2019届全国高三原创试卷(一)数学理试题

合集下载

理数:2019年高考全国Ⅰ卷理科数学真题(含答案)

理数:2019年高考全国Ⅰ卷理科数学真题(含答案)

D.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻组成,爻分为 阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有 3 个阳爻 的概率是
第 2 页 共 14 页
A. 5 16
B. 11 32
C. 21 32
D. 11 16
7.已知非零向量 a,b 满足| a |= 2 | b | ,且 (a − b) ⊥ b,则 a 与 b 的夹角为
B. an = 3n −10
C. Sn = 2n2 − 8n
D. Sn
=
1 2
n2

2n
10.已知椭圆 C 的焦点为 F1( −1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点.若| AF2 |= 2 | F2B | ,
| AB |=| BF1 | ,则 C 的方程为
A. x2 + y2 = 1 2
(2)求 C 上的点到 l 距离的最小值.
23.[选修 4—5:不等式选讲](10 分)
已知 a,b,c 为正数,且满足 abc=1.证明:
(1) 1 + 1 + 1 a2 + b2 + c2 ; abc
+ 333 + a(b2b)( c c a

2019 年普通高等学校招生全国统一考试
理科数学•参考答案
20.(12 分)
第 5 页 共 14 页
sin ln((1=)−已+ 知函数 f x x x
, f (x) 为 f (x) 的导数.证明:
(1) f (x) 在区间 (−1, ) 存在唯一极大值点; 2

2019届全国新高三原创试卷理科数学

2019届全国新高三原创试卷理科数学

2019届全国新高三原创试卷理科数学本试题卷共4页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。

6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}()(){}0,150=A x B x x x A B =≥=+-<⋂,则 A .[-1,4)B .[0,5)C .[1,4]D .[-4,-1) ⋃ [4,5)2. 在ABC △中,60A =︒,4AC =,BC =ABC △的面积为( ) A. B .4 C. D.3. 边长为8的等边△ABC 所在平面内一点O ,满足23OA OB OC --=0,若M 为△ABC 边上的点,点P 满足||19OP =|MP|的最大值为A.B.C.D.4. 设实数x y ,满足20401x y x y y -+⎧⎪+-⎨⎪⎩,,,≥≤≥则2x y -的最小值为A. -5B.-4C.-3D.-15. 已知一个几何体的三视图如图所示,则该几何体的体积为A .8163π+ B .1683π+C .126π+D .443π+6. 执行如图所示的程序框图,则输出的S 的值是( )A .1B .2C .4D .7 7. 若直线()1:110l ax a y -++=与直线2:210l x ay --=垂直,则实数a = A .3B .0C .3-D .03-或8. 若双曲线C: 22221x y a b-=(0a >,0b >)的一条渐近线被圆2240x y x +-=所截得的弦长为2,则双曲线C 的离心率为A .39. 已知12a xdx =⎰,函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数4f x a π⎛⎫-+ ⎪⎝⎭图象的一个对称中心是A .,112π⎛⎫-⎪⎝⎭B .,212π⎛⎫⎪⎝⎭C .7,112π⎛⎫⎪⎝⎭D .3,24π⎛⎫⎪⎝⎭10. 甲、乙、丙、丁四位同学参加朗读比赛,其中只有一位获奖,有同学走访这四位同学,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”。

2019年全国普通高等学校招生统一考试理科数学(全国1卷参考版)【含答案及解析】

2019年全国普通高等学校招生统一考试理科数学(全国1卷参考版)【含答案及解析】

2019 年全国普通高等学校招生统一考试理科数学(全国1 卷参考版)【含答案及解析】姓名 _____________ 班级 ________________ 分数 ____________、选择题1. 设集合 , ,则( A ) ( B )( C )( D )2. 设,其中, 实数,则( A ) 1 ( B )( C )( D ) 2前 9 项的和为 27, B ) 99 ( C ) 984. 某公司的班车在 7:00 ,8:00 ,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐 班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是 ( A ) ( B ) ( C ) ( D )5. 已知方程 表 示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是( A ) ( B )( C ) ( D )6. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 . 若该几何体的体积是 ,则它的表面积是3. 已知等差数列 ( A ) 100,则 ( D ) 978. 若,则( A )( B )B )(C ),则输出 x,y 的值满足9. 执行右面的程序框图,如果输入的A )B )C )D )10.以抛物线 C的顶点为圆心的圆交 C于 A、 B两点,交 C 的准线于 D、E两点. 已知|AB|= , |DE|= ,则 C的焦点到准线的距离为( A ) 2 ( B ) 4 ( C ) 6 ( D ) 811.平面过正方体 ABCD-A 1 B 1 C 1 D 1 的顶点 A,// 平面 CB 1 D 1 ,平面 ABCD=,m 平面 AB B 1 A 1 =n ,则 m、n 所成角的正弦值为( A ) _______________________ ( B )_________________ ( C )________________ ( D )12.已知函数为的零点,为图像的对称轴,且在单调,则的最大值为( A ) 11 ( B ) 9 ( C ) 7 ( D ) 5二、填空题13.设向量 a= ( m,1 ),b= ( 1,2 ),且|a+b| 2 =|a| 2 +|b| 2 ,则m= ____________________________________ .14.的展开式中, x 3 的系数是 __________________________ . (用数字填写答案)15.设等比数列满足 a 1 +a 3 =10 ,a 2 +a 4 =5 ,则 a 1 a 2 ⋯a n 的最大值为 _____________________________________ .16.某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B需要甲材料 0.5kg ,乙材料 0.3kg ,用 3个工时.生产一件产品 A的利润为 2100 元,生产一件产品 B的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元三、解答题17.的内角 A,B,C 的对边分别为 a,b,c,已知(Ⅰ)求 C;(Ⅱ)若的面积为,求的周长.18.如图,在以 A,B,C,D,E,F 为顶点的五面体中,面 ABEF为正方形, AF=2FD,,且二面角 D-AF-E 与二面角 C-BE-F 都是.Ⅰ)证明:平面 ABEF 平面 EFDC;Ⅱ)求二面角 E-BC-A 的余弦值.19.某公司计划购买 2 台机器,该种机器使用三年后即被淘汰 . 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个 500 元. 现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这 100 台机器更换的易损零件数的频率代替 1台机器更换的易损零件数发生的概率,记表示 2 台机器三年内共需更换的易损零件数,表示购买 2 台机器的同时购买的易损零件数 . (Ⅰ)求的分布列;(Ⅱ )若要求,确定的最小值;(Ⅲ )以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?20.设圆的圆心为 A,直线 l 过点 B ( 1,0 )且与 x 轴不重合, l 交圆 A于 C,D两点,过 B 作 AC的平行线交 AD于点 E.(Ⅰ)证明为定值,并写出点 E 的轨迹方程;(Ⅱ )设点 E 的轨迹为曲线 C 1 ,直线 l 交 C 1 于 M,N两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ面积的取值范围 .21.已知函数有两个零点(Ⅰ)求 a 的取值范围;Ⅱ)设 x 1 ,x 2 是的两个零点,证明:22.选修 4-1 :几何证明选讲如图,△ OAB是等腰三角形,∠ AOB=12°0 .以 O为圆心,OA为半径作圆 .Ⅰ)证明:直线 AB 与O 相切;Ⅱ)点 C,D 在⊙O上,且 A,B,C,D 四点共圆,证明: AB∥CD.23.选修 4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C 1 的参数方程为( t 为参数, a>0 ).在以坐标原点为极点, x轴正半轴为极轴的极坐标系中,曲线 C 2 :ρ=.(Ⅰ)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(Ⅱ)直线 C 3 的极坐标方程为,其中满足 tan =2 ,若曲线 C 1 与 C 2 的公共点都在 C 3 上,求 a .24.选修 4— 5:不等式选讲已知函数 .(Ⅰ)在图中画出的图像;(Ⅱ)求不等式的解集.参考答案及解析第1 题【答案】第2 题【答案】第3 题【答案】第4 题【答案】第5 题【答案】第6 题【答案】第7 题【答案】第8 题【答案】第9 题【答案】第 10 题【答案】第 11 题【答案】第 12 题【答案】第 14 题【答案】第 15 题【答案】第 13 题【答案】第 16 题【答案】216000【解析】 试题分析:设生产产品/、产品E 分别为工、•匸件,束厢之和为二元,那么1.5x+0.5r n 150.x÷0 3.V M 90.■ 5工十3儿600. ①x...0,Iy-O-目⅛⅛数二= 210(k + 900)∙・二元一次不尊式组①竽价于3x+.v n 300.10x + 3.v n 900,• 5x÷3y n 600,② x..0,L y... 0.作出二元一次不等式组②表示的平面区域(如團),即可行域.7 7 7p ■ =2100r + 900v 变形,得尸-丁十扁,平行直线―-丁 ,当直线JU 一丁十硫 经过 点M 时J -取得最大值, 10r + 3υ = 900V5x+3v≡600U •解方程组 ,得M 的坐标(6(HOO).所以当X =60 , 3 =100 时,∑aaχ=2100×60 + 900×100 = 216000 .第 17 题【答案】第 18 题【答案】(I )见解析(∏) 一匹19【解析】试题分析;(I >证明AF 丄平面EFDC ,结合AFU 平面ABEF 、可得平面ABEF 丄平面 EFDC .(II )建立空间坐标系,利用向量求.试题解析:(I 〉由已知可得AF 丄DF ,AFdFE ,所以AF 丄平面EFDC .又AFU 平面ABEF ;故平面ABEF 丄平面EFDC •〈II 〉过D 作DG 丄EF ,垂足为G ,由(I )知DG 丄平面ABEF ・以G 为坐标原点、,GF 的方向为X 轴正方向,IGFl 为单位长度,建立如图所示的空间直角坐标系 由(I > 知ZDFE 为二面角D-AF-E 的平面角,故ZDFE = 60。

