直棱柱和正棱锥的侧面积
棱柱、棱锥、棱台和球的表面积 PPT课件 人教课标版

2.正棱锥的表面积等于正棱锥的侧面积
与底面积之和.
三. 正棱台的表面积 1中.上正底棱面台的的周侧长面为积c’是,S下= 底12 (面c+的c’)周·h长’,为其c, 斜高为h’.
a'
h h'
a
三. 正棱台的表面积 1中.上正底棱面台的的周侧长面为积c’是,S下= 底12 (面c+的c’)周·h长’,为其c, 斜高为h’.
•
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
如果斜棱柱的侧棱长为l,直截面的周长 为c’,则其侧面积的计算公式就是
S侧=c’·l.
二.正棱锥的表面积 1. 正棱锥的侧面积等于它的底面周长和斜 高a为乘底积面的正一多半边,形即的S边正棱长锥,侧=底12 面n周a·h长’.为其c中, 斜高为h’,
h h'
a
二.正棱锥的表面积
h h' a
二.正棱锥的表面积 1. 正棱锥的侧面积等于它的底面周长和斜 高a为乘底积面的正一多半边,形即的S边正棱长锥,侧=底12 面n周a·h长’.为其c中, 斜高为h’,
解:正棱锥的高PO,斜 高PE,底面边心距OE 组成直角三角形。
D
因为OE=2, ∠OPE=30°, A
P
C
O
E
B
所以斜高 PE OE 2 4
sin30 0.5
因此S侧=
ห้องสมุดไป่ตู้
1 2
ch’=32(cm2)
P
S全=S侧+S底=48(cm2)
D
C
O
E
A
B
例3. 如图所示是一个容器的盖子,它是用 一个正四棱台和一个球焊接而成的。球的 半径为R,正四棱台的两底面边长分别为 3R和2.5R,斜高为0.6R;
几何体面积和体积公式

几何体面积和体积公式一、棱柱。
1. 直棱柱侧面积。
- 公式:S_直棱柱侧=Ch(其中C为底面多边形的周长,h为棱柱的高)。
2. 棱柱的体积。
- 公式:V = Sh(其中S为棱柱的底面积,h为棱柱的高)。
二、棱锥。
1. 正棱锥侧面积。
- 公式:S_正棱锥侧=(1)/(2)Ch'(其中C为底面多边形的周长,h'为正棱锥的斜高)。
2. 棱锥的体积。
- 公式:V=(1)/(3)Sh(其中S为棱锥的底面积,h为棱锥的高)。
三、棱台。
1. 正棱台侧面积。
- 公式:S_正棱台侧=(1)/(2)(C + C')h'(其中C、C'分别为棱台上下底面多边形的周长,h'为正棱台的斜高)。
2. 棱台的体积。
- 公式:V=(1)/(3)h(S+√(SS')+S')(其中h为棱台的高,S、S'分别为棱台的上下底面积)。
四、圆柱。
- 公式:S_圆柱侧=2π rh(其中r为底面半径,h为圆柱的高)。
2. 圆柱的表面积。
- 公式:S = 2π r(r + h)(其中r为底面半径,h为圆柱的高)。
3. 圆柱的体积。
- 公式:V=π r^2h(其中r为底面半径,h为圆柱的高)。
五、圆锥。
1. 圆锥侧面积。
- 公式:S_圆锥侧=π rl(其中r为底面半径,l为圆锥的母线长)。
2. 圆锥的表面积。
- 公式:S=π r(r + l)(其中r为底面半径,l为圆锥的母线长)。
3. 圆锥的体积。
- 公式:V=(1)/(3)π r^2h(其中r为底面半径,h为圆锥的高)。
六、圆台。
1. 圆台侧面积。
- 公式:S_圆台侧=π(r + r')l(其中r、r'分别为圆台上下底面半径,l为圆台的母线长)。
2. 圆台的表面积。
- 公式:S=π(r^2+r'^2+rl + r'l)(其中r、r'分别为圆台上下底面半径,l为圆台的母线长)。
- 公式:V=(1)/(3)π h(r^2+rr'+r'^2)(其中h为圆台的高,r、r'分别为圆台上下底面半径)。
高中数学必修2《简单几何体的侧面积》

