质求得∠APB 的度数是解本题的基础,而利用通常容易忽略的“菱形是关于对称轴所在直线对称的”,由轴对称的性质得到∠CPB=∠APB 才是解决本题的关键.12. 【答案】A【解析】如图,连接AC ,∵AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,∴AB= AC ,AD=AC.又∵在菱形ABCD 中,AB=BC=CD=AD ,∴AB=BC=CD=AD=AC.∴△ABC 和△ADC 都是等边三角形.∴∠BAC=∠DAC=60°,∴∠EAC=12∠BAC=30°,∠FA C=12∠DAC=30°,∴∠EAF=∠EAC+∠FAC=60°.故选A.13.【答案】C【解析】由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=24.故选C .考点:菱形的性质.14. 【答案】D【解析】根据菱形的性质:“菱形的对角线互相垂直平分,每一条对角线平分一组对角”可知:选项A 、B 、C 的结论都是正确的,只有选项D 的结论不一定成立.故选D.15. 【答案】B【解析】∵P ,Q 分别是AD ,AC 的中点,∴PQ 是△ADC的中位线,∴DC=2PQ=6.又∵在菱形ABCD 中,AB=BC=AD=CD ,∴C 菱形ABCD =6+6+6+6=24.故选B.二、填空题(共5题)16. 【答案】AB=AC 或∠B=∠C【解析】∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形.所以当四边形AEDF 中有一组邻边相等时,它就是菱形了.由此在△ABC 中可添加条件:(1)AB=AC 或(2)∠B=∠C.(1)当添加条件“AB=AC ”时, ∵AD 是△ABC 的高,AB=AC ,∴点D 是BC 边的中点,又∵DE ∥AC ,DF ∥AB ,∴点E 、F 分别是AB 、AC 的中点,∴AE=12AB ,AF=12AC ,∴AE=AF,∴平行四边形AEDF 是菱形.(2)当添加条件“∠B=∠C”时, 则由∠B=∠C 可得AB=AC ,同(1)的方法可证得:AE=AF ,∴平行四边形AEDF 是菱形.17. 【答案】AB=AC ,答案不唯一【解析】根据DE∥AC,DF∥AB,可直接判断出四边形AEDF 是平行四边形,要使其变为菱形,只要邻边相等即可,从而可以得出.条件AE=AF (或AD 平分角BAC ,等)∵DE∥AC,DF∥AB,∴四边形AEDF 是平行四边形,又AE=AF ,∴四边形AEDF 是菱形.考点: 菱形的判定.18. 【答案】AB=AD ,答案不唯一【解析】由已知条件可证四边形ABCD是平行四边形,而要使平行四边形是菱形,根据菱形的判定方法可添加:(1)四边形ABCD中,有一组邻边相等;(2)四边形ABCD的对角线互相垂直;因此,本题的答案不唯一,如可添加:AB=AD,证明如下:∵四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.点睛:本题方法不唯一,由已知条件可证得四边形ABCD是平行四边形,结合菱形判定方法中的:①有一组邻边相等的平行四边形是菱形;②对角线相等的平行四边形是菱形;就可得到本题添加条件的方法有3种:(1)直接添加四组邻边中的任意一组相等;(2)直接添加对角线AC⊥BD;(3)在题中添加能够证明(1)或(2)的其它条件.19. 【答案】菱形【解析】∵分别以A和B为圆心,大于1AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边2形ADBC是菱形.故答案为:菱形.20. 【答案】AB=BC或AC⊥BD等【解析】有一组领边相等的平行四边形为菱形,对角线互相垂直的平行四边形为菱形.本题的答案有很多种,只要写出符合条件的即可.考点:菱形的性质.三、解答题(共5题)21. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由△ABC中,∠ACB=90°,CE是中线,可证得:CE=AE,再由△ACD与△ACE关于直线AC对称,可得AD=AE=CE=CD,从而可得四边形ADCE是菱形;(2)由(1)可得DC∥BE,DC=AE=BE,从而可证得:四边形BCDE是平行四边形,就可得到:BC=DE.(1)证明:∵∠C=90°,点E为AB的中点,∴EA=EC.∵△ACD与△ACE关于直线AC对称.∴△ACD≌△ACE,∴EA=EC=DA=DC,∴四边形ADCE是菱形;(2)∵四边形ADCE是菱形,∴CD∥AE且CD=AE,∵AE=EB,∴CD∥EB且CD=EB∴四边形BCDE为平行四边形,∴DE=BC.22. 【答案】(1)证明见解析;(2)4√3【解析】(1)由△ABC是等边三角形,点E、F分别为AC、BC的中点可证得:EF=EC=FC;由△DEC是等边三角形可得:DE=DC=EC,从而可得EF=FC=CD=DE,由此可得:四边形EFCD是菱形;(2)连接DF交AC于点G,由已知易证EF=EC=4,再由菱形的对角线互相垂直平分,可得EG=2,再由勾股定理可得:FG=2√3,从而可得DF=4√3.解:(1)∵△ABC 与△CDE 都是等边三角形∴AB=AC=BC,ED=DC=EC∵点E 、F 分别为AC 、BC 的中点∴EF=12AB ,EC=12AC ,FC=12BC∴EF=EC=FC,∴EF=FC=ED=DC,∴四边形EFCD 是菱形.(2)连接DF ,与EC 相交于点G ,∵四边形EFCD 是菱形,∴DF⊥EC,垂足为G ,EG=12EC ,∴∠EGF=90°,又∵AB=8, EF=12AB ,EC=12AC ,∴EF=4,EC=4,EG=2,∴GF=√EF 2−EG 2=2√3,∴DF=2GF=4√3.23. 【答案】(1)证明见解析;(2)直角三角形.解:(1)四边形ABCD 中,AB∥CD,过C 作CE∥AD 交AB 于E ,则四边形AECD 是平行四边形(两组对边分别平行的四边形是平行四边形),因为AB∥CD,所以∠EAC =∠ACD ;AC 平分∠BAD,所以∠EAC =∠CAD ,因此∠ACD =∠CAD ,所以AD=CD ,所以四边形AECD 是菱形.(2)由(1)知四边形AECD 是菱形,所以AE=CE ;点E 是AB 的中点,AE=BE ,所以CE=AE=BE ,所以△ABC 是直角三角形(斜边上的中线等于斜边的一半是直角三角形)考点:平行四边形,菱形,直角三角形点评:本题考查平行四边形,菱形,直角三角形,要求考生掌握平行四边形的判定方法,菱形的判定方法和性质,直角三角形的性质24.【答案】证明见解析.【解析】由AB∥CD,CE∥AD可证得:四边形AECD是平行四边形,再由AE=AD即可证得平行四边形AECD 是菱形.解:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形,∵AE=AD,∴四边形AECD是菱形.25. 【答案】四边形ABCD是菱形.证明见解析.【解析】过点A作AR⊥BC于点R,AS⊥CD于点S,由已知可得:AD∥BC,AB∥CD,从而得到四边形ABCD 是平行四边形;由矩形纸条等宽可得AR=AS,由面积法可证得:BC=DC,从而可得:平行四边形ABCD是菱形.解:四边形ABCD是菱形.理由如下:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵S平行四边形ABCD=AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形.点睛:本题第一步容易证得四边形ABCD是平行四边形;第二步抓住题中条件“等宽的矩形”通过作辅助线AR⊥BC,AS⊥CD,就可得AR=AS,再用“面积法”证得:BC=CD是解决本题的关键.1.2矩形的性质与判定一、选择题1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A. 8B. 10C. 12D. 186. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 17. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14028. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=√3,则OE=()A. 1B. 2C. 3D. 49. 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A. 16B. 22或16C. 26D. 22或2610. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等11. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°13. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 对角线平分一组对角C. 对角线互相平分D. 对角线互相垂直14. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A. 80°B. 60°C. 45°D. 40°二、填空题16. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.17. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC 平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________18. 如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).19. 如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)20. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题21. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形22. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积23. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形24. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?25. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案一、选择题1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD 可伸长,故BD 的长度变大,四边形ABCD 由矩形变为平行四边形 ,因为四条边的长度不变,所以四边形ABCD 的周长不变.原来矩形ABCD 的面积等于BC 乘以AB ,变化后平行四边形ABCD 的面积等于底乘以高,即BC 乘以BC 边上的高,BC 边上的高小于AB ,所以四边形ABCD 的面积变小了,故A,B,D 说法正确,C 说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD 是矩形,∴∠ABC=∠BCD=∠CDA =∠BAD=90°,AC=BD ,OA=AC ,OB=BD ,∴OA=OB,∴A、B 、C 正确,D 错误考点:矩形的性质3. 【答案】D【解析】∵O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB ,OM 为△ACD 的中位线,∴OM=12CD=2.5,AC=√52+122=13,∵O 是矩形ABCD 的对角线AC 的中点,∴BO=12AC=6.5,∴四边形ABOM 的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D .考点: 矩形的性质.4. 【答案】D【解析】∵四边形ABCD 是矩形,∴OA=OC=12AC ,OD=OB=12BD ,AC=BD ,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB 是等边三角形,∴AB=OA=5cm,故选D .考点:1.矩形的性质;2.等边三角形的判定与性质.5. 【答案】C【解析】根据∠AOD=120°可得∠AOB=60°,根据矩形的性质可得AO=BO ,则△AOB 是正三角形,则AO=AB=6,则AC=2AO=12.考点:矩形的性质.6. 【答案】A【解析】在矩形ABCD 中,∠ABC =90°,∵∠ACB =30°,AB =2,∴AC =2AB =2×2=4,∵四边形ABCD 是矩形,∴BD =AC =4.故选A .7. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm 2).故选A .考点:矩形的性质.8.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=√3,∠OAD=60°,∴∠OAE= 30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.9.【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26,故选D.考点:矩形的性质.10.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.11. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.考点:矩形的性质.12. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=1×2×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即(180°﹣∠AOB)=12∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.13. 【答案】A【解析】菱形的对角线互相平分、垂直、对角线平分一组对角,矩形的对角线互相平分、相等,∴矩形具有而菱形不具有的性质是对角线相等,故选A.考点:1.菱形的性质;2.矩形的性质.14. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠E BO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.15. 【答案】A【解析】如图,根据题意可得:∠1=40°,∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠1=40°,则∠AOB=2∠1=80°.故选A.考点:矩形的性质.二、填空题16. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.17.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.18. 【答案】∠ABC=90°或AC=BD(不唯一)【解析】本题考查了平行四边形的性质、矩形的判定.根据对角线相等的平行四边形是矩形,填空即可∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为AC=BD.19. 【答案】∠DAB=90°【解析】可以添加条件∠DAB=90°.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.∵∠DAB=90°,∴四边形ABCD是矩形.故答案为:∠DAB=90°.20. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.考点:勾股定理的逆定理点评:本题属于基础应用题,只需学生熟练掌握勾股定理的逆定理,即可完成.三、解答题21. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=180°−a2=90°−a2.