2019届全国高三原创试卷(一)理科数学

2019届全国高三原创试卷(一)理科数学

2019届全国高三原创试卷(一)数学(理)试题本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U R =,则集合{}0,1,2M =和(){}22log 0N x x x x =⋅-⋅=的关系用如图所示的四幅图可表示为( )A .B .C .D .2.已知i 是虚数单位,则复数11ii+-在复平面上所对应的点的坐标为( ) A .()1,0- B .()0,1- C .()1,0 D .()0,1 3.设向量()(),1,1,2a m b ==-,且22a b a b a b +--=⋅,则m =( ) A .2 B1 C 1 D .44.若变量,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值为( )A .52-B .4-C .32- D .2-5.已知等差数列{}n a 的前n 项和为n S ,且满足6924,63S S ==,则4a =( ) A .4 B .5 C .6 D .76.已知函数()()ln 1cos f x x x ax =+⋅-在()()0,0f 处的切线倾斜角为45︒,则a =( ) A .2-B .1-C .0D .3 7.)()*nn N ∈的展开式中恰有三项的系数为有理数,则n 的可能取值为( )A .9B .10C .11D .12 8.已知1b a >>,且10log log 3a b b a +=,b a a b =,则如图所示的程序框图输出的S =( )A.2 C .3 9.某儿何体的三视图如图所示,则该几何体的体积为( )A C .1 D .4310.设函数()()sin f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间,62ππ⎡⎤⎢⎥⎣⎦上具有单调性,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()f x 的最小正周期为( )A .2π B .π C .32πD .2π 11.已知12,F F 是椭圆2211612x y +=的左、右焦点,点()2,3M ,则12F MF ∠的角平分线l 的斜率为( )A .1B .2 D12.已知函数()ln f x x =,()()2g x a e x b =-+.若不等式()()f x g x ≤在()0,x ∈+∞上恒成立,则2e ba⋅的最小值为( ) A .1- B .1 C .e - D .e第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 四个人围坐在一张方形桌旁,每个人抛掷一枚质地均匀的硬币.若硬币正面朝上,则这个人站起来;若硬币反面朝上,则这个人继续坐着.那么,恰有相邻的两个人站起来的概率为 .14.双曲线()2222:-=10,0x y C a b a b >>与抛物线24y x =有公共焦点F ,P 是它们的公共点,设()0,1Q ,若QP QF ⊥,则C 的离心率e = .15.—张半径为1的圆形包装纸,按照如图所示的实线裁剪,并按虚线折叠为各棱长都相等的四棱锥,折叠所成的四棱锥外接球的表面积为 .16.整数1,2,,n ()*,2n N n ∈≥的排列满足:从第二个数开始,每个数或者大于它之前的所有数,或者小于它之前的所有数.则这样的排列个数共有 个.(用含n 的代数式表示) 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知()()cos cos sin a B C A C a -=-. (1)求角A ;(2)若ABC ∆的周长为8ABC ∆的面积.18.如图,矩形ABCD 中,24AD AB ==,E 为BC 的中点,现将BAE ∆与DCE ∆折起, 使得平面BAE 及平面DEC 都与平面ADE 垂直.(1)求证://BC 平面ADE ; (2)求二面角A BE C --的余弦值.19.随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价x :(单位:元/月)和购买人数y (单位:万人)的关系如表:(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合y 与x 的关系?并指出是正相关还是负相关; (2)①求出y 关于x 的回归方程;②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.158161164.参考公式:相关系数()()nii xx y yr --=∑,回归直线方程y bx a =+,其中()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-.20.如图,抛物线2:2C y x =的焦点为F ,抛物线C 上,A B 两点,在抛物线的准线上的射影分别为,P Q .(1)如图,若F 点在线段AB 上,过A 作FQ 的平行线l 与抛物线准线交于R ,证明:R 是PQ 的中点;(2)如图,若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.21.设函数()2ln f x x x ax =+,已知()f x 不单调,且其导函数()g x 存在唯一零点. (1)求a 的取值范围;(2)若集合(){}M y y f f x ==⎡⎤⎣⎦,(){}N y y f x ==,求证:M N=. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:0l x =,圆()(22:111C x y -+--=,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求1,l C 的极坐标方程; (2)若直线2l 的极坐标方程为()4R πθρ=∈,设12,l l 与C 的公共点分别为,A B ,求OAB ∆的面积.23.选修4-5:不等式选讲已知函数()f x =(1)当1a =时,求函数()f x 的定义域; (2)当[]1,2a ∈时,求证:()2215f x f x ⎛⎫+-≤ ⎪⎝⎭.试卷答案一、选择题1-5: ADABB 6-10: CDCBB 11、12:CA 二、填空题13.141 15. 8π 16.12n - 三、解答题17.解:(1)由()()cos cos sin a B C A C a -=-,得()cos cos sin cos a B C a A C A -+=,即()()cos cos sin cos a B C a B C C A --+=,所以()cos cos sin sin cos cos sin sin a B C a B C a B C B C +--sin cos C A =即sin sin sin cos a B C C A =,因为sin 0C ≠,所以sin cos a B A .由正弦定理得sin sin cos A B B A ,因为sin 0B ≠,所以sin A A ,所以tan A =,得60A =︒.