18.4第一课时 反比例函数概念

合集下载

教学课件:第1课时-反比例函数

教学课件:第1课时-反比例函数
Fra bibliotek学习技巧
数形结合
利用数形结合的方法,通 过图像来理解反比例函数 的性质和变化规律。
归纳总结
对反比例函数的图像、性 质、应用进行归纳总结, 形成完整的知识体系。
善于类比
通过与其他函数的类比, 加深对反比例函数的理解。
学习反比例函数的注意事项
注意定义域和值域
与其他知识的结合
反比例函数的定义域和值域是有限的, 需要注意这一点在解题中的应用。
解析式与几何意义的区别
01
解析式是函数的一种数学表达形 式,通过解析式可以计算出任意 点的函数值,但不能直观地看出 函数的图形。
02
几何意义则可以直观地展示函数 的图形,但无法直接通过图形计 算出任意点的函数值。
解析式与几何意义的综合应用
在解决实际问题时,需要将解析式与几何意义结合起来,通过解析式计算出函数 值,再结合几何意义理解函数的性质和变化规律。
然而,在研究函数的图像和性质时,可以通过绘制反比例函 数的图像来了解其与二次函数的差异。例如,反比例函数的 图像是关于原点对称的,而二次函数的图像则取决于a的符号 和值。
与幂函数的联系
幂函数是形如y=x^n的函数,其中n是实数。当n<0时, 幂函数可以转化为反比例函数的形式。
例如,当n=-1时,幂函数y=1/x可以转化为反比例函数的 形式。此外,幂函数和反比例函数在图像和性质方面也有 一些相似之处。例如,当n<0时,幂函数的图像也是关于 原点对称的。
在经济中的应用
供需关系
在经济学中,商品的价格与供应量、 需求量之间存在反比例关系。当供应 量增加时,价格下降;反之,当供应 量减少时,价格上升。
投资回报
投资回报与投资风险之间也存在反比 例关系。随着投资风险的增加,投资 回报率通常会相应降低。