作业: 1、P49面T10 2、预习:7.2节:体积 3、阅读报纸(见晚自习布置)
探索思考题:
正六棱柱 ABCDEF A1B1C1D1E1F1 的各棱 长均为1,求一只蚂蚁从点 A1沿表面爬 到点D时的最短路程。
1
探索思考题:见讲与练P31面例题5
二、(1)直棱柱的侧面积
h
直棱柱的侧面展开图是矩形
s ch 直棱柱侧
(2)正棱锥的侧面积
正棱锥的侧面展开图是 一些全等的等腰三角形
s 1 ch'
正棱棱锥
2
h'
(3)正棱台的侧面积
正棱台的侧面展开 图是全等的等腰梯形
s 1 (c c')h'
正棱棱台
2
h'
例1 一个圆柱形锅炉,底面直径 d =1m, 高h =2.3m.求锅炉的表面积(保留2个有效
(2)圆锥的侧面积:
圆锥的侧面展开图是扇形
S圆锥侧= rl
(3)圆台的侧面图是扇环
s (r r )l
圆台侧
1
2
问题1:如何推导圆台侧面积公式?
问题2:将圆柱、圆锥、圆台的侧面积 公式进行类比,它们有什么联系和区别?
棱柱、棱锥、棱台都是由多个平面图 形围成的几何体,它们的侧面展开图是什 么?如何计算它们的侧面积?
练习:p45
1.已知正六棱柱的高为h,底面边长为 a,求表面积。
2.从长方体一个顶点出发的三个面的面积分别为6,8, 10,求它的对角线的长。
3.正四棱台的上、下底面边长分别是3,6,其侧面积 等于两底面积之和,则其高和斜高分别是多少?
4.要对一批圆锥形实心零部件的表面进行防腐处理, 每平方厘米的加工处理费为0.15元。已知圆锥底面直径与 母线长相等,都等于5 cm,问加工处理1000个这样的零 件,需加工处理费多少元?(精确到0.01元)
直棱柱和正棱锥的侧面积公开课

⑨
上图中直棱柱有:
;正棱锥有:
.
立 立体几何 体 立体几何 立体几何 几 何 9.4.3 直棱柱和正棱锥的侧面积
1、把棱柱、棱锥的侧面沿一条侧棱剪开后展 在一个平面上所得的图形,叫做它们的侧面展 开图,侧面展开图的面积就是他们的侧面积.
S直棱柱侧=ch
练习一 一个正三棱柱的底面是边长为5的正三角形, 侧棱长为4,则其侧面积为 ______.
S
则在Rt△SOE中,
SE2=SO2+OE2=16+4=20, 所以 SE= 20 2 5 S正棱锥侧= ch . A
D
O B
C
E
1 × 4× 4 × 2 5 2 . =16 5
=
棱柱、棱锥都是由多个平面图形围成的 几何体,它们的侧面展开图还是平面图形, 计算它们的全面积就是计算它的各个侧面面 积和底面面积之和.
S直棱柱侧=ch
例
1 1 S 正棱锥侧= nah ch ' 2 2
一个正四棱锥 S-ABCD 的高 SO 和底面边长都是4,如图, 求它的全面积.
解:过点 S 作 SE BC 于点 E,连结 OE.
S
则在Rt△SOE中,
SE2=SO2+OE2=16+4=20, 所以 SE= 20 2 5 S正棱锥侧= ch . A
1 1 S 正棱锥侧= nah ch ' 2 2
练习二 侧面积.
正三棱锥底面边长为6 ,斜高是4,求棱锥的
S直棱柱侧=ch
例
1 1 S 正棱锥侧= nah ch ' 2 2
一个正四棱锥 S-ABCD 的高 SO 和底面边长都是4,如图, 求它的侧面积.
解:过点 S 作 SE BC 于点 E,连结 OE.
简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。
棱柱、棱锥、棱台和球的表面积