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=180°−(180−a)2=a2.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.考点:1.矩形的判定与性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质.22. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.BC=3,∴AD=√52−32=4,在Rt△ADC中,∠ADB=90°,AC=5,CD=12∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.23. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.24. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.25. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.(∠BAC+∠FAB)=90°,证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=12∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.点睛:本题主要考查矩形的判定和性质,由角平分线及等腰三角形的性质证明AE∥BD是解题的关键.1.3正方形的性质与判定一、选择题(2)如果a≥0,那么(1)若直角三角形的两条边长为5和12,则第三边长是13;1. 下列五个命题:=a;(3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等.其中不正确命题的个数是()A. 2个B. 3个C. 4个D. 5个2. 下列命题中,正确命题是()A. 两条对角线相等的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直平分的四边边是菱形D. 两条对角线平分且相等的四边形是正方形3. 下列命题中,真命题是()A. 两条对角线垂直的四边形是菱形B. 对角线垂直且相等的四边形是正方形C. 两条对角线相等的四边形是矩形D. 两条对角线相等的平行四边形是矩形4. 下列说法中错误的是()A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的矩形是正方形D. 两条对角线相等的菱形是正方形5. 下列说法中,不正确的是()A. 有三个角是直角的四边形是矩形B. 对角线相等的四边形是矩形C. 对角线互相垂直的矩形是正方形D. 对角线互相垂直的平行四边形是菱形6. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A. ①②③B. ①④⑤C. ①③④D. ③④⑤7. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形8. 下列命题中正确的是()A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线互相垂直且平分的四边形是正方形9. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A. ∠D=90°B. AB=CDC. AD=BCD. BC=CD10. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A. 22.5°角B. 30°角C. 45°角D. 60°角11. 在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A. AC=BD,AB∥CD,AB=CDB. AD∥BC,∠A=∠CC. AO=BO=CO=DO,AC⊥BDD. AO=CO,BO=DO,AB=BC12. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A. (1)(2)(5)B. (2)(3)(5)C. (1)(4)(5)D. (1)(2)(3)13. 下列说法中,错误的是()A. 一组对边平行且相等的四边形是平行四边形B. 两条对角线互相垂直且平分的四边形是菱形C. 四个角都相等的四边形是矩形。
【精品】北师大版九年级数学上册(1-2)单元过关试卷(含答案)

北师大版九年级数学上册(1-2)单元试卷(含答案)第一章精选试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.菱形的对称轴的条数为( )A .1B .2C .3D .42.下列说法中,正确的是( )A .相等的角一定是对顶角B .四个角都相等的四边形一定是正方形C .平行四边形的对角线互相平分D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD 的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形4.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6 cmB .4 cmC .2 cmD .1 cm6如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A.245B.125 C .5 D .4错误! ,第6题图) ,第7题图)7.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是( )A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( ) A. 5 B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是____cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是____度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件____,使四边形ABCD 为矩形.,第12题图),第13题图),第14题图),第15题图)14.已知矩形ABCD,AB=3 cm,AD=4 cm,过对角线BD的中点O作BD的垂直平分线EF,分别交AD,BC于点E,F,则AE的长为____cm.15.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为____.16.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,则点E的坐标为__ __.三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点P,Q分别是BM,DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么特殊四边形?请说明理由.答 案一、选择题(每小题3分,共30分)1-5 BCBCC 6-10ACCDD二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是__3__cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是__22.5__度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件__∠B =90°或∠BAC +∠BCA =90°__,使四边形ABCD 为矩形.,第12题图) ,第13题图) ,第14题图) ,第15题图)14.已知矩形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE的长为__78__cm. 15.如图,菱形ABCD 的边长为4,过点A ,C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E ,F ,AE =3,则四边形AECF 的周长为__22__.16.