(2)因为ABC ∆所以2sin 23a R A ===,所以5b c +=, 由余弦定理得()22222cos 22cos60a b c bc A b c bc bc =+-=+--︒()23b c bc +- 所以()22325916bc b c a =+-=-=,得163bc =,所以ABC ∆的面积1116sin 223S bc A ==⨯=.18.解:(1)分别取,AE DE 中点,M N ,分别连接,,BM CN MN , 则BM AE ⊥且CN DE ⊥.∵平面BAE 及平面DEC 都与平面ADE 垂直, ∴BM ⊥平面ADE ,CN ⊥平面ADE ,由线面垂直性质定理知//BM CN ,又BM CN =, ∴四边形BCNM 为平行四边形,//BC MN , 又BC ⊄平面ADE ,∴//BC 平面ADE .(2)方法一:如图,以E 为原点,,ED EA 为,x y 正半轴, 建立空间直角坐标系E xyz -,则(,B C,平面ABE 的一个法向量()11,0,0n =,设平面CBE 的法向量()2,,n x y z =,则222020EB n y EC n x ⎧⋅=+=⎪⎨⋅==⎪⎩, 取1y =-得()21,1,1n =--, ∴121212cos ,3n n nn n n ⋅===⋅故二面角A BE C --的余弦值为方法二:如图,取BE 的中点P ,连结,PM PC ,于是,//PM AB ,∴PM BE ⊥. 由(I )可知12BC MN AD BE CE ====, ∴CPBE ⊥.所以MPC∠为二面角A BE C --的平面角. 又1,PMPC ==MC =∴222cos 2PM PC MC MPC PM PC +-∠==⋅即二面角A BE C --的余弦值为19.解:(1)根据题意,得()13035404550405x =++++=,()1181********y =++++=. 可列表如下根据表格和参考数据,得()()51160i i i x x y y =--=∑,161=≈.因而相关系数()()51600.99161iix x yyr ---==≈-∑. 由于0.99r ≈很接近1,因而可以用线性回归方程模型拟合y 与x 的关系. 由于0r <,故其关系为负相关.(2)①()()()515211600.64250ii i i i xx y y b x x==---===--∑∑,110.644036.6a =+⨯=, 因而y 关于x 的回归方程为0.6436.6y x =-+.②由①知,若25x =,则0.642536.652.6y =-⨯+=,故若将流量包的价格定为25元/月,可预测长沙市一个月内购买该流量包的人数会超过20万人.20.解:(1)方法一:由题,1,02F ⎛⎫⎪⎝⎭,准线12x =-.设直线1:2AB x my =+,()()1122,,,A x y B x y ,1211,,,22P y Q y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.联立22121022x my y my y x ⎧=+⎪⇒--=⎨⎪=⎩,∴121y y =-. 于是12OF k k y ==-,直线()121:l y y y x x -=--,设直线l 与PQ 交于点R ,令12x =-.得:2121121122R y y y y x y y x ⎛⎫=---=++ ⎪⎝⎭221211212122222y y y y y y y y y +=++=+-=.故直线l 经过PQ 的中点.方法二:延长,AR BQ 交于点S ,由抛物线定义知,AP AF BQ BF ==,∵//AS QF ,∴BS BA =,从而 SQ AF AP ==.于是Rt RSQ Rt RPA ∆≅∆,R 为PQ 的中点. (2)设,AB PQ 与x 轴的焦点分别为,D E ,则2112PQF S EF y y ∆=⋅-,2112ABF S FD y y ∆=⋅- ∵PQF ∆的面积是ABF 的面积的两倍, ∴2EF FD =,所以点()1,0D .可设直线:1AB x my =+,()()1122,,,A x y B x y ,AB 中点()00,M x y , 2212202x my y my y x=+⎧⇒--=⎨=⎩, ∴12122,2y y m y y +==-.于是1202y y y m +==,()2221212*********y y y y x x y y x +-++=== 222044114m m y +==+=+即AB 中点的轨迹方程为21x y =+.21.解:(1)由题意得()g x 有唯一零点,且()g x 在零点两侧的符号相反. ()ln 21g x x ax =++,()12,0g x a x x'=+>. ①当0a ≥时,()0g x '>,故()g x 在区间()0,+∞上单调递增,又0x →时,()()0,1210g x g a <=+>,故()0g x =在区间()0,+∞上存在唯一零点且在零点两侧的符号相反. ②当0a <时,()0g x '>,得12x a <-,故()g x 在区间10,2a ⎛⎫- ⎪⎝⎭上单调递增,在区间1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递减, 若102g a ⎛⎫-= ⎪⎝⎭,则()g x 存在唯一零点,但在零点两侧都为负,不合题意; 若102g a ⎛⎫-< ⎪⎝⎭,则()0g x <恒成立,此时()g x 无零点,不合题意; 若102g a ⎛⎫-> ⎪⎝⎭,又0x →时,()0g x <,x →+∞时,()0g x <,此时()g x 有两个零点,不合题意.综上所述,a 的取值范围是()0,+∞.(2)由(1)知0a ≥,设()00g x =,即00ln 210x ax ++=. 则()f x 在区间()00,x 上单调递减,在区间()0,x +∞上单调递增, ∴()f x 的值域为())0,f x ⎡+∞⎣,即())0,N f x ⎡=+∞⎣.要使M N =,只需()00f x x ≤,即20000ln x x ax x +≤,也就是00ln 1x ax +≤. 又()001ln 12ax x =-+,故011ln 122x -≤,即30x e ≤. 又()g x 在区间()0,+∞上单调递增函数,∴要证30x e ≤ 只要证()()30g x g e ≤,即()30g e ≥.而()333312420g e ae ae =++=+>,故结论得证.22.解:(1)∵cos ,sin x y ρθρθ==,∴1l 的极坐标方程为cos 0ρθ=,即()2R πθρ=∈,C 的极坐标方程为(22cos 21sin 30ρρθρθ--++=.(2)将2πθ=代入(22cos 21sin 30ρρθρθ--++=,得(22130ρρ-+++,解得11ρ=.将4πθ=代入(22cos 21sin 30ρρθρθ--+++,得(22130ρρ-+++,解得21ρ=+故OAB ∆的面积为(211sin 124π⨯+⨯=+.23.解:(1)当1a =时,()f x 当110x x --+≥,得1110x x x <-⎧⎨-++≥⎩或()11110x x x -≤≤⎧⎪⎨--+≥⎪⎩或()1110x x x >⎧⎪⎨--+≥⎪⎩解得1x <-或10x -≤≤或∅. ∴()f x 的定义域为(],0-∞.(2)()221111112f x f x a x a a x a x x a a ⎛⎫+-=--++----+≤+ ⎪⎝⎭ 125a a ⎛⎫=+≤ ⎪⎝⎭,当且仅当2a =时等号成立.。