反比例函数知识点

反比例函数知识点

反比例函数知识点反比例函数是一种特殊的函数形式,它描述了两个变量之间的关系。

其特点是当一个变量的值增加时,另一个变量的值会减小,反之亦然。

在数学中,反比例函数通常用一个方程表示,形式为y=k/x,其中k是一个常数。

在本文中,我们将探讨一些与反比例函数相关的知识点。

一、反比例函数的定义反比例函数是一种形如y=k/x的函数形式。

其中,k是一个常数,被称为反比例函数的比例常数。

在反比例函数中,变量x和y的变化满足如下关系:当x增加时,y减小;当x减小时,y增加。

二、反比例函数的图像和性质反比例函数的图像是一条直线,经过原点(0,0)。

该函数的图像与坐标轴都有一个渐近线,与x轴共轭于y轴,与y轴共轭于x轴。

同时,反比例函数的图像在第一象限和第三象限中是上升的,即从左下到右上。

三、反比例函数的图像和实际应用反比例函数的图像常常出现在实际问题中,如物理、经济等领域。

例如,某物体的速度与其所受的力成反比,即速度越大,所受的力越小,反之亦然。

又如,在某种化学反应中,反应速率与溶液中的浓度成反比。

这些实际问题可以通过反比例函数来表示和解决。

四、反比例函数的性质和应用由于反比例函数的性质和图像特点,反比例函数在实际问题中有许多应用。

首先,反比例函数可以用来描述两个变量之间的关系,例如速度和力的关系、反应速率和浓度的关系等。

其次,反比例函数可以用来解决一些实际问题,例如求解未知变量的值或优化问题。

五、反比例函数的变形除了常见形式的反比例函数y=k/x,还有其他形式的反比例函数。

例如,y=k/(x-a)、y=(k+x)/(k-x)等。

这些变形形式的反比例函数在实际问题中也有广泛应用,例如电路中的电阻和电流的关系等。

六、反比例函数的应用举例反比例函数的应用非常广泛。

下面以几个具体的实例来说明。

例1:某车辆以恒定的速度行驶,当行驶时间增加时,其行驶距离减小。

这个问题可以用反比例函数来描述,行驶距离与行驶时间成反比。

例2:某工厂的生产成本与产量成反比,即产量越大,生产成本越低,反之亦然。

九年级反比例函数知识点

九年级反比例函数知识点

九年级反比例函数知识点反比例函数是数学中的一种特殊函数类型,它的图像呈现出一条直线,并且函数的定义域和值域都不包括零。

在九年级学习数学的过程中,反比例函数是一个重要的知识点。

本文将为大家介绍九年级反比例函数的相关知识。

一、反比例函数的定义与特征反比例函数是指当自变量x变大时,函数值y变小;当自变量x变小时,函数值y变大。

可以简单地用以下形式表示:y = k/x,其中k为一个常数。

反比例函数的定义域是除了x=0之外的所有实数。

反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。

这条直线的渐进线是x轴和y轴,即当x趋近于正无穷或者负无穷时,函数值y趋近于零。

二、反比例函数的性质与运算1. 曲线的平移:若y = k/x关于y轴平移h个单位,则函数变为y = k/(x - h)。

2. 曲线的伸缩:若y = k/x的k值乘以a,则函数变为y = ak/x。

当a>1时,图像在x轴方向上被压缩;当0<a<1时,图像在x轴方向上被展开。

3. 曲线的关于y轴的对称:若y = k/x关于y轴对称,则函数变为y = -k/x。

4. 曲线的关于x轴的对称:若y = k/x关于x轴对称,则函数变为y = -k/x。

三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,下面以几个例子来说明:1. 比例尺:地图上的比例尺就是一个反比例函数。

比如地图上标注1cm代表的实际距离为1km,这个比例尺可以表示为y = 1/x。

2. 速度与时间:当一辆车以恒定的速度行驶时,车辆的速度与时间呈现出反比例关系。

速度越大,所用的时间越短,可以用反比例函数来表示。

3. 某商品的价格与销售数量:在市场中,某商品的价格与销售数量通常是呈反比例关系的。

价格越高,销售数量越小,可以用反比例函数来描述。

四、反比例函数的图像与解析式反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。

反比例函数第一课时课件

反比例函数第一课时课件
由于反比例函数的定义域不包括0,因此其图像在x轴和y轴上均无交点。
渐近线
反比例函数的图像会无限接近坐标轴,但永远不会与坐标轴相交。这两条无限 接近的线被称为渐近线。
与其他直线位置关系
01
与直线的交点
02
与直线的平行关系
反比例函数图像可以与直线相交,交点个数取决于直线的斜率和截距 。
当直线的斜率与反比例函数在某点的切线斜率相等时,该直线与反比 例函数图像在该点相切,即平行。
02
性质
03
反比例函数的定义域是 x ≠ 0 的所有实数。
04
反比例函数的值域是 y ≠ 0 的所有实数。
05
反比例函数在其定义域内是连续的。
06
反比例函数在其定义域内是可微的。
图像特征
反比例函数的图像是一条双曲线, 该曲线以原点为中心,分布在两个
象限内。
当 k > 0 时,双曲线的两支分别位 于第一象限和第三象限;当 k < 0 时,双曲线的两支分别位于第二象
03
将 $t$ 的值代回 $xy = t$, 解得 $x$ 和 $y$ 的值。
方程组法
根据已知条件列方程 组,包含反比例函数 和其他相关方程。
将求得的 $x$ 和 $y$ 的值代入反比例 函数式,验证是否符 合题意。
解方程组,求得 $x$ 和 $y$ 的值。
04
典型例题解析
求解反比例函数表达式
05
课堂互动环节
学生自主提问
提问1
什么是反比例函数?它与正比例函数有 何区别?
提问2
反比例函数的图像是怎样的?有什么特 征?
提问3
如何判断一个函数是否为反比例函数?
提问4
反比例函数在实际生活中有哪些应用?

