材料力学第6章弯曲变形

合集下载

材料力学(理工科课件)第六章 弯曲变形)

材料力学(理工科课件)第六章 弯曲变形)

§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2

M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2

第6节(弯曲变形)

第6节(弯曲变形)
材料力学
Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。

材料力学第六章 弯曲变形

材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω

B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq


+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI

材料力学第6章弯曲变形

材料力学第6章弯曲变形
Fb M2 x2 F ( x2 a ) l
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程




(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2

3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl

刘鸿文版材料力学第六章

刘鸿文版材料力学第六章

F6bl
(l2
b2 ) x1
CB 段: a x2 l
y
F
A A
DC
FAy x1
x2
a
ym ax b
B B x
FBy
EI
Fb 2 2l
2
x2
F 2
(
x2
a)2
Fb (l2 6l
b2 )
EIy2
Fb 6l
x32
F 6
(
x2
a)3
F6lb (l2 b2 ) x2
目录
§6-3 用积分法求弯曲变形
目录
§6-5 简单超静定梁
例7 梁AB 和BC 在B 处铰接,A、C 两端固定,梁的抗弯刚度均为EI,F = 40kN, q = 20kN/m。画梁的剪力图和弯矩图。
解 从B 处拆开,使超静定结构变成两个悬臂 梁。
MA
FA FB
FB FB
yB2
yB1
FB
变形协调方程为: 物理关系
yB1 yB 2
4
EI
ql 4 48EI
ql 4 16 EI
11ql 4 ( ) 384 EI
3
ql 3
B i 1 Bi 24EI
ql 3 16EI
ql 3 3EI
11ql 3 ( ) 48EI
目录
§6-4 用叠加法求弯曲变形
例4 已知:悬臂梁受力如图示,q、l、
yC
EI均为已知。求C截面的挠度yC和转角C
§6-4 用叠加法求弯曲变形
讨论 叠加法求变形有什么优缺点?
目录
§6-5 简单超静定梁
1.基本概念: 超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统

工程力学c材料力学部分第六章 弯曲变形

工程力学c材料力学部分第六章 弯曲变形
q
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2

材料力学 第6章 梁的弯曲变形

材料力学 第6章  梁的弯曲变形

(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D

材料力学知识点

材料力学知识点

第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。

平面弯曲时,挠曲线为外力作用平面内的平面曲线。

2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。

1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。

2》转角——横截面绕其中性轴旋转的角位移,以表示。

挠度和转角的正负号由所选坐标系的正方向来确定。

沿y轴正方向的挠度为正。

转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。

4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。

对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。

因此除了用边界条件外,还要用连续性条件确定所有的积分常数。

边界条件:支座对梁的位移(挠度和转角)的约束条件。

连续条件:挠曲线的光滑连续条件。

悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。

2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fx 2 EIw Flx 2
EIw Flx Fx 2 6
2
3
y A
F
B x
wmax
l
max
max 和 wmax都发生在自由端截面处
Fl 2 Fl 2 Fl 2 ( ) max | x l EI 2 EI 2 EI Pl 3 ( ) wmax w | x l 3 EI
积分法的原则
(a)对各段梁,都是由坐标原点到所研究截面之间的梁段上 的外力来写弯矩方程的.所以后一段梁的弯矩方程包含前一段梁的 弯矩方程.只增加了(x-a)的项.
(b)对(x-a)的项作积分时,应该将(x-a)项作为积分变量.从而 简化了确定积分常数的工作.
§6–4 用叠加法求弯曲变形
一、叠加原理
2
+
q
A B
5qa 4 qa 3 ( wC ) q ( A )q 24 EI 3 EI
F q
A
C a a
B
Fa ( A )F 4 EI
3
2
Fa ( wC )F 6 EI
4
3
F
A
qa 5qa ( A )F ( wC ) F 3 EI 24 EI
=
Fb 2 2 (l b 3 x 2) 0 1 w 1' 6lEI
l 2 b2 a (a 2b ) x1 3 3
当 a > b时, x1 < a 最大挠度确实在第一段梁中
2 Fb Pbl 2 2 3 w | ( l b ) 0.0642 w max x x1 EI 9 3lEI
2 3 2

M ( x) EI
在规定的坐标系中,x 轴水平向右 y 为正, y轴竖直向上为正.
M
M
曲线向上凸时:
w 0 M 0 y
M
M 0 w 0
M
因此,
w与 M 的正负号相同
O
M 0 w 0
x
x
曲线向下凸时:
O
w 0 M 0
w (1 w )
梁中点 C 处的挠度为
Fb Fbl 2 2 wC (3l 4b ) 0.0625 48 EI EI
2
2 Fb Fbl 2 2 3 y | ( l b ) 0.0642 w max x x1 EI 9 3lEI
结论:在简支梁中, 不论它受什么荷载作用, 只要挠曲线上无 拐点, 其最大挠度值都可用梁跨中点处的挠度值来代替, 其精确度 是能满足工程要求的.
2 3 2
M ( x) EI
w 2 与 1 相比十分微小而可以忽略不计,故上式可近似为
M ( x) w" EI
(6.5)
此式称为 梁的挠曲线近似微分方程 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项;
(3) tan w w( x )
注意: 挠曲线的近似微分方程仅适用于小变形的平面弯曲问题。
A a l D B
b
解: 梁的两个支反力为
x
b FRA F l a FRB F l
两段梁的弯矩方程分别为
F FRA
A 1 a D b l 2
FRB
B
x
b M1 FRA x F x l b M2 F x F ( x a) l
(0 x a ) (a x l )
x
M ( x ) F (l x )
(1)
(2) 挠曲线的近似微分方程为
l
EIw M ( x ) Fl Fx (2)
对挠曲线近似微分方程进行积分
Fx EIw Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6
y A C B x w挠度 C'
B'
2.转角 横截面对其原来位置的角位移,称为该截面的转角. 用 表示 y
A C' C B x w挠度