2019年高考全国数学卷一理科试题及答案

2019年高考全国数学卷一理科试题及答案

2019 年普通高等学校招生全国统一考试(全国卷一)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式P( A + B) = P(A) + P(B) 2S=4p R如果事件相互独立,那么其中R 表示球的半径P( A ?B) P( A) P( B) 球的体积公式43如果事件A在一次试验中发生的概率是p ,那么V = pR3在n次独立重复试验中事件A恰好发生k 次的概率其中R表示球的半径k k n- kP (k) = C p (1- p) (k= 0,1,2,⋯,n)n n第一部分(选择题共60 分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12 小题,每小题 5 分,共60 分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1 x) 的展开式中2x 的系数是()A、42 B 、35 C 、28 D 、212(1 i)2、复数()2iA、1 B 、 1 C 、i D 、i3、函数2 9x, x 3f (x) x 3在x 3处的极限是()ln( x 2), x 3A、不存在 B 、等于6 C 、等于3 D 、等于04、如图,正方形A BCD 的边长为1,延长B A 至E ,使AE 1,连接E C 、ED则s in CED ()A、31010B 、1010C 、510D 、5155、函数1xy a (a 0,a 1)a的图象可能是()6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设a、b都是非零向量,下列四个条件中,使a b| a| | b|成立的充分条件是()A、a b B 、a// b C 、a2b D 、a// b且|a| |b|8、已知抛物线关于x轴对称,它的顶点在坐标原点O ,并且经过点M (2, y ) 。