反比例函数(基础)知识讲解

反比例函数(基础)知识讲解

反比例函数(基础)【学习目标】1. 1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质. 【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例即xy k =,或表示为kyx =,其中k 是不等于零的常数是不等于零的常数.. 一般地,一般地,形如形如ky x=(k 为常数,0k ¹)的函数称为反比例函数,的函数称为反比例函数,其中其中x 是自变量,y 是函数,定义域是不等于零的一切实数是函数,定义域是不等于零的一切实数. .要点诠释:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ¹.故函数图象与x 轴、y 轴无交点;轴无交点;(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件这一条件. .(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式,从而得到反比例函数的解析式. .要点二、确定反比例函数的关系式 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,的对应值或图象上的一个点的坐标,即可求出即可求出k 的值,从而确定其解析式从而确定其解析式. .用待定系数法求反比例函数关系式的一般步骤是:用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为:k y x=(0k ¹);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程; (3)解方程求出待定系数k 的值;的值; (4)把求得的k 值代回所设的函数关系式ky x= 中. 要点三、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴标轴. .要点诠释:(1)若点)若点((a b ,)在反比例函数ky x=的图象上,则点的图象上,则点((a b --,)也在此图象上,所以反比例函数的图象关于原点对称;上,所以反比例函数的图象关于原点对称; (2)在反比例函数(k 为常数,0k ¹) ) 中,由于中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.轴.2、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、双曲线的两个分支分别位于第一、三象限,三象限,在每个象限内,y 值随x 值的增大而减小;值的增大而减小;(2)如图2,当0k <时,时,双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、四象限,四象限,四象限,在每个象限内,在每个象限内,y 值随x 值的增大而增大;值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;的符号决定的;反过来,反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号的符号. . 要点四、反比例函数()中的比例系数k 的几何意义过双曲线x ky =(0k ¹) ) 上任意一点作上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线xk y =(0k ¹) ) 上任意一点作一坐标轴的垂线,上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的的垂线和两坐标轴围成的面积始终是不变的. . 【典型例题】类型一、反比例函数的定义1、在下列函数关系式中,哪些函数表示y 是x 的反比例函数?的反比例函数?(1)5xy =; ((2)3y x =; ((3)23y x =; ((4)12xy =; ((5)21y x =-; (6)2y x=-; ((7)12y x -=; ((8)5a y x -=(5a ¹,a 是常数)是常数)【答案与解析】 解:根据反比例函数(0)k y k x=¹的形式及其关系式xy k =,1y kx -=,可知反比例函数有:有:(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)..【总结升华】根据反比例函数的概念,必须是形如k y x=(k 为常数,0k ¹)的函数,才是反比例函数.如(2)(3)(6)(8)(2)(3)(6)(8)均符合这一概念的要求,均符合这一概念的要求,所以它们都是反比例函数.但还要注意ky x=(k 为常数,0k ¹)常见的变化形式,如xy k =,1y kx -=等,所以(4)(7)(4)(7)也是反比例函数.在也是反比例函数.在也是反比例函数.在(5)(5)(5)中,中,y 是()1x -的反比例函数,而不是x 的反比例函数.例函数.(1)(1)(1)中中y 是x 的正比例函数.