(A)2:π (B)3:π
(C)4:π (D)6:π
解得AO1=20cm,
BO2=7cm. 设OO1=x, 则OO2=x+9.
O2 O1 O
B A
练习题:
1. 将一个边长为a的正方体,切成27个全 等的小正方体,则表面积增加了( B )
(A)6a2
(C)18a2
(B)12a2
(D)24a2
2. 在正方体的八个顶点中,有四个恰好是 正四面体的顶点,则正方体的表面积与此
棱柱、棱锥、棱台和球的表面积
一、直棱柱、正棱锥、正棱台的表面积
• 直棱柱: 侧棱与底面垂直的棱柱。 • 正棱锥: 底面是正多边形,顶点在过底面中心且 与底面垂直的直线上。
• 分析直六棱柱和正四棱锥的展开图
1、S直棱柱侧=ch.
• 直棱柱的侧面积等于它的底面周长和高的乘积。
h
h
c
2、S正棱锥侧=
2
Q1 2 Q2 a,,∴Q2+Q2=4a2b2, 1 2
2 ∴S 侧=4ab=2 Q2+Q2. 1
2 答案:2 Q2+Q2 1
例3. 在球心同侧有相距9cm的两个平行截 面,它们的面积分别为49πcm2和400π cm2, 求球的表面积. 解:由截面圆的面积分别 是49πcm2和400π cm2,
A D O B E P
C
所以斜高
因此S侧=
OE 2 PE 4 sin 30 0.5
1 2
ch’=32(cm2)
S全=S侧+S底=48(cm2)
P
D
例2.直平行六面体底面是菱形,两个对角 面的面积分别为Q1和Q2,则此平行六面体 的侧面积为________.
解析: 设侧棱为 b, 底面边长为
课件7:1.1.6 棱柱、棱锥、棱台和球的表面积

问题 4 正棱台的侧面积除了用展开图的方法求外,你还有其它方法吗? 答 可以用求两个正棱锥侧面积之差的方法得出. 问题 5 棱台的表面积或全面积如何求? 答 棱台的表面积或全面积等于侧面积与底面积的和.
探究点三 圆柱、圆锥、球的表面积 问题 1 如何根据圆柱的展开图,求圆柱的表面积? 答 图柱的侧面展开图是矩形,长是圆柱底面圆周 长,宽是圆柱的高(母线), 设圆柱的底面半径为 r, 母线长为 l, 则有:S 圆柱侧=2πrl,S 圆柱表=2πr(r+l), 其中 r 为圆柱底面半径,l 为母线长.
例 2 如图所示是一个容器的盖子,它是用一 个正四棱台和一个球焊接而成的,球的半径 为 R.正四棱台的两底面边长分别为 3R 和 2.5R, 斜高为 0.6R: (1)求这个容器盖子的表面积(用 R 表示,焊接处对面积的影响忽略 不计); (2)若 R=2 cm,为盖子涂色时所用的涂料每 0.4 kg 可以涂 1 m2,计 算为 100 个这样的盖子涂色约需涂料多少千克(精确到 0.1 kg)
1.1.6 棱柱、棱锥、棱台和球的表面积
【学习目标】
1.理解棱柱、棱锥、棱台和球的表面积的概念,了解它们的侧面 展开图. 2.掌握直棱柱、正棱锥、正棱台的表面积公式,并会求它们的表 面积. 3.掌握球的表面积公式并会求球的表面积.
【知识梳理】
1.直棱柱的侧面积公式 S= ch ,其中 c 为底面多边形的周长, h 为棱柱的高,用语言可叙述为直棱柱的侧面积等于它 的 底面周长和高的乘积 . 2.正棱锥的侧面积公式 S= 12nah′= 12ch′,其中底面边长为 a,c 为底面多边形的周长,h′为棱锥的斜高,用语言可叙述为 正棱锥的侧面积等于它的 底面周长和斜高乘积的一半 .
跟踪训练 1 已知棱长为 a,各面均为等边三角形的四面体 S-ABC,
棱柱、棱锥、棱台的表面积(王永亮 莒县一中)