[精品]2019届高三数学第一次统考试题 理(含解析)新版人教 版

[精品]2019届高三数学第一次统考试题 理(含解析)新版人教 版

2019学年高中三年级第一次统一考试数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则()A. B. C. D.【答案】C【解析】,,所以,故,故选C................2. 若(是虚数单位),则等于()A. 3B. 2C. 0D. -1【答案】A【解析】,因,故,所以,选A.3. 若函数同时满足下列两个条件,则称该函数为“优美丽数”:(1)对,都有;(2)对,且,都有.①;②;③;④以上四个函数中,“优美函数”的个数是()A. 0B. 1C. 2D. 3【答案】B【解析】若,则为上的奇函数,但在上不单调,故不是优美函数;若,则为上的奇函数,且在上为减函数,所以,它是优美函数;若,因,故它不是上的奇函数,故它不是优美函数;若,考虑函数在上的单调性,因在为增函数,在为增函数,所以在上为增函数且恒正,故在上为增函数,所以当时,总有,所以也不是优美函数,综上,选B.4. 已知向量,,若,则实数的值是()A. -4B. -1C. 1D. 4【答案】D【解析】因为,故,展开得到,故,,选D.5. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2 的等差数列前2017项和B. 求首项为1,公差为2 的等差数列前2018项和C. 求首项为1,公差为4 的等差数列前1009项和D. 求首项为1,公差为4 的等差数列前1010项和【答案】C【解析】由题意可知,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6. 设满足约束条件,则的最小值与最大值的和为()A. 7B. 8C. 13D. 14【答案】D【解析】可行域如图所示,当动直线过时,;当动直线过时,,故的最大值与最小值的和为14,选D.7. 已知函数,先将的图象上所有点的横坐标缩短到原来的(纵坐标不变),再将得到的图象上所有点向右平移个单位长度,得到的图象关于轴对称,则的最小值为()A. B. C. D.【答案】C【解析】因,将其图像上的点的横坐标缩短到原来的后所得函数的解析式为,图像在轴左侧的第一条对称轴,故至少向右平移个单位就可以得到关于轴对称的图像,选C.点睛:若三角函数的图像平移后得到的图像为奇函数或偶函数的图像,那么最小的平移往往和轴附近的对称轴或对称中心有关.8. 一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为()A. B. C. D.【答案】A【解析】几何体如图所示,它为正方体中挖去两个对顶的圆锥,其体积为.9. 若,则二项式的展开式中的常数项为()A. -15B. 15C. -240D. 240【答案】D【解析】,而展开式的通项公式为令,所以,常数项的系数为,选D.10. 在中,角的对边分别为,若成等比数列,且,则()A. B. C. D.【答案】B【解析】因为,,故,而,因,故.根据正弦定理有,,故,选B.11. 已知是抛物线的焦点,曲线是以为圆心,以为半径的圆,直线与曲线从上到下依次相交于点,则()A. 16B. 4C.D.【答案】A【解析】由可以得到,解得,所以,,故,,选A.点睛:对于抛物线,若且为焦点弦或焦半径,那么,,其中为焦点.12. 已知函数满足,且当时,,则方程在上的所有根之和为()A. 8B. 9C. 10D. 11【答案】D【解析】由可得总成立,所以是偶函数,由可以得到是周期为的函数.在同一坐标系中,我们画出及的图像,故方程共有11个根,,其中在内有6个解,其和为零,在内有5个解,得和为11.选D.点睛:对于不可解方程的解的个数,通常转化为两个熟悉函数的图像的交点去考虑.题设中关于的关系式蕴含为偶函数且为周期函数,而且图像的对称轴为,又的对称轴为,故根据两个函数的图像得到11个解,它们的和为8+3=11.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.【答案】【解析】由题设有,所以,所以.14. 某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有__________种(用数字作答).【答案】36【解析】先选出学生选报的社团,共有种选法,再把这3名同学分配到这两个社团,共有,故恰有2个社团没有同学选报数有.15. 在半径为4的球面上有不同的四点,若,则平面被球所截得图形的面积为__________.【答案】【解析】设球心为,则,所以在平面上射影是的外心,同理在平面上射影也是的外心.因且,故在平面的异侧,如图所示,等边三角形中,,故,又为平面截所球得圆的半径,故圆的面积为.点睛:题设中,结合球的半径为,故我们可以确定出在平面的两侧,从而求出的外接圆的半径.16. 已知为双曲线的左、右焦点,是双曲线右支上的一点,连接并过作垂直于的直线交双曲线左支于,其中,为等腰三角形.则双曲线的离心率为__________.【答案】【解析】连接并延长交右支于点,设,则,因为双曲线是中心对称,且,所以四边形是平行四边形.因是等腰三角形,,所以,故,且,根据双曲线的定义,有,所以,解得,所以,所以,.点睛:圆锥曲线的离心率的计算,常常需要寻找一个关于的关系式.如果题设条件与焦点或准线有关,那么我们需要从几何性质的角度去构建的关系式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知各项均不为零的数列的前项和为,且对任意,满足.(1)求数列的通项公式;(2)设数列满足,数列的前项和为,求证:.【答案】(1).(2)见解析.【解析】试题分析:由,可以得到的大小和的递推关系为,因此为等比数列,从而求得,再根据求出的通项,它是等差数列和等比数列的乘积,利用错位相减法求它的前项和.(1)当时,,∵,∴.∵,∴当时,,两式相减得,因,,故,∴数列是首项为4,公比为4的等比数列,∴.(2)∵,∴,∴,,两式相减得:.所以.18. 甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率;(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.【答案】(1).(2)见解析【解析】试题分析:(1)为古典概型,利用组合数公式计算基本事件的总数和随机事件中含有的基本事件的总数即可.(2)为计算离散型随机变量的分布列和数学期望,利用公式计算即可.(1)记抽取的天送餐单数都不小于40为事件,则.(2)①设乙公司送餐员送餐单数为,则当时,,当时,,当时,,当时,,当时,.所以的所有可能取值为228,234,240,247,254.故的分布列为:所以②依题意,甲公司送餐员日平均送餐单数为所以甲公司送餐员日平均工资为元.由①得乙公司送餐员日平均工资为241.8元.因为,故推荐小王去乙公司应聘.19. 如图,在四棱锥中,分别是的中点,底面是边长为2的正方形,,且平面平面.(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值.【答案】(1)见解析(2).【解析】试题分析:(1)要证平面因平面,只要证平面,也就是证明和,后者可以由为等边三角形得到,前者由平面得到(因为平面平面).(2)要求锐二面角,因几何体比较规则,可以建立空间直角坐标系计算两个半平面的法向量的夹角.(1)由题,为的中点,可得,∵平面平面,,平面平面,平面,∴平面.又∵平面,∴.,∴平面.∴平面平面.(2)取的中点,的中点,连接,∵,∴.∵平面平面平面,∴平面.分别以为轴建立空间直角坐标系,则,,设平面的法向量为,则.即.可取.同理,可得平面的法向量..所以平面与平面所成锐二面角余弦值为.20. 已知短轴长为2的椭圆,直线的横、纵截距分别为,且原点到直线的距离为.(1)求椭圆的方程;(2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程.【答案】(1).(2)或.【解析】试题分析:直线的方程有参数,利用原点到其距离为可以得到的大小,从而得到椭圆的方程.(2)中的三点满足向量关系式,将各点坐标代入,可以得到三个点的坐标之间的关系,而在椭圆上,所以两点的坐标满足关系式,再利用两点在直线上,得到关于的一个关系式,利用韦达定理转化为的方程可以解出的值.(1)因为椭圆的短轴长为2,故.依题意设直线的方程为:,由.解得,故椭圆的方程为.(2)设当直线的斜率为0时,显示不符合题意.当直线的斜率不为0时,,设其方程为,由,得,所以①.因为,所以.又点在椭圆上,∴.又∵,∴②,将,及①代入②得,即或.故直线的方程为或.点睛:一般地,当解析几何中问题出现向量等式时,我们先寻找向量隐含的几何意义,如果没有几何意义,可以转化点的坐标讨论.解决直线与圆锥曲线位置关系式,我们常把给定的关系式转化为含有(或)的关系式,最后利用韦达定理转化为所求参数的方程.21. 已知函数,(),且曲线在点处的切线方程为.(1)求实数的值及函数的最大值;(2)当时,记函数的最小值为,求的取值范围.【答案】(1),最大值.(2)【解析】试题分析:(1)题设给出了在处的切线,也是,从中解出即可.(2)中要求的最小值,因此要考虑的单调性,也就是考虑的符号的变化,但的零点不易求得,所以利用(1)的结论先确定在给定的范围上有唯一的零点,通过零点满足的关系式化简在零点处的函数值表达式(也是的最小值),最终求出最小值得范围.(1)函数的定义域为,,因的图象在点处的切线方程为,所以也即是,解得,所以,故.令,得,当时,,单调递增;当时,,单调递减.所以当时,取得最大值.(2)∵,∴,令,由(1)知道在是增函数,故在上为增函数,又,,因此存在唯一的,使得,也就是即.当时,,所以,单调递减;当时,,单调递增,所以的最小值为.令,因为,所以在单调递减,从而,即的取值范围是.点睛:在导数问题的讨论中,如果函数的极值点不易求得,那么我们可以利用这个关系式去化简,从而讨论与相关的问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.【答案】(1),(2)或.【解析】试题分析:(1)消去参数得到的普通方程为.利用可以把的极坐标方程化为直角坐标方程.(2)把的直角方程转化为参数方程,利用点到直线的距离公式算出距离为,利用得到.因为直线与椭圆是相离的,所以或,分类讨论就可以得到相应的值.(1)由曲线的参数方程,消去参数,可得的普通方程为:.由曲线的极坐标方程得,∴曲线的直角坐标方程为.(2)设曲线上任意一点为,,则点到曲线的距离为.∵,∴,,当时,,即;当时,,即.∴或.点睛:一般地,如果圆锥曲线上的动点到直线的距离有最小值,那么这条直线和圆锥曲线的位置关系式相离的.23. 选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.【答案】(1).(2).【解析】试题分析:(1)利用零点分段讨论求解.(2)利用化简得到在区间上是恒成立的,也就是是不等式的子集,据此得到关于的不等式组,求出它的解即可.(1)当时,原不等式可化为.①当时,原不等式可化为,解得,所以;②当时,原不等式可化为,解得,所以;③当时,原不等式可化为,解得,所以.综上所述,当时,不等式的解集为.(2)不等式可化为,依题意不等式在恒成立,所以,即,即,所以.解得,故所求实数的取值范围是.。