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,则点E 的坐标为__(3,43)__. 三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?∵△AOB,△BOC,△COD和△AOD四个小三角形的周长和为86 cm,且AC=BD=13 cm,∴AB+BC+CD+DA=86-2(AC +BD)=86-4×13=34(cm),即矩形ABCD的周长是34 cm18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.(1)∵AB=AC,∴∠B=∠ACB,又∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE,∴∠ABD=∠EDC,AC=DE,∴∠EDC =∠ACD,又DC=CD,∴△ADC≌△ECD(2)若BD=CD,又∵AB =AC,∴AD⊥BC.又∵四边形ABDE是平行四边形,∴AE綊BD,∴AE綊DC,∴四边形ADCE是平行四边形,∵AD⊥DC,∴▱ADCE 是矩形19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.(1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD =EC(2)∠BAO=40°20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.(1)∵四边形ABCD是平行四边形,∴AD綊BC,∠A=∠C,CD=AB,又∵点E,F为AB,DC的中点,∴CF=AE,∴△ADE ≌△CBF(2)四边形AGBD是矩形.连接EF,∵▱BEDF是菱形,∴BD⊥EF,又DF綊AE,∴四边形ADFE是平行四边形,∴EF∥AD,∴∠ADB=90°,又∵AD∥BC,DB∥AG,∴四边形AGBD 是平行四边形,∴▱AGBD是矩形21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.(1)∵四边形ABCD是菱形,∴AB=BC.又∵AB=AC, ∴△ABC 是等边三角形.∵点E是BC的中点,∴AE⊥BC,∴∠AEC=90°.∵点E,F分别是BC,AD的中点,∴AF=12AD,EC=12BC.∵四边形ABCD为菱形,∴AD綊BC,∴AF綊EC,∴四边形AECF是平行四边形.又∵∠AEC=90°,∴四边形AECF是矩形(2)在Rt △ABE 中,AE =82-42=43,∴S 菱形ABCD =8×43=32322.(10分)如图,在正方形ABCD 中,点E ,F 分别在边AB ,BC 上,∠ADE =∠CDF.(1)求证:AE =CF ;(2)连接DB 交EF 于点O ,延长OB 至G ,使OG =OD ,连接EG ,FG ,判断四边形DEGF 是否是菱形,并说明理由.(1)在正方形ABCD 中,AD =CD ,∠A =∠C =90°,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧∠ADE =∠CDF ,AD =CD ,∠A =∠C =90°,∴△ADE ≌△CDF (ASA ),∴AE =CF (2)四边形DEGF 是菱形.理由如下:在正方形ABCD 中,AB =BC ,∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∵△ADE ≌△CDF ,∴DE =DF ,∴BD 垂直平分EF ,∴EO =FO.又∵OG =OD ,DE =DF ,∴四边形DEGF 是菱形23.(12分)如图,在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,点P ,Q 分别是BM ,DN 的中点.(1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么特殊四边形?请说明理由. (1)∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠C=90°,∵在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,∴AM =12AD ,CN =12BC ,∴AM =CN.在△MBA 和△NDC 中,∵AB =CD ,∠A =∠C =90°,AM =CN ,∴△MBA ≌△NDC (SAS )(2)四边形MPNQ 是菱形,理由如下:连接AN ,易证:△ABN ≌△BAM ,∴AN =BM.∵△MAB ≌△NCD ,∴BM =DN.∵点P ,Q 分别是BM ,DN 的中点,∴PM =NQ.∵DM =BN ,DQ =BP ,∠MDQ =∠NBP ,∴△MQD ≌△NPB (SAS ).∴MQ =NP.∴四边形MPNQ 是平行四边形.∵点M 是AD 的中点,点Q 是DN 的中点,∴MQ =12AN ,∴MQ =12BM.又∵MP =12BM ,∴MP =MQ.∴四边形MPNQ 是菱形第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( )A .3(x +1)2=2(x +1) B.1x 2+1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-12.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-33.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( C )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( B )A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=75.下列一元二次方程中,没有实数根的是( B )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=06.解方程(x +1)(x +3)=5较为合适的方法是( C )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法7.已知一元二次方程x 2-2x -1=0的两个根分别是x 1,x 2,则x 12-x 1+x 2的值为( )A .-1B .0C .2D .38.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-19.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设的资金为0.98亿元,如果从2015年到2017年投资此项目资金的年增长率相同,那么年增长率是( B )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A .2 cmB .3 cmC .4 cmD .5 cm二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为____.12.方程(x +2)2=x +2的解是____.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是____.14.写一个你喜欢的实数k 的值____,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为____.16.设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =____.三、解答题(共72分)17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.19.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k 的值.20.