转角
B
3.挠曲线 :梁变形后的轴线称为挠曲线 . 挠曲线方程为
w f ( x)
式中,x 为梁变形前轴线上任一点的横坐标,w 为该点的挠度. y
A C B x
(2) 变形叠加法
在内力不变的前提下,将梁分解(或刚化)为 几段,求出各段的变形,
按叠加原理求A点转角和C点 挠度. 解:(a)载荷分解如图 (b)由梁的简单载荷变形表,
F
A
=
B
查简单载荷引起的变形.
3 Fa Fa ( wC )F ( A )F 6 EI 4 EI
第六章
弯曲变形
本章内容: 1 工程中的弯曲变形问题 2 挠曲线的微分方程 3 用积分法求弯曲变形 4 用叠加法求弯曲变形 5 简单静不定梁 6 提高弯曲刚度的一些措施
§6-1 工程中的弯曲变形问题
一、工程实例
7-1
二、基本概念
1.挠度
横截面形心 C (即轴线上的点)在垂直于 x 轴方向的线位移, 称为该截面的挠度.用w表示.
是叠加原理.
设梁上有n 个载荷同时作用,任意截面上的弯矩 为M(x),转角为 ,挠度为w,则有:
d 2w EI 2 EIw'' M ( x) dx
若梁上只有第i个载荷单独作用,截面上弯矩 为 M i ( x ) ,转角为 i ,挠度为 wi ,则有:
EIw''i M i ( x)
Fab( l b ) A 1 | x 0 6lEI Fab( l a ) B 2 | x l 6lEI
当 a > b 时, 右支座处截面的转角绝对值为最大
max
Fab( l a ) B 6lEI
简支梁的最大挠度应在
w' 0 处
先研究第一段梁,令 w1 0 得
梁的变形微小, 且梁在线弹性范围内工作时, 梁在几项荷载
(可以是集中力, 集中力偶或分布力)同时作用下的挠度和转角, 就分别等于每一荷载单独作用下该截面的挠度和转角的叠加. 当 每一项荷载所引起的挠度为同一方向(如均沿w轴方向), 其转角 是在同一平面内(如均在 xy 平面内)时,则叠加就是代数和. 这就
n
重要结论: 梁在若干个载荷共同作用时的挠度或转角, 等于在各个载荷单独作用时的挠度或转角的代数 和。这就是计算弯曲变形的叠加原理。
l
叠加法的基础
熟记简单载荷作用下的挠度和转角。见教材 p. 185 表6.1 。 要求记住:1、2、4、6、8、10。
l
叠加法的两种类型
(1) 载荷叠加法 将载荷分解为几个简单载荷,分别求解后,进行叠加;
转角方程
b x F ( x a) C2 EIw 2 F l 2 2
2
2
挠度方程
b x 3 F ( x a )3 C 2x D 2 EIw 2 F l 6 6
D点的连续条件
w2 在 x = a 处 w1 w1 w2
边界条件 在 x = 0 处, w1 0 在 x = l 处, w2 0
最大转角和最大挠度分别为
FRA
FRB
在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
max
ql 3 A B 24 EI
x l 2
在梁跨中点处有最大挠度值 wmax w
5ql 4 384 EI
例题3 图示一抗弯刚度为EI的简支梁, 在D点处受一集中力F的作 用.试求此梁的挠曲线方程和转角方程,并求其最大挠度和最大转 角. F
两段梁的挠曲线方程分别为 (a)(0 x a)
b 挠曲线方程 EIw 1 M 1 F x l
转角方程 挠度方程
b x2 F EIw1 C1 l 2 b x3 EIw1 F C1 x D1 l 6
(b)( a x l )
b 挠曲线方程 EIw 2 M 2 F x F ( x a ) l
(b)( a x l )
Fb l 1 2 2 2 2 [ ( x a ) x ( l b )] 2 w 2' 2lEI b 3 Fb l 3 3 2 2 [ ( ( x a ) w2 x l b ) x] 6lEI b
将 x = 0 和 x = l 分别代入转角方程左右两支座处截面的转角
~
~
~
~
A
A A A
A
~
l
梁的刚度条件
w max [w] ,
max [ ]
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F 作 用.试求梁的挠曲线方程和转角方程, 并确定其最大挠度 wmax 和最大转角 max w
A
F
B x
l
解:
y
F
A B
x
(1) 弯矩方程为
7-3
积分常数C、D 由梁的位移边界条件和光滑连续 条件确定。 位移边界条件
~
~
光滑连续条件
A
A A AA A A AA A
~
A
A
~ ~
~
~ ~ ~
~
A A A A
~
~
~
wA 0
wA 0
wA
-弹簧变形
wAL wAR
wAL wAR
A 0
AL AR
~
~
A AA A A
B
(c)叠加
A ( A )F ( A )q
q
a2 (3 F 4qa ) 12 EI
5qa 4 Fa 3 wC ( ) 24 EI 6 EI
相关文档
最新文档