2019届高三数学第一次统考试题 理(含解析)新版人教 版

2019届高三数学第一次统考试题 理(含解析)新版人教 版

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019学年高中三年级第一次统一考试数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则()A. B. C. D.【答案】C【解析】,,所以,故,故选C................2. 若(是虚数单位),则等于()A. 3B. 2C. 0D. -1【答案】A【解析】,因,故,所以,选A. 3. 若函数同时满足下列两个条件,则称该函数为“优美丽数”:(1)对,都有;(2)对,且,都有.①;②;③;④以上四个函数中,“优美函数”的个数是()A. 0B. 1C. 2D. 3【答案】B【解析】若,则为上的奇函数,但在上不单调,故不是优美函数;若,则为上的奇函数,且在上为减函数,所以,它是优美函数;若,因,故它不是上的奇函数,故它不是优美函数;若,考虑函数在上的单调性,因在为增函数,在为增函数,所以在上为增函数且恒正,故在上为增函数,所以当时,总有,所以也不是优美函数,综上,选B.4. 已知向量,,若,则实数的值是()A. -4B. -1C. 1D. 4【答案】D【解析】因为,故,展开得到,故,,选D.5. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2 的等差数列前2017项和B. 求首项为1,公差为2 的等差数列前2018项和C. 求首项为1,公差为4 的等差数列前1009项和D. 求首项为1,公差为4 的等差数列前1010项和【答案】C【解析】由题意可知,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6. 设满足约束条件,则的最小值与最大值的和为()A. 7B. 8C. 13D. 14【答案】D【解析】可行域如图所示,当动直线过时,;当动直线过时,,故的最大值与最小值的和为14,选D.7. 已知函数,先将的图象上所有点的横坐标缩短到原来的(纵坐标不变),再将得到的图象上所有点向右平移个单位长度,得到的图象关于轴对称,则的最小值为()A. B. C. D.【答案】C【解析】因,将其图像上的点的横坐标缩短到原来的后所得函数的解析式为,图像在轴左侧的第一条对称轴,故至少向右平移个单位就可以得到关于轴对称的图像,选C.点睛:若三角函数的图像平移后得到的图像为奇函数或偶函数的图像,那么最小的平移往往和轴附近的对称轴或对称中心有关.8. 一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为()A. B. C. D.【答案】A【解析】几何体如图所示,它为正方体中挖去两个对顶的圆锥,其体积为.9. 若,则二项式的展开式中的常数项为()A. -15B. 15C. -240D. 240【答案】D【解析】,而展开式的通项公式为令,所以,常数项的系数为,选D.10. 在中,角的对边分别为,若成等比数列,且,则()A. B. C. D.【答案】B【解析】因为,,故,而,因,故.根据正弦定理有,,故,选B.11. 已知是抛物线的焦点,曲线是以为圆心,以为半径的圆,直线与曲线从上到下依次相交于点,则()A. 16B. 4C.D.【答案】A【解析】由可以得到,解得,所以,,故,,选A.点睛:对于抛物线,若且为焦点弦或焦半径,那么,,其中为焦点.12. 已知函数满足,且当时,,则方程在上的所有根之和为()A. 8B. 9C. 10D. 11【答案】D【解析】由可得总成立,所以是偶函数,由可以得到是周期为的函数.在同一坐标系中,我们画出及的图像,故方程共有11个根,,其中在内有6个解,其和为零,在内有5个解,得和为11.选D.点睛:对于不可解方程的解的个数,通常转化为两个熟悉函数的图像的交点去考虑.题设中关于的关系式蕴含为偶函数且为周期函数,而且图像的对称轴为,又的对称轴为,故根据两个函数的图像得到11个解,它们的和为8+3=11.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.【答案】【解析】由题设有,所以,所以.14. 某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有__________种(用数字作答).【答案】36【解析】先选出学生选报的社团,共有种选法,再把这3名同学分配到这两个社团,共有,故恰有2个社团没有同学选报数有.15. 在半径为4的球面上有不同的四点,若,则平面被球所截得图形的面积为__________.【答案】【解析】设球心为,则,所以在平面上射影是的外心,同理在平面上射影也是的外心.因且,故在平面的异侧,如图所示,等边三角形中,,故,又为平面截所球得圆的半径,故圆的面积为.点睛:题设中,结合球的半径为,故我们可以确定出在平面的两侧,从而求出的外接圆的半径.16. 已知为双曲线的左、右焦点,是双曲线右支上的一点,连接并过作垂直于的直线交双曲线左支于,其中,为等腰三角形.则双曲线的离心率为__________.【答案】【解析】连接并延长交右支于点,设,则,因为双曲线是中心对称,且,所以四边形是平行四边形.因是等腰三角形,,所以,故,且,根据双曲线的定义,有,所以,解得,所以,所以,.点睛:圆锥曲线的离心率的计算,常常需要寻找一个关于的关系式.如果题设条件与焦点或准线有关,那么我们需要从几何性质的角度去构建的关系式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知各项均不为零的数列的前项和为,且对任意,满足.(1)求数列的通项公式;(2)设数列满足,数列的前项和为,求证:.【答案】(1).(2)见解析.【解析】试题分析:由,可以得到的大小和的递推关系为,因此为等比数列,从而求得,再根据求出的通项,它是等差数列和等比数列的乘积,利用错位相减法求它的前项和.(1)当时,,∵,∴.∵,∴当时,,两式相减得,因,,故,∴数列是首项为4,公比为4的等比数列,∴.(2)∵,∴,∴,,两式相减得:.所以.18. 甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率;(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.【答案】(1).(2)见解析【解析】试题分析:(1)为古典概型,利用组合数公式计算基本事件的总数和随机事件中含有的基本事件的总数即可.(2)为计算离散型随机变量的分布列和数学期望,利用公式计算即可.(1)记抽取的天送餐单数都不小于40为事件,则.(2)①设乙公司送餐员送餐单数为,则当时,,当时,,当时,,当时,,当时,.所以的所有可能取值为228,234,240,247,254.故的分布列为:所以②依题意,甲公司送餐员日平均送餐单数为所以甲公司送餐员日平均工资为元.由①得乙公司送餐员日平均工资为241.8元.因为,故推荐小王去乙公司应聘. 19. 如图,在四棱锥中,分别是的中点,底面是边长为2的正方形,,且平面平面.(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值.【答案】(1)见解析(2).【解析】试题分析:(1)要证平面因平面,只要证平面,也就是证明和,后者可以由为等边三角形得到,前者由平面得到(因为平面平面).(2)要求锐二面角,因几何体比较规则,可以建立空间直角坐标系计算两个半平面的法向量的夹角.(1)由题,为的中点,可得,∵平面平面,,平面平面,平面,∴平面.又∵平面,∴.,∴平面.∴平面平面.(2)取的中点,的中点,连接,∵,∴.∵平面平面平面,∴平面.分别以为轴建立空间直角坐标系,则,,设平面的法向量为,则.即.可取.同理,可得平面的法向量..所以平面与平面所成锐二面角余弦值为.20. 已知短轴长为2的椭圆,直线的横、纵截距分别为,且原点到直线的距离为.(1)求椭圆的方程;(2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程.【答案】(1).(2)或.【解析】试题分析:直线的方程有参数,利用原点到其距离为可以得到的大小,从而得到椭圆的方程.(2)中的三点满足向量关系式,将各点坐标代入,可以得到三个点的坐标之间的关系,而在椭圆上,所以两点的坐标满足关系式,再利用两点在直线上,得到关于的一个关系式,利用韦达定理转化为的方程可以解出的值.(1)因为椭圆的短轴长为2,故.依题意设直线的方程为:,由.解得,故椭圆的方程为.(2)设当直线的斜率为0时,显示不符合题意.当直线的斜率不为0时,,设其方程为,由,得,所以①.因为,所以.又点在椭圆上,∴.又∵,∴②,将,及①代入②得,即或.故直线的方程为或.点睛:一般地,当解析几何中问题出现向量等式时,我们先寻找向量隐含的几何意义,如果没有几何意义,可以转化点的坐标讨论.解决直线与圆锥曲线位置关系式,我们常把给定的关系式转化为含有(或)的关系式,最后利用韦达定理转化为所求参数的方程.21. 已知函数,(),且曲线在点处的切线方程为.(1)求实数的值及函数的最大值;(2)当时,记函数的最小值为,求的取值范围.【答案】(1),最大值.(2)【解析】试题分析:(1)题设给出了在处的切线,也是,从中解出即可.(2)中要求的最小值,因此要考虑的单调性,也就是考虑的符号的变化,但的零点不易求得,所以利用(1)的结论先确定在给定的范围上有唯一的零点,通过零点满足的关系式化简在零点处的函数值表达式(也是的最小值),最终求出最小值得范围.(1)函数的定义域为,,因的图象在点处的切线方程为,所以也即是,解得,所以,故.令,得,当时,,单调递增;当时,,单调递减.所以当时,取得最大值.(2)∵,∴,令,由(1)知道在是增函数,故在上为增函数,又,,因此存在唯一的,使得,也就是即.当时,,所以,单调递减;当时,,单调递增,所以的最小值为.令,因为,所以在单调递减,从而,即的取值范围是.点睛:在导数问题的讨论中,如果函数的极值点不易求得,那么我们可以利用这个关系式去化简,从而讨论与相关的问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.【答案】(1),(2)或.【解析】试题分析:(1)消去参数得到的普通方程为.利用可以把的极坐标方程化为直角坐标方程.(2)把的直角方程转化为参数方程,利用点到直线的距离公式算出距离为,利用得到.因为直线与椭圆是相离的,所以或,分类讨论就可以得到相应的值.(1)由曲线的参数方程,消去参数,可得的普通方程为:.由曲线的极坐标方程得,∴曲线的直角坐标方程为.(2)设曲线上任意一点为,,则点到曲线的距离为.∵,∴,,当时,,即;当时,,即.∴或.点睛:一般地,如果圆锥曲线上的动点到直线的距离有最小值,那么这条直线和圆锥曲线的位置关系式相离的.23. 选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.【答案】(1).(2).【解析】试题分析:(1)利用零点分段讨论求解.(2)利用化简得到在区间上是恒成立的,也就是是不等式的子集,据此得到关于的不等式组,求出它的解即可.(1)当时,原不等式可化为.①当时,原不等式可化为,解得,所以;②当时,原不等式可化为,解得,所以;③当时,原不等式可化为,解得,所以.综上所述,当时,不等式的解集为.(2)不等式可化为,依题意不等式在恒成立,所以,即,即,所以.解得,故所求实数的取值范围是.。