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,”他的说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x月的利润的月平均值W(万元)满足W=10 x+90.请问多少个月后的利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.答 案一、选择题(每小题3分,共30分)1-5ADCBB 6-10CDDBC二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为__-1__.12.方程(x +2)2=x +2的解是__x 1=-2,x 2=-1__.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是__1或-23__. 14.写一个你喜欢的实数k 的值__0(答案不唯一,只要满足k>-2且k ≠-1都行)__,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为__10%__.16.(2016·达州)设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =__2016__.三、解答题(共72分)17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;x 1=-2+5,x 2=-2-5 x 1=-1,x 2=-2(3)3x 2-7x +4=0.x 1=43,x 2=118.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.由已知,点O 是AB 的中点,点B 对应的数是x ,∴点A 对应的实数为-x.∵点B 是AC 的中点,点C 对应的数是x 2-3x ,∴(x 2-3x )-x =x -(-x ).整理,得x 2-6x =0,解得x 1=0,x 2=6.∵点B 异于原点,故x =0舍去,∴x 的值为619.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k 的值.当x 2-2x -54=0得(x -1)2=94,解得x 1=52,x 2=-12.当x =52时,(52)2-52(k +2)+94=0,∴k =75;当x =-12时,(-12)2+12(k +2)+94=0,∴k =-7.答:k 的值为75或-720.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?(1)10% (2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100-m )件,第一次降价后的单件利润为:400×(1-10%)-300=60元/件,第二次降价后单价利润为:324-300=24元/件,依题意得:60m +24×(100-m )=36m +2400≥3210,解得m ≥22.5,即m ≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该商品23件21.(10分)小林准备进行如下操作试验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2,”他的说法对吗?请说明理由.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x )cm.由题意,得x 2+(10-x )2=58,解得x 1=3,x 2=7,即两个正方形的边长分别为3 cm ,7 cm.4×3=12,4×7=28,∴小林应把铁丝剪成12 cm 和28 cm 的两段 (2)假设能围成.由(1)得x 2+(10-x )2=48.化简得x 2-10x +26=0.∵Δ=b 2-4ac =(-10)2-4×1×26=-4<0,∴此方程没有实数根,∴小峰的说法是对的22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x 月的利润的月平均值W(万元)满足W =10 x +90.请问多少个月后的利润和为1620万元?由题意得x (10x +90)=1620,解得x 1=9,x 2=-18(舍去),即9个月后利润和为1620万元23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.(1)设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元,根据题意得:30 000-x ≥3x ,解得x ≤7 500.答:最多用7 500元购买书桌、书架等设施 (2)根据题意得:200(1+a%)×150(1-109a%)=20 000,整理得a 2+10a -3 000=0,解得a =50或a =-60(舍去),所以a 的值是50。
2020秋北师大版九年级数学上第一、二章检测题含答案

单元测试(一) 特殊平行四边形(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( )A.6 B.5 C.4 D.32.如图,矩形ABCD中,对角线AC、BD相交于点O,若∠OAD=40°,则∠COD=( )A.20° B.40° C.80° D.100°3.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为( )A.4 B.3 C.2 D.15.如果要证明ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分6.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10 B.8 C.6 D.57.在正方形ABCD中,AB=12,对角线AC,BD相交于点O,则△ABO的周长是( )A.12+12 2 B.2+6 2C.12+ 2 D.24+6 28.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为( ) A.16a B.12aC.8a D.4a9.正方形的一条对角线长为4,则这个正方形面积是( )A.8 B.4 2C.8 2 D.1610.下列命题中,错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等11.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°12.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35°C.20° D.15°13.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75° B.60° C.55° D.45°14.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( )A. 2 B.2 C. 6 D.2 215.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE二、填空题(本大题共5个小题,每小题5分,共25分)16.如图,菱形ABCD的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为________度.18.如图所示,已知ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明ABCD是矩形的有________(填写序号).19.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是________________.20.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?22.(8分)如图,四边形ABCD中,AB=CD,∠BAD+∠ADC=180°,AC与BD相交于点O,△AOB是等边三角形,求证:四边形ABCD是矩形.23.