已知正四棱锥底面正 方形的边长为4cm, 高与斜高的夹角为 35°(如图),求正 四棱锥的侧面积与全 面积(单位:cm2, 精确到0.01).
C
答
案
P D O B E C
解:正四棱锥的高,斜高, 底面边心距组成直角POE. OE=2cm OPE=35 因为OE=2cm,∠OPE=35° 所以 斜高PE=OE/sin35° A =2/0.574≈3.49(cm) 因此 S棱锥侧=1/2ch' =1/2×4×3.49×4=27.92(cm2) S棱锥全=27.92+16=43.92(cm2)
直棱柱的表面积
设棱柱的高为h,底面多边形的周长为c, 则得到直棱柱的侧面面积计算公式:
S直棱柱侧面积 =ch
即直棱柱的侧面积等于它的底面周 长和高的乘积.
* 棱柱的表面积是正三棱锥的展 开图. 正棱锥的侧面展开图 是一些全等的等腰三 角形,底面是正多边 形,如果设它的底面 边长为a,底面周长 为c,斜高为h' .
*
棱台的表面积或全面积等于侧面积与 底面积的和.
思考题
联系棱柱,棱锥,棱台的几 何图形间的转化过程,思考 是否能由棱台的侧面积公式 得到棱柱,棱锥的侧面积公 式.
想一想
观察圆柱,圆锥,圆台的展开图,思考计 算圆柱,圆锥,圆台侧面积公式.
圆柱展 开图
圆锥展 开图
圆台展 开图
例
题
P D O A B
正n棱台的侧面展开图是n个全等的等腰梯 形,设棱台下底面边长为a,周长为c , 上底面边长为a',周长为c',斜高为 h',可以得出正n棱台的侧面积公式: S 正棱台侧 =n·1/2(a+a')h'=1/2(n a+na')h'=1/2(c+c')h'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱的侧面展开图是什么?如何计算它的侧面积?
S直棱柱侧=ch
h c
正棱柱的侧面展开图
练习一 一个正三棱柱的底面是边长为5的正三角形,侧棱长为4, 则其侧面积为 ______.
棱锥的侧面展开图是什么?如何计算它的侧面积?
1 1 S 正棱锥侧= nah ch ' 2 2
侧面展开 h h
c
练习二
正三棱锥底面边长为6 ,斜高是4,求棱锥的侧面积.
例
一个正四棱锥 S-ABCD 的高 SO 和底面边长都是4,如图, 求它的侧面积.
解:过点 S 作 SE BC 于点 E,连结 OE.
S
则在Rt△SOE中,
SE2=SO2+OE2=16+4=20, 所以 SE= 20 2 5 S正棱锥侧= 0.5ch . A
D
O B
C
1 =2
=
E
× 4× 4 × 2 5 16 5 .
练习三
设计一个正四棱锥型冷水塔塔顶,高是0.85 m,底面的
边长是1.5 m,制造这种塔顶需要多少平方米铁板?
棱柱、棱锥都是由多个平面图形围成的 几何体,它们的侧面展开图还是平面图形, 计算它们的全面积就是计算它的各个侧面面 积和底面面积之和.
解法二:制作管身所需的平板下料面积为 5×10×30=1 500(cm2).
在初中已经学过了正方体和长方体的表面积,你知 道正方体和长方体的展开图与其表面积的关系吗?
几何体表面积 空间问题
展开图
平面图形面积
平面问题
直棱柱、正棱锥都是由多个平面图形围成的几何体, 它们的展开图是什么?如何计算它们的测面积?
立 立体几何 体 立体几何 立体几何 几 何 9.4.3 直棱柱和正棱锥的侧面积
(1)矩形面积公式:
S=a b
.
1 S ah (2)三角形面积公式: 2 3 2 S a 正三角形面积公式: 4
(3)圆的面积公式: (4)圆周长公式: (5)扇形面积公式: S= r2 C=2 r .
.
.
. .
(6)梯形面积公式:
1 S rl 2 1 S ( a b) h 2
.
某工厂有一个排风管,管身为中空的正五棱柱,尺寸 如图所示.计算出制作管身所需的平板下料面积.(不考 虑排风管的壁厚)
30cm
10cm 10cm
10cm
10cm
10cmபைடு நூலகம்
10cm
解: 所求排风管一个侧面的面积为 解法一: 10×30=300(cm2). 那么制作管身所需的平板下料面积为 5×300=1 500(cm2).
h c
S直棱柱侧=ch
侧面展开 h h
c
1 1 S 正棱锥侧= nah ch ' 2 2
必做题: 教材P145,练习 B 组第 2 题. 选做题: 教材P145,练习 B 组第 1题.