2019年高考全国1卷理科数学及答案

2019年高考全国1卷理科数学及答案

x
=
1 1
− +
t t
2 2

(t
为参数),以坐标原点
O
y
=
4t 1+ t
2
为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为
2 cos + 3 sin +11 = 0 .
(1)求 C 和 l 的直角坐标方程; (2)求 C 上的点到 l 距离的最小值.
23.[选修 4−5:不等式选讲](10 分)
(1)由题设得 F
3 4
,
0
,故
|
AF
|
+
|
BF
|=
x1
+
x2
+
3 2
,由题设可得
x1
+
x2
=
5 2


y = 3 x + 2 y2 = 3x
A. 5 16
B. 11 32
C. 21 32
D. 11 16
7.已知非零向量 a,b 满足 | a |= 2 | b | ,且 (a − b) ⊥ b,则 a 与 b 的夹角为
A. π 6
B. π 3
C. 2π 3
D. 5π 6
8.如图是求 1 的程序框图,图中空白1 框中应填入 1
2+ 1
2+ 2
( ) 即 6 + 3 cos C + 1 sin C = 2sin C ,可得 cos C + 60 = − 2 .
22
2
2
( ) 由于 0 C 120 ,所以 sin C + 60 = 2 ,故 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届全国高三原创试卷(一)数学理试题本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,则的值为()A. B. C. 3 D.【答案】B........................故答案为:B。

2. 已知集合,,则()A. B. C. D.【答案】B【解析】集合=,,两个集合取交集,根据交集的概念得到。

故答案为B。

3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分也不必要条件【答案】A【解析】根据指数函数的单调性知道”一定有“反之,解出自变量的范围是故推不出来。

故答案为A。

4. 在正方体中,为的中点,为的中点,则异面直线与所成角的正切值为()A. B. C. D.【答案】C【解析】以D为坐标原点,DC,DA,DD1分别为x,y,z轴建立空间直角坐标系,设正方体的边长为2,可得A(0,2,0),B(2,2,0),C(2,0,0),B1(2,2,2),C1(2,0,2),由中点坐标公式可得E(2,1,0),F(2,1,2),则=(2,﹣1,2),=(0,1,﹣2),则可得异面直线AF与C1E所成角的余弦值为,则异面直线AF与C1E所成角的正弦值为,可得异面直线AF与C1E所成角的正切值为,故选:C.5. 函数的大致图象是()A. B.C. D.【答案】D【解析】令f(x)=x•ln|x|,显然f(x)的定义域为{x|x≠0}.则f(﹣x)=﹣x•ln|﹣x|=﹣f(x),∴f(x)是奇函数,图象关于原点对称,排除B;令f(x)=x•ln|x|=0得ln|x|=0,∴x=±1.∴f(x)只有两个零点,排除A.当0<x<1时,f(x)=x•lnx<0,当x>1时,f(x)=x•lnx>0,排除C.故选D.6. 设是空间中不同的直线,是不同的平面,则下列说法正确的是()A. ,则B. ,则C. ,则D. ,则【答案】D【解析】由于可能出现,所以A错。

两平面平行,要与第三平面相交,才能推出两交线平行,B选项不符,所以B错。

线面平行,需与过直线的平面与已知平面的交线平行,所以C 错。

D中,两平面平行,则一平面中的任一直线与另一平面平行。

D对。

选D.7. 已知函数在处取得最大值,则函数的图象()A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称【答案】A【解析】由题意可得,,所以选A.8. 如图,是山的高,一辆汽车在一条水平的公路上从正东方向往正西方向行驶,在点处时测得点的仰角为,行驶300m 后到达处,此时测得点在点的正北方向上,且测得点的仰角为,则此山的高()A. B. C. D.【答案】C【解析】设此山高h(m),由题意在点A处时测得点D的仰角为30°,得AC=h,在△ABC中,∠CBA=90°,测得点D的仰角为45°,∴BC=h,AB=300.根据勾股定理得,3h2=h2+90000,∴h=150.即CD=150m.故答案为:选C。