的正比例函数.类型二、确定反比例函数的解析式2、已知正比例函数y kx =和反比例函数3y x=的图象都过点A(m ,1) 1) .求此正比.求此正比例函数的关系式及另一个交点的坐标.例函数的关系式及另一个交点的坐标. 【答案与解析】解:解: 因为3y x=的图象经过点A(m ,1)1),则,则31m =,所以m =3.把A(3A(3,,1)1)代入代入y kx =中,得13k =,所以13k =. 所以正比例函数关系式为13y x =. 由1,33,y x y x ì=ïíï=ïî得得3x =±. 当3x =时,1y =;当3x =-时,1y =-.所以另一个交点的坐标为.所以另一个交点的坐标为((-3,-,-1)1)1).. 【总结升华】确定解析式的方法是特定系数法,由于正比例函数y kx =中有一个待定系数,因此只需一对对应值即可.因此只需一对对应值即可.举一反三:【变式】已知y 与x 成反比,且当6x =-时,4y =,则当2x =时,y 值为多少?值为多少? 【答案】 解:设ky x =,当6x =-时,4y =, 所以46k=-,则k =-=-242424,,所以有24y x-=.当2x =时,24122y -==-. 类型三、反比例函数的图象和性质3、在函数21a y x--=(a 为常数)的图象上有三点为常数)的图象上有三点((11x y ,),(22x y ,),(33x y ,),且1230x x x <<<,则123y y ,y ,的大小关系是(的大小关系是( )). A .231y y y << B B..321y y y << C C..123y y y << D D..312y y y << 【答案】D ; 【解析】解:当0k <时,反比例函数的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.此题中需要注意的是大.此题中需要注意的是((11x y ,),(22x y ,),(33x y ,)不在同一象限内.因为221(1)0k a a =--=-+<,所以函数图象在第二、四象限内,且在第二、四象限内,y 随x 的增大而增大.因为12x x <,所以12y y <.因为33(,)x y 在第四象限,而11(,)x y ,22(,)x y 在第二象限,所以31y y <.所以312y y y <<.【总结升华】已知反比例函数ky x=,当k >0,x >0时,y 随x 的增大而减小,需要强调的是x >0;当k >0,x <0时,y 随x 的增大而减小,需要强调的是x <0.这里不能说成当k >0,y 随x 的增大而减小.例如函数2y x =,当x =-=-11时,y =-=-22,当x =1时,y =2,自变量由-,自变量由-11到1,函数值y 由-由-22到2,增大了.所以,只能说:当k >0时,在第一象限内,y 随x 的增大而减小.的增大而减小.举一反三:【变式】已知2(3)m y m x-=-的图象在第二、四象限,的图象在第二、四象限,(1)(1)求求m 的值.的值.(2)(2)若点若点若点((-2,1y )、(-1,2y )、(1(1,,3y )都在双曲线上,试比较1y 、2y 、3y 的大小.【答案】解:解:(1)(1)(1)由已知条件可知:此函数为反比例函数,且由已知条件可知:此函数为反比例函数,且2130m m -=-ìí-¹î,∴,∴ 1m =.(2)(2)由由(1)(1)得此函数解析式为:得此函数解析式为:2y x=-. ∵ ( (--2,1y )、(-1,2y )在第二象限,-在第二象限,-22<-<-11,∴,∴ 120y y <<. 而(1(1,,3y )在第四象限,30y <. ∴ 312y y y << 类型四、反比例函数综合4、已知点A(0A(0,,2)2)和点和点B(0B(0,-,-,-2)2)2),点,点P 在函数1y x=-的图象上,如果△的图象上,如果△PAB PAB 的面积是6,求P 点的坐标.点的坐标. 【答案与解析】解:如图所示,不妨设点P 的坐标为00(,)x y ,过P 作PC PC⊥⊥y 轴于点C.∵ A(0 A(0,,2)2)、、B(0B(0,-,-,-2)2)2),, ∴ AB AB==4. 又∵又∵ 0||PC x =且6PABS=△,∴01||462x =,∴,∴ 0||3x =,∴,∴ 03x =±. 又∵又∵ 00(,)P x y 在曲线1y x =-上,∴ 当当03x =时,013y =-;当03x =-时,013y =.∴ P 的坐标为113,3P æö-ç÷èø或13,3æö-ç÷èø.【总结升华】通过三角形面积建立关于0x 的方程求解,同时在直角坐标系中,点到坐标轴的距离等于相应坐标的绝对值.的距离等于相应坐标的绝对值.举一反三:作AC AC⊥⊥y 轴于C ,连BC BC,则△】解:由双曲线与正比例函数y 1322AOCABCSS ==△△.A 点坐标为点坐标为((A x ,A y ),而于是1113||||2222AOCA A AASAC OC x y xy ===-=△,3A y =-,kx =得A A x y k =,所以所以反比例函数解析式为3y -=.。

