导数大题的常用找点技巧和常见模型
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。
比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。
2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。
对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。
比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。
2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。
比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
高中数学导数题解题技巧

高中数学导数题解题技巧导数是高中数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。
在解题过程中,熟练掌握导数的相关技巧是非常重要的。
本文将从常见的导数题型入手,介绍一些解题技巧,帮助高中学生更好地应对导数题。
1. 导数的定义首先,我们需要了解导数的定义。
导数表示函数在某一点处的变化率,可以用极限的概念表示。
对于函数y=f(x),在点x处的导数可以表示为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h这个定义可以帮助我们计算函数在某一点处的导数。
2. 导数的基本性质在解题过程中,我们需要掌握导数的一些基本性质。
首先是导数的线性性质,即对于函数f(x)和g(x),以及常数a和b,有:[f(x) + g(x)]' = f'(x) + g'(x)[a*f(x)]' = a*f'(x)[f(x)*g(x)]' = f'(x)*g(x) + f(x)*g'(x)这些性质可以帮助我们简化导数的计算过程。
3. 常见的导数题型接下来,我们将介绍一些常见的导数题型,并给出相应的解题技巧。
3.1 多项式函数的导数对于多项式函数f(x) = a_n*x^n + a_(n-1)*x^(n-1) + ... + a_1*x + a_0,其中a_i为常数,n为正整数,导数可以通过对每一项求导得到。
例如,对于函数f(x) = 3x^2 + 2x + 1,求导后得到:f'(x) = 6x + 2在求导过程中,注意常数项的导数为0。
3.2 指数函数的导数指数函数f(x) = a^x,其中a为正实数且不等于1,导数可以通过对指数部分求导得到。
例如,对于函数f(x) = 2^x,求导后得到:f'(x) = ln(2) * 2^x其中ln表示自然对数。
3.3 对数函数的导数对数函数f(x) = log_a(x),其中a为正实数且不等于1,导数可以通过对函数取导数得到。
导数大题的常用找点技巧和常见模型

或
【例 1】讨论函数
(1)
时,无零点.
几个经典函数模型
. 的零点个数.
,
.
(2)
时,1个零点.
,
.
(3)当
时,2个零点.
(目测),
(4)当
时,1个零点.
,其中
,其中 .
.(用到了
,单调递增.
,
.(放缩) )
【变式】(经过换元和等价变形之后均可以转化到例 1:
. ):
1.讨论 2.讨论 3.讨论
4.讨论 5.讨论 6.讨论
(放缩成双撇函数)
常用的放缩公式(考试时需给出证明过程)
,
,
,
,
,
,
(放缩成二次函数)
,
,
(放缩成类反比例函数)
,
,
,
, 第二组:指数放缩 (放缩成一次函数)
,
,
,
,
(放缩成类反比例函数)
,
,
(放缩成二次函数) 第三组:指对放缩
,
,
第四组:三角函数放缩
,
,
.
第五组:以直线
为切线的函数
,
,
,
,
.
经典模型一:
,即
,且
.
构造函数
,
.易得
,所以
单调递减.
又因为
,所以
.
下面只要证明当
时,
有两个零点即可,为此我们先证明当
时,
.
事实上,构造函数
,易得
,∴
,所以
,即
.
当
时,
其中
,
,
,所以
在
和
高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。
二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
高中数学解题方法-----导数大题的常用找点技巧和常见模型

x
min
当 时, , 0 < a <1
( ) f
( −1)
=
a e2
+
a
− e
2
+1=
a
+
ea
+ e2
e2
−
2
>0
, f
ln
3
− a
a
=
a
3 a
2 −1
+
(a
−
2)
3 a
−1
−
ln
3 a
−1
=
3 a
−1−
ln
3 a
−1
>
0
其中 , ,所以 在 和 上各有一个零点 1 −1 < ln
(2)若 f (x) 有两个零点,求a 的取值范围.
解析:( ) ( )( ) 1 f '( x) = 2ae2x + (a − 2) ex −1 = 2ex +1 aex −1
若 a ≤ 0 ,则 f '(x) < 0 恒成立,所以 f ( x) 在 R 上递减;
若 ,令 ,得 a > 0
f '( x) = 0 ex = 1 , x = ln 1 .
f (x) < 0 a > 0 min
f
(x) min
=
f
ln
1 1 a = 1− a
− ln
1 a
<0.
构造函数 g ( x) =1− x − ln x , x > 0 . 易得 g '( x) = −1− 1 < 0 ,所以 g ( x) =1− x − ln x 单调递减. x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数大题的常用找点技巧和常见模型
引子:(2017年全国新课标1·理·21)已知.
(1)讨论的单调性;
(2)若有两个零点,求的取值范围.
解析:(1)
若,则恒成立,所以在R上递减;
若,令,得.
当时,,所以在上递减;
当时,,所以在上递增.
综上,当时,在R上递减;当时,在上递减,在上递增.(2)有两个零点,必须满足,即,且.
构造函数,.易得,所以单调递减.
又因为,所以.
下面只要证明当时,有两个零点即可,为此我们先证明当时,.
事实上,构造函数,易得,∴,所以,即.当时,,
,
其中,,所以在和上各有一个零点.
加入高中数学教师研讨和资料共享群238455466 关注公众号“品数学”。