点睛:本题主要考查了解三角形的实际应用.实际应用题一般是关键是构造三角形,将各个已知条件向这个主三角形集中,转化为数学模型,列出数学表达式,再通过正弦、余弦定理,勾股定理或其他基本性质建立条件之间的联系,列方程或列式求解.9. 已知圆锥的高为5,底面圆的半径为,它的顶点和底面的圆周都在同一个球的球面上,则该球的表面积为()A. B. C. D.【答案】B【解析】设球的半径为R,则∵圆锥的高h=5,底面圆的半径r=,∴R2=(R﹣h)2+r2,即R2=(R﹣5)2+5,解得:R=3,故该球的表面积S=4πR2=36π,故选:B10. 定义在上的函数的导函数无零点,且对任意都有,若函数在上与函数具有相同的单调性,则的取值范围是()A. B. C. D.【答案】A【解析】∵定义在R上的函数f(x)的导函数f′(x)无零点,∴函数f(x)是单调函数,令f(x)+x3=t,则f(x)=t﹣x3,f′(x)=﹣3x2≤0在[﹣1,1]恒成立,故f(x)在[﹣1,1]递减,结合题意g(x)=﹣x3+t﹣kx在[﹣1,1]递减,故g′(x)=﹣3x2﹣k≤0在[﹣1,1]恒成立,故k≥﹣3x2在[﹣1,1]恒成立,故k≥0,故选:A.11. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为()A. B. C. D.【答案】C【解析】由已知中的三视图可得:该几何体是一个三棱锥与半圆柱的组合体,三棱锥的长宽高分别为:2,1,2,故体积为:,半圆柱的底面半径为1,高为2,故体积为:π,故组合体的体积V=+π,故选:C。

12. 函数,其中为自然对数的底数,若存在实数使成立,则实数的值为()A. B. C. D.【答案】D【解析】令f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,令g(x)=x﹣ln(x+2),g′(x)=1﹣ ,故g(x)=x﹣ln(x+2)在(﹣2,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,g(x)有最小值﹣1﹣0=﹣1,而e x﹣a+4e a﹣x≥4,(当且仅当e x﹣a=4e a﹣x,即x=a+ln2时,等号成立);故f(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln2=﹣1,即a=﹣1﹣ln2.故选:D.点睛:这个题目考查的是函数与方程的综合应用。

其中函数的零点问题等价于方程的根的问题,函数图象的交点的问题,这三个方法可以互相转化。

研究这类题目,要注意观察表达式的特点,这个题目中右侧函数是对勾形式的,求最值较为好求,先分析题目特点分析解题方法,再动笔,不要上来就写。

第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数,且,则的值为________.【答案】【解析】f(x)=2cos(+x)=﹣2sinx,函数f(x)为奇函数,又f(﹣a)=,∴f(a)=﹣f(﹣a)=-.故答案为:-.14. 设函数,若,则的值为_________.【答案】3【解析】若a>2,由f(a)=9,得2a+1=9,得a=3,若0<a≤2,由f(a)=9,得log2a+4=9,得a=32,舍去.综上a=3,故答案为:3.15. 已知函数,若,则的取值范围是__________.【答案】【解析】x>0时,f(x)在(0,+∞)递增,而f(﹣x)=f(x),f(x)是偶函数,故f(x)在(﹣∞,0)递减,若f(x﹣1)>f(x),则|x﹣1|>|x|,即(x﹣1)2>x2,解得:x<,故答案为:(﹣∞,).16. 一个长、宽、高分别为1、2、3密封且透明的长方体容器中装有部分液体,如果任意转动该长方体,液面的形状都不可能是三角形,那么液体体积的取值范围是__________. 【答案】【解析】长方体ABCD﹣EFGH,若要使液面不为三角形,则液面必须高于平面EHD,且低于平面AFC;而当平面EHD平行水平面放置时,若满足上述条件,则任意转动该长方体,液面的形状都不可能是三角形;所以液体体积必须大于三棱锥G﹣EHD的体积,该棱锥的体积为长方体的故体积为1.并且小于长方体ABCD﹣EFGH体积﹣三棱柱B﹣AFC体积,该几何体的体积为长方体的,即为5.故答案为:。

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数的最大值为.(1)求的值;(2)若方程在内有两个零点,求的取值范围.【答案】(1);(2).【解析】试题分析:(1)利用降幂公式及辅助角公式化简,结合函数f(x)=sinxcosx﹣cos2x+a 的最大值为即可求得a值;(2)由题意可得函数f(x)的图象和直线y=﹣m﹣1在x∈上有两个不同交点,数形结合得答案.(1)由,得的最大值为故.(2)方程即所以因为方程在内有两个零点,所以直线与函数的图象在内有两个交点,因为,所以,结合图象可得的取值范围是.18. 设,其中.(1)求证:曲线在点处的切线过定点;(2)若函数在上存在唯一极值,求正数的取值范围.【答案】(1)证明见解析;(2).【解析】试题分析:(Ⅰ)先求导,根据导数和几何意义即可求出切线方程,再根据方程求出过定点,即可证明;(2)求出函数的导数,由已知条件知道导函数有唯一的零点,结合零点存在定理,可得f′(﹣1)•f′(1)<0,解出不等式求并集即可。

(1)因为所以,又,所以曲线在点处的切线方程为,即,所以曲线在处的切线过定点.(2)因为,当,函数与在上都是增函数,所以在上是增函数,因为函数在上存在唯一极值,所以即所以所以正数的取值范围是.19. 如图,在中,角所对的边分别为,,它的面积.(1)求的值;(2)若是边上的一点,,求的值.【答案】(1);(2).【解析】试题分析:(1)由正弦定理得到边ac的关系,再根据三角形面积公式得到,即可求出正弦值;(2)根据正弦定理得到,再根据余弦定理得到,所以或,结合第一问,求出最后结果。

(1)因为,所以,由正弦定理得,因为所以(2)因为,所以,在中,由正弦定理得,所以由余弦定理得,所以或,因为是边上的一点,所以,因为,所以,所以.点睛:这个题目考查的是正余弦定理在解三角形中的应用。

在三角形中知道两角一边,构造方程可以考虑正弦定理,较为简单。

三角形中已知两边和夹角考虑余弦定理较为简单,两边和其中一个对角,考虑正弦定理较为简单。

选择合适的方法对于解决三角形问题是非常重要的。

20. 如图,在四棱锥中,底面是梯形,,,,,侧面底面.(1)求证:平面平面;(2)若与底面所成角为,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】试题分析:(1):取AB中点M,连接DM,可得DB⊥AD又侧面SAD⊥底面ABCD,可得BD⊥平面SAD,即可得平面SBD⊥平面SAD(2)以D为原点,DA,DB所在直线分别为x,y轴建立空间直角坐标系,求出设面SCB的法向量为:,面SBD的法向量为.利用向量即可求解.(1)因为,,所以,是等腰直角三角形,故,因为,,所以∽,,即,因为侧面底面,交线为,所以平面,所以平面平面.(2)过点作交的延长线于点,因为侧面底面,所以底面,所以是底面与底面所成的角,即,过点在平面内作,因为侧面底面,所以底面,如图建立空间直角坐标系,设,,则,,设是平面法向量,则取,设是平面的法向量,则取,所以二面角的余弦值为.21. 已知函数.(1)讨论的单调性;(2)当时,若方程有两个相异实根,且,证明:. 【答案】(1)答案见解析;(2)证明见解析.【解析】试题分析:(1)对原函数求导,根据导函数的正负得到函数的单调区间。

相关文档
最新文档