反比例函数知识点梳理

反比例函数知识点梳理

反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。

通常我们把它写成y = k/x+b,其中 b 为常数。

2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。

当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。

例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。

当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。

反比例函数也不具有最大值或最小值。

4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。

例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。

5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。

这可以通过已知的点对、图像或其他信息来确定。

以上是反比例函数的知识点梳理,希望对您有所帮助。

初中数学:反比例函数的概念,真简单

初中数学:反比例函数的概念,真简单

初中数学:反比例函数的概念,真简单反比例函数是数学中一个基本的函数类型,它的特点是当自变量增大时,函数值减小;当自变量减小时,函数值增大。

下面,我们将会深入探讨反比例函数的概念以及它的相关知识点。

一、反比例函数的定义反比例函数,简称反比函数,指的是若一函数 y 与另一函数 x 成反比例关系,即 y = k/x(k为常数),则称 y 为 x 的反比函数。

其中,k 为反比例函数的比例系数,通常用正数表示。

二、反比例函数的图像特点反比例函数的图像呈现出 x 轴的非零实数的全体是定义域,y 轴的非零实数的全体是值域的形态,其图像是一个对称于第二象限和第四象限的双曲线。

三、反比例函数的性质1. 反比函数的定义域为 R - {0},值域也是 R - {0}。

2. 当 x > 0 时,反比例函数单调递减;当 x < 0 时,反比例函数单调递增。

3. 反比例函数在原点处不存在定义,但是可以趋近于无穷大或无穷小。

4. 当 x 的值增加,k 不变时 y 的值逐渐减小,表现出反比例函数的反比例关系。

四、反比例函数的应用反比例函数是数学中非常重要的函数类型,具有广泛的应用。

下面我们列举一些实际中应用反比例函数的例子:1. 银行利率:银行将存款金额与利息之间的关系建立为反比例关系,可以使用反比例函数来描述。

2. 太阳能电池板:当太阳光照射到电池板上时,电压和电流成反比例关系,可以使用反比例函数来描述。

3. 计算机处理速度:计算机的处理速度与处理任务的复杂程度呈反比例关系。

4. 等比例速度问题:有时需要研究物体在不同速度下的行驶时间,这时可以使用反比例函数来描述。

以上是反比例函数的定义、图像特点、性质及应用的详细介绍。

相信通过对反比例函数的学习,我们可以更好地理解数学中的基本概念。

反比例函数知识讲解

反比例函数知识讲解

反比例函数知识讲解具体来说,当x≠0时,反比例函数的定义域为R\{0},值域为R。

当x=0时,函数的值将无法定义,因为在分母为零的情况下,函数没有意义。

1.当x趋近于正无穷大或负无穷大时,y趋近于零。

2.当x趋近于零时,y趋近于正无穷大或负无穷大。

3.函数图像不会与坐标轴相交。

1.比例定律:在一定条件下,两个量之间的比值始终保持不变。

如果该比值为常数k,我们可以写成y=k/x的形式,其中自变量x和因变量y之间呈现出反比例关系。

2.电阻和电流关系:根据欧姆定律,电阻R与电流I之间的关系为R=k/I,其中k为电阻常数。

根据这个关系,可以推导出电压和电流之间的关系为V=kI,其中V为电阻上的电压。

3. 速度和时间关系:根据路程与时间的关系式 S = vt,可以得到时间和速度之间呈现出反比例的关系。

要求提高反比例函数的知识理解,可以进一步研究以下几个方面:1.反比例函数的图像特点:观察不同常数k值的情况下函数图像的变化情况。

通过画出函数图像来理解反比例函数的性质。

2.反比例函数的性质:研究反比例函数的性质,例如定义域、值域、单调性等。

了解函数图像的变化对应的函数性质的变化。

3.反比例函数的应用:研究反比例函数在实际问题中的应用,例如物理学、经济学、生物学等领域中的应用。

需要注意的是,在应用反比例函数的过程中,需要将模型与实际问题相结合,并针对具体问题来确定函数中的常数。

总之,反比例函数是一类重要的函数形式,具有特殊的数学特征和实际应用背景。

通过进一步的研究和探索,可以提高对反比例函数的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要求反比例函数的解析式,可通过待定系 数法求出k值,即可确定.
《探究在线》P34-P35 探究在线》 1、反比例函数 全做
18 18 (3)当y = 18时, = 2 , x
∴ x 2 = 1,即x = ±1.
利用概念解题
成正比例, 已知y=y1+y2 ,y1与x成正比例, y2与x2成反比 =2时 =0; =4.5.求 例,且x=2时,y=0;x=-1时,y=4.5.求y与x 之间的函数关系式. 之间的函数关系式.
x
8
8 是正比例函数,则 ⑵ 已知函数 y = xm -7是正比例函数 则 m = ___ ; -1 = 1 x 6 是反比例函数,则 已知函数 y = 3xm -7 是反比例函数 则 m = ___ 。
仔细想一想
写出下列各题的函数关系式,指出函数的类型: 写出下列各题的函数关系式,指出函数的类型: (1)正方形的周长 和它的一边的长 之间的关系 正方形的周长C和它的一边的长 之间的关系. 正方形的周长 和它的一边的长a之间的关系
(3)
xy = k (k ≠ 0)