(10分)如图,已知正方形ABCD,延长AB到E,使AE=AC,以AE为一边作菱形AEFC,若菱形的面积为92,求正方形的边长.24.(12分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.25.(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.26.(14分)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,求线段AB的最小值.27.(16分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF是正方形.参考答案1.C2.C3.B4.A5.B6.D7.A8.C9.A 10.C 11.B 12.C 13.B 14.A 15.B 16.2 17.60 18.①④ 19.AC =BD 或AB ⊥BC 20.22.521.∵△AOB 、△BOC 、△COD 和△AOD 四个小三角形的周长和为86 cm ,且AC =BD =13 cm , ∴AB +BC +CD +DA =86-2(AC +BD)=86-4×13=34(cm), 即矩形ABCD 的周长是34 cm.22.证明:∵∠BAD +∠ADC =180°, ∴AB ∥CD.又∵AB =CD ,∴四边形ABCD 是平行四边形. ∵△AOB 是等边三角形, ∴AO =BO.∴2AO =2BO ,即AC =BD. ∴四边形ABCD 是矩形. 2 23.设正方形的边长为x ,∵AC 为正方形ABCD 的对角线,∴AC =2x.∴S 菱形AEFC =AE ·CB =2x ·x =2x 2.∴2x 2=9 2. ∴x 2=9.∴x =±3.舍去x =-3. ∴正方形边长为3.24.(1)在菱形ABCD 中,AB =AD ,∠A =60°, ∴△ABD 为等边三角形. ∴∠ABD =60°.(2)由(1)可知BD =AB =4, 又∵O 为BD 的中点, ∴OB =2.又∵OE ⊥AB ,∠ABD =60°, ∴∠BOE =30°. ∴BE =12OB =1.25.(1)由图可知,∠DAG ,∠AFB ,∠CDE 与∠AED 相等. (2)选择∠AFB =∠AED ,证明如下: ∵四边形ABCD 是正方形,∴∠DAB =∠B =90°,AB =AD.在Rt △BAF 和Rt △ADE 中,⎩⎪⎨⎪⎧BA =AD ,AF =DE ,∴Rt △BAF ≌Rt △ADE(HL).∴∠AFB =∠AED.26.∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB , ∴∠AOB =90°.∴∠AOC +∠AOD =90°,∠AOD +∠BOD =90°. ∴∠AOC =∠BOD.∵在△COA 和△DOB 中,⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠BOD ,∴△COA ≌△DOB.∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形.由勾股定理得AB =OA 2+OB 2=2OA , 要使AB 最小,只要OA 取最小值即可, 根据垂线段最短,OA ⊥CD 时,OA 最小, ∵四边形CDEF 是正方形, ∴FC ⊥CD ,OD =OF =OC. ∴CA =DA. ∴OA =12CF =1.∴AB = 2.∴AB 的最小值为 2.27.(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,∠A =∠D =90°. 又∵M 是AD 的中点, ∴AM =DM.在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D ,AM =DM ,∴△ABM ≌△DCM(SAS).(2)四边形MENF 是菱形.证明:∵E ,F ,N 分别是BM ,CM ,CB 的中点, ∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形. 由(1),得BM =CM , ∴ME =MF.∴四边形MENF 是菱形.(3)当AD ∶AB =2∶1时,四边形MENF 是正方形.理由: ∵M 为AD 中点, ∴AD =2AM.∵AD ∶AB =2∶1, ∴AM =AB. ∵∠A =90°,∴∠ABM =∠AMB =45°. 同理:∠DMC =45°.∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴四边形MENF 是正方形. 故答案为2∶1.单元测试(二) 一元二次方程(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1.下列方程中,关于x 的一元二次方程是( )A .x 2+2y =1 B.1x 2+1x-2=0C .ax 2+bx +c =0 D .x 2+2x =12.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a ,b ,c 的值,下列叙述正确的是( )A .a =3,b =2,c =3B .a =-3,b =2,c =3C .a =3,b =2,c =-3D .a =3,b =-2,c =33.若关于x 的方程2x m -1+x -m =0是一元二次方程,则m 为( )A .1B .2C .3D .04.一元二次方程x 2-2x -1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1·x 2的值是( )A .4B .-4C .3D .-3 6.方程x(x +2)=0的根是( )A .x =2B .x =0C .x 1=0,x 2=-2D .x 1=0,x 2=27.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x -1)2=6C .(x +2)2=9D .(x -2)2=9 8.根据下面表格中的对应值:判断方程ax 2+bx +c =A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.26 9.解方程(x +1)(x +3)=5较为合适的方法是( )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法10.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为( )A .0B .1C .2D .411.三角形两边长分别为3和6,第三边是方程x 2-6x +8=0的根,则三角形的周长为( )A .11B .13C .15D .11或13 12.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根13.对二次三项式x 2-10x +36,小聪同学认为:无论x 取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错 B.小聪错,小颖对C.他们两人都对 D.他们两人都错14.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=35615.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(本大题共5小题,每小题5分,共25分)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.18.若(m+n)(m+n+5)=6,则m+n的值是________.19.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3 596,每件工艺品需降价________元.20.已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x21+x22<a2+b2.则正确结论的序号是________.(填上你认为正确的所有序号)三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)选择适当的方法解下列方程:(1)(x-3)2=4;(2)x2-5x+1=0.22.(8分)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若mn+m+n=2,求a的值.23.(10分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求咸宁市2013年到2015年烟花爆竹年销售量的平均下降率.24.(12分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.25.(12分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.26.(14分)观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2-1=0;第3个方程:x2-x-2=0;第4个方程:x2-2x-3=0;…(1)第2 016个方程是____________________;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.27.(16分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案1.D 2.D 3.C 4.B 5.D 6.C 7.B 8.C 9.C 10.B 11.B 12.C 13.D 14.C 15.B 16.3x 2-3x -5=0 17.-3 18.-6或1 19.6 20.①② 21.(1)x 1=1,x 2=5. (2)x 1=5+212,x 2=5-212.22.∵m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,∴m +n =3,mn =a. ∵mn +m +n =2,∴a +3=2.解得a =-1.23.设年销售量的平均下降率为x ,依题意,得20(1-x)2=9.8. 解这个方程,得x 1=0.3,x 2=1.7. ∵x 2=1.7不符合题意, ∴x =0.3=30%.答:咸宁市2013年到2015年烟花爆竹年销售量的平均下降率为30%.24.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm.由题意,得x 2+(10-x)2=58.解得x 1=3,x 2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm 和28 cm 的两段.(2)假设能围成.由(1)得x 2+(10-x)2=48.化简得x 2-10x +26=0. ∵b 2-4ac =(-10)2-4×1×26=-4<0, ∴此方程没有实数根. ∴小峰的说法是对的.25.(1)∵b 2-4ac =(2m)2-4×1×(m 2-1)=4>0, ∴方程有两个不相等的实数根.(2)将x =3代入原方程,得9+6m +m 2-1=0.解得m 1=-2,m 2=-4.26.(1)x 2-2 014x -2 015=0(2)第n 个方程是x 2-(n -2)x -(n -1)=0,解得x 1=-1,x 2=n -1.(3)这列一元二次方程的解的一个共同特点:有一根是-1. 27.(1)△ABC 是等腰三角形.理由: ∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0. ∴a +c -2b +a -c =0. ∴a -b =0. ∴a =b.∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根,∴(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0. ∴a 2=b 2+c 2.∴△ABC 是直角三角形. (3)∵△ABC 是等边三角形,∴(a +c)x 2+2bx +(a -c)=0可整理为2ax 2+2ax =0. ∴x 2+x =0.解得x 1=0,x 2=-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明(yi )水平测试(测试卷一)一、选择题(本大题有10小题,每小题3分,共30分.) 1.两个直角三角形全等的条件是( )(A )一锐角对应相等; (B )两锐角对应相等; (C )一条边对应相等; (D )两条边对应相等. 2.到ABC ∆的三个顶点距离相等的点是ABC ∆的( ). (A )三边垂直平分线的交点; (B )三条角平分线的交点; (C )三条高的交点; (D )三边中线的交点.3.如图,由21∠=∠,DC BC =,EC AC =,得AB C ∆≌EDC ∆的根据是( )(A )SAS (B )ASA (C )AAS (D )SSS4.ABC ∆中,AC AB =,BD 平分ABC ∠交AC 边于点D ,75=∠BDC ,则A∠的度数为( )(A )35° (B )40° (C )70° (D )110° 5.下列两个三角形中,一定全等的是( )(A )有一个角是40°,腰相等的两个等腰三角形;(B )两个等边三角形; (C )有一个角是100°,底相等的两个等腰三角形;(D )有一条边相等,有一个内角相等的两个等腰三角形.6.适合条件A ∠=B ∠ =C ∠31的三角形一定是( )(A )锐角三角形; (B )钝角三角形; (C )直角三角形; (D )任意三角形. 7.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇”填上适当的数字是( ).(A )3米 (B )4米 (C )5米 (D )6米 8. 一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( ).(A )等腰三角形; (B )等边三角形; (C )直角三角形; (D )等腰直角三角形.9.如图,已知AC 平分PAQ ∠,点B 、B '分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =B A ',那么该条件不可以是( )(A)AC B B ⊥' (B)C B BC '=(C)ACB ∠=B AC '∠ (D)ABC ∠ =C B A '∠10.如图,AO FD ⊥于D ,BO FE ⊥于E ,下列条件:①OF 是AOB ∠的平分线;②EF DF =;③EO DO =;④OFD ∠=OFE ∠.其中能够证明DOF ∆≌EOF ∆的条件的个数有( )(A)1个 (B)2个 (C)3个 (D)4个 二、填空题(本大题有10小题,每小题3分,共30分.)AB7(第7题)(第9题)(第10题)(第3题)11.在ABC ∆中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .12.如果等腰三角形的一个角是80°,那么顶角是 度.13.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .14. ABC ∆中,90=∠C ,AD 平分BAC ∠,交BC 于点D ,若7=DC ,则D 到AB 的距离是 .15.如图,ABC ∠=DCB ∠,需要补充一个直接条件才能使ABC ∆≌DCB ∆.甲、乙、丙、丁四位同学填写的条件分别是:甲“DC AB =”;乙“DB AC =”;丙“D A ∠=∠”;丁“ACB ∠=DBC ∠”.那么这四位同学填写错误的是 .16. 用反证法证明 “三角形中至少有一个角不小于60°时,假设“ ”,则与“ ”矛盾,所以原命题正确.17.补全“求作AOB ∠的平分线”的作法:①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以 为半径画弧,两弧在AOB ∠内交于点C .③作射线OC 即为AOB ∠的平分线.18.