反比例函数有几种等价形式: 反比例函数有几种等价形式: ≠0) (k ≠0)
-1 y=kx
k y= x
xy=k
y与x成反比例
下列关系式中的y 例1 下列关系式中的y是x的反比例函数 如果是,比例系数k是多少? 吗?如果是,比例系数k是多少?
4 (1) y = x
k2 解析:设y1 = k1 x(k1 ≠ 0),y2 = 2 (k 2 ≠ 0) x k2 则y = y1 + y2 = k1 x + 2 . x 依题意, 依题意,得
k2 2k1 + = 0 4 − k1 + k 2 = 4.5
1 k1 = − ∴ 2 k 2 = 4
1 (2) y = − 2x
y是x的反比例函数,比例系数k=4。 的反比例函数,比例系数k=4。 k=4 所以y 可以改写成 所以y是x的 1 反比例函数,比例系数k= 反比例函数,比例系数k=− 2 不具备 的形式,所以y不是x的 的形式,所以y不是x 反比例函数。 1 所以y 可以改写成 y = x ,所以y是x的反 比例函数,比例系数k=1 k=1。 比例函数,比例系数k=1。
得k =
(2).根据函数表达式完成上表. (2).根据函数表达式完成上表. 根据函数表达式完成上表
2 −2. ∴ y = − . x
已知y是 的反比例函数 的反比例函数,当 已知 是x的反比例函数 当x=2时,y=6. 时 (1)写出 与x的函数关系式 写出y与 的函数关系式 的函数关系式: 写出 (2)求当 求当x=4时y的值 的值. 求当 时 的值
xy = 2
1 y= x 5
一次函数
+3xy= −7y
0 .4 y = −6x + 3xy y = x
认真做一做! 认真做一做
在下列函数中, 是 的反比例函数的是( ⑴ 在下列函数中,y是x的反比例函数的是( C )
3 +7 (A)y = ) (B) y = x ) X+5
(C)xy = 5 ) 2 (D) y = x2 )
15 t= v
问题情境二
问题2: 学校课外生物小组的同学准备自己动手, 问题2: 学校课外生物小组的同学准备自己动手, 用旧围栏建一个面积为24平方米的矩形饲养 用旧围栏建一个面积为 平方米的矩形饲养 设它的一边长为x(米 , 场.设它的一边长为 米),求另一边的长 y(米)与x的函数关系式. 的函数关系式. 米 与 的函数关系式
所以y 所以y是x的反比例函数 比例系数k等于- 比例系数k等于-4
下列函数中哪些是反比例函数?哪些是一次函数 下列函数中哪些是反比例函数 哪些是一次函数? 哪些是一次函数
y = 3x-1 y = 3x
y = 2x 1 y= x
3 y = 2x 1 y = 3x
反比例函数
5 y = x
x y= 2
不具备 y = 比例函数。 比例函数。
k x
k y= x
1 1 y = (− ) ⋅ ( ) 2 x
(3) y = 1 − x = ( 4) xy = 1
x (5 ) y = 2
的形式,所以y不是x 的形式,所以y不是x的反
判断一下! 判断一下 下列函数哪些是正比例函数,哪些是反比例函数? 下列函数哪些是正比例函数 哪些是反比例函数? 哪些是反比例函数 1 ④ y = 2x 2 ① y = 3x-1 ② y = 2x ③y= x 3
k (1)解 设 = 因为当 x=2 时y=6,所以有 : y , x
k 6= 2 12 ∵y与x的函数关系式为 y = 与 的函数关系式为