一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图),上午9时行到C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).19.在ABC ∆中,A ∠=90°,AC AB =,BD 平分B ∠交AC 于D ,BC DE ⊥于E ,若10=BC ,则DEC ∆的周长是 .20.如图是2002年8月在北京召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图中大小正方形的面积分别为522cm 和42cm ,则直角三角形的两条直角边的和是 cm .三、解答题(本大题有6小题,共60分.)21.(8分)已知:如图,A ∠=90=∠D ,BD AC =.求证:OC OB =.22.(8分)如图,OCB OBC ∠=∠,AOC AOB ∠=∠,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.A BC D(第15题)(第18题)(第20题)AB C O23.(10分)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE =CD .求证:BD =DE .24.(10分)已知:如图,ABC ∆中,AC AB =,120=∠A .(1)用直尺和圆规作AB 的垂直平分线,分别交BC 、AB 于点M 、N (保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.25. (本题满分12分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E 是BC 的中点,点A 在DE 上,且C D E B A E ∠=∠.求证:CD AB =.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证CD AB =,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.A B CA B C D E F A B C D E EF =DE (3)F GA B C D E (1) AB C D ECF ∥AB (2) F26.(12分)已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,可以说明:ACN ∆≌MCB ∆,从而得到结论:BM AN =.现要求:(1)将ACM ∆绕C 点按逆时针方向旋转180°,使A 点落在CB 上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“BM AN =”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA 的延长线与BN 相交于D 点,请你判断△ABD 与四边形MDNC 的形状,并说明你的结论的正确性.A BC MNBC N参考答案一、DAABCDDCBD二、11.PC PB PA ==; 12. 80或 20; 13.75; 14.7; 15.乙;16.三角形的三个内角都小于 60,三角形的内角和是180;17.大于DE 21的长为半径;18. 320;19.10;20. 10.三、21由A ∠=90=∠D ,BD AC =,BC BC =知BAC ∆≌CDB ∆,因此有DC AB =.又DOC AOB ∠=∠(对顶角),A ∠=90=∠D ,所以BAC ∆≌CDB ∆,所以OD AO =.又BD AC =,所以BO BD AO AC -=-,即OC OB =.22.∵ ∠OBC =∠OCB ,∴ OB =OC .又∵ ∠AOB =∠AOC ,OA =OA , ∴ △AOB ≌△AOC ,∴AB =AC .23. BD 是正三角形ABC 的AC 边的中线得AC BD ⊥,BD 平分ABC ∠,30=∠DBE .由CE CD =知∠CDE =∠E .由∠ACE = 120°,得∠CDE +∠E =60°,所以∠CDE =∠E =300,则有BD = DE .24.(1)作图略;(2)连接AM ,则BM =AM .∵ AB =AC ,∠BAC =120°,∴ ∠B =∠C =30°于是 ∠MAB =∠B =30°,∠MAC =90°.∴ .21CM AM =故CM BM 21=,即CM =2BM .25.方法一:作BF ⊥DE 于点F ,CG ⊥DE 于点G . ∴ ∠F =∠CGE =90°.又∵ ∠BEF =∠CEG ,BE =CE ,∴ △BFE ≌△CGE .∴ BF =CG .在△ABF 和△DCG 中,∵ ∠F =∠DGC =90°,∠BAE =∠CDE ,BF =CG ,∴ △ABF ≌△DCG .∴ AB =CD .方法二:作CF ∥AB ,交DE 的延长线于点F .∴ ∠F =∠BAE .又∵ ∠ABE =∠D ,∴ ∠F =∠D .∴ CF =CD .∵ ∠F =∠BAE ,∠AEB =∠FEC ,BE =C E ,∴ △ABE ≌△FCE .∴ AB =CF . ∴ AB =CD .方法三:延长DE 至点F ,使EF =DE .又∵ BE =CE ,∠BEF =∠CED ,∴ △BEF ≌△CED . ∴ B F=CD ,∠D =∠F . 又∵ ∠BAE =∠D ,∴ ∠BAE =∠F . ∴ AB =BF .∴ AB =CD .26.(1)作图略.(2)结论“AN =BM ”还成立. 证明:∵ CN =CB ,∠ACN =∠MCB =60°,CA =CM ,∴ △ACN ≌△MCB .∴ AN =BM . (3)△ABD 是等边三角形,四边形MDNC 是平行四边形.证明: ∵ ∠DAB =∠MAC =60°,∠DBA =60°∴ ∠ADB =60°.∴ △ABD 是等边三角形.∵ ∠ADB =∠AMC =60°,∴ ND ∥CM .∵ ∠ADB =∠BNC =60°,∴ MD ∥CN . ∴ 四边形MDNC 是平行四边形.第一章 证明(二)(测试卷二)一、选择题(每小题3分,共30分)1、△ABC 中,AB=AC ,BD 平分ABC 交AC 边于点D ,∠BDC=75°,则∠A 的度数为( )A. 35°B. 40°C. 70°D. 110° 2、三角形的三个内角中,锐角的个数不少于 ( )A. 1 个B. 2 个C. 3个D. 不确定 3、适合条件∠A =∠B =31∠C 的三角形一定是 ( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 任意三角形4、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是 ( )A. ①②B. ②④C. ①④D. ②③5、如图,D 在AB 上,E 在AC 上,且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是 ( )A. AD =AEB. ∠AEB =∠ADCC. BE =CDD. AB =AC(第5题图) (第10题图)6、如图,⊿ABC ≅⊿FED ,那么下列结论正确的是( )A. FC = BDB. EF ∥C. DE = BDD. AC ∥ED 7、等腰三角形的一边为4,另一边为9,则这个三角形的周长为 ( )A. 17B. 22C. 13D. 17或22 8、有两个角和其中一个角的对边对应相等的饿两个三角形 ( )A. 必定全等B. 必定不全等C. 不一定全等D. 以上答案都不对 9、以下命题中,真命题的是 ( )A. 两条线只有一个交点B. 同位角相等C. 两边和一角对应相等的两个三角形全等D. 等腰三角形底边中点到两腰相等 10、面积相等的两个三角形 ( )A. 必定全等B. 必定不全等C. 不一定全等D. 以上答案都不对二、填空题(每小题3分,共24分)11、⊿ABC 中,∠A 是∠B 的2倍,∠C 比∠A + ∠B 还大︒12,那么∠BAD = 度 12、在方格纸上有一三角形ABC ,它的顶点位置如图所示,则这个三角形是 三角形. 13、如图:△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件: ,使△AEH ≌△CEB 。