⇒k =12
12 把 x=4 代入 y = x 12 y= =3 4
x

交流反思
本堂课,我们讨论了具有什么样的函数是 反比例函数,一般地,形如y=k/x(k是常数, k≠0)的函数叫做反比例函数 反比例函数.
C=4a
是正比例函数
(2)矩形的面积为 时,它的宽 和长 之间的关系 矩形的面积为10时 它的宽y和长 之间的关系. 和长x之间的关系 矩形的面积为
10 y= x
是反比例函数
(3)运动会的田径比赛中,运动员小王的平均速度 运动会的田径比赛中, 运动会的田径比赛中 和所用时间t之间的 是8米/秒,他所跑过的路程 和所用时间 之间的 米 秒 他所跑过的路程S和所用时间 关系. 关系 S=8t
k (1 解:)设y = 2 (k ≠ 0) x 当x = 3时,y = 2.可得: k 2 = 2 , ∴k = 18. 3 18 ∴ y与x的函数关系式是 y = 2 , 2x 4 3 3 (2)当x = 1.5 = 时, y = 18 ÷ 2 = 18 × 9 = 8. 2
⑤ y = 3x ⑥ y=
1 x
1 y = 3x ⑧ y = 3 ⑦ 2x
关系式xy+4=0中 关系式xy+4=0中y是x的反比例函数吗?若是, xy+4=0 的反比例函数吗?若是, 比例系数k等于多少?若不是,请说明理由。 比例系数k等于多少?若不是,请说明理由。
4 xy+4=0可以改写成 xy+4=0可以改写成 y = − x
24 y= x
反比例函数的定义: 反比例函数的定义
一般地, 一般地,形如
k y = (k是常Байду номын сангаас,k ≠ 0) x
反比例函数 其中k叫做比例系数. 的函数叫做反比例函数.其中 叫做比例系数 的函数叫做反比例函数 其中 叫做比例系数
反比例函数的变形形式: 反比例函数的变形形式: k (1) y = (k ≠ 0) 注意: 注意 与正比例函数 x 比较一下它们的形 式有什么不同? 式有什么不同? (2) y = kx −1 (k ≠ 0)
1 4 ∴ y与x之间的函数关系式是y = − x + 2 . 2 x
利用待定系数法求 利用待定系数法求函数的解析式 待定系数法
1 2 -4 (1).写出这个反比例函数的表达式; (1).写出这个反比例函数的表达式; 写出这个反比例函数的表达式
k y是 解:∵ y是x的反比例函数,∴ y = . x
m −2
解:由反比例函数的定义得
m−1≠ 0 m≠1 ∴m= −1 解 得 m= ±1 m −2 = −1 2 ∴ m= −1 , 函 解 式 y = − . 当 时 此 数 析 为 x
利用概念解题
已知y与 成反比例,并且当x=3时,y=2. 已知 与x2成反比例,并且当 时 . (1)求y与x的函数关系式; 的函数关系式; 求 与 的函数关系式 (2)求x=1.5时,y的值; 的值; 求 时 的值 (3)求y=18时,x的值 的值. 求 时 的值
第18章 函数及其图象 章 18.4 反比例函数
问题情境一
问题1: 小华的爸爸早晨骑自行车带小华到15千米 问题1: 小华的爸爸早晨骑自行车带小华到 千米
的镇外去赶集,回来时让小华乘公共汽车, 的镇外去赶集,回来时让小华乘公共汽车,用的 时间少了.假设两人经过的路程一样, 时间少了.假设两人经过的路程一样,而且自行 车和汽车的速度在行驶过程中都不变, 车和汽车的速度在行驶过程中都不变,爸爸要小 华找出从家里到镇上的时间和乘坐不同交通工具 的速度之间的关系. 的速度之间的关系. 设从家里到镇上的时间是t小时 小时,乘坐不同交通 设从家里到镇上的时间是t小时,乘坐不同交通 工具的速度是v千米 千米/时 可得 工具的速度是 千米 时,可得
是正比例函数
(4)王师傅要生产 个零件,他的工作效率 和工 王师傅要生产100个零件 他的工作效率P和工 个零件, 王师傅要生产 作时间t之间的关系 之间的关系. 作时间 之间的关系
100 P = t
是反比例函数
利用概念解题
为何值时, 当m为何值时,函数 y = (m − 1)x 为何值时 是反比例函数,并求出其函数解析式. 是反比例函数,并求出其函数解析式.
相关文档
最新文档