专题01 两大策略应对三角函数综合问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析版)
数学计划总结-2019年高考数学压轴题的答题技巧 精品00

2019年高考数学压轴题的答题技巧导语:一直以来高考数学压轴题都是给基础比较好的同学做的,但其实只要掌握一些技巧,学渣都能攻克数学压轴题首先同学们要正确认识压轴题压轴题主要出在函数,解几,数列三部分内容,一般有三小题。
记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。
同学们记住:心理素质高者胜!第二重要心态:千万不要分心其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。
高考时,你是不可能这么想的。
你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于现在做的题目,现在做的步骤。
现在做哪道题目,脑子里就只有做好这道题目。
现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!第三重要心态:重视审题你的心态就是珍惜题目中给你的条件。
数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。
所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。
(最新)2019年高考数学压轴题命题区间探究与突破(第一篇)专题02“三招五法”轻松破解含参零点问题学案

专题02“三招五法”轻松破解含参零点问题一.方法综述函数的含参零点问题是高考热门题型,既能很好地考查函数、导数、方程与不等式等基础知识,又能考查分类讨论、数形结合、转化与化归等思想方法,所以此类题往往能较好地体现试卷的区分度,往往出现在压轴题的位置.正因为如此,根据函数的零点情况,讨论参数的范围成为高考的难点.对于此类题目,我们常利用零点存在定理、函数的性质,特别是函数单调性(可借助于导数)探寻解题思路,或利用数形结合思想、分离参数方法来求解.具体的,(1)分类讨论参数的不同取值情况,研究零点的个数或取值;(2)利用零点存在的判定定理构建不等式求解;(3)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(4)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二.解题策略类型一“第一招”带参讨论【例1】【湖南省澧县一中2018届一轮第一次检测】已知函数f(x)=,如果函数f(x)恰有两个零点,那么实数m的取值范围为_____.【答案】【解析】分析:根据与-2,0和4的大小关系逐一判断的零点个数即可得出结论.若,则在上有2个零点0,在上无零点,符合题意;∴或.故答案为:.【指点迷津】1.根据题设要求研究函数的性质,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;2.由于函数含有参数,通常需要合理地对参数的取值进行分类讨论,并逐一求解.【举一反三】【江苏省扬州中学2019届高三10月月考】已知定义在上的函数可以表示为一个偶函数与一个奇函数之和,设若方程无实根,则实数的取值范围是_________【答案】【解析】∴p(t)=t2+2mt+m2﹣m+1.p(p(t))=[p(t)]2+2mp(t)+m2﹣m+1,若p(p(t))=0无实根,即[p(t)]2+2mp(t)+m2﹣m+1①无实根,方程①的判别式△=4m2﹣4(m2﹣m+1)=4(m﹣1).1°当方程①的判别式△<0,即m<1时,方程①无实根.2°当方程①的判别式△≥0,即m≥1时,方程①有两个实根,即②,只要方程②无实根,故其判别式,即得③,且④,∵m≥1,③恒成立,由④解得m<2,∴③④同时成立得1≤m<2.综上,m的取值范围为m<2.类型二“第二招”数形结合【例2】【2018年天津卷理】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.令,其中,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.【指点迷津】1.由两个基本初等函数组合而得的超越函数f(x)=g(x)-h(x)的零点个数,等价于方程g(x)-h(x)=0的解的个数,亦即g(x)=h(x)的解的个数,进而转化为基本初等函数y=g(x)与y=h(x)的图象的交点个数.2.先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.交点的横坐标即零点.【举一反三】【2019届同步单元双基双测AB卷】已知函数,若函数有三个零点,则实数的取值范围为____.【答案】.【解析】分析:求出函数|f(x)﹣3x的解析式,画出函数的图象,利用函数的极值,转化求解即可.当x<0时,≥6,当且仅当x=﹣1时取等号,此时﹣b>6,可得b<﹣6;当0≤x≤4时,x﹣x2≤,当x=时取得最大值,满足条件的b∈(﹣,0].综上,范围是.故答案为:.类型三“第三招”分离参数【例3】【广东省惠州市2019届10月调研】已知函数是定义在上的偶函数,且,若函数有 6 个零点,则实数的取值范围是()A. B.C. D.【答案】D【解析】函数f(x)是定义在R上的偶函数,函数F(x)=f(x)﹣m有六个零点,则当x≥0时,函数F(x)=f(x)﹣m有三个零点,令F(x)=f(x)﹣m=0,即m=f(x),②当x≥2时,f(x)=<0,且当x→+∞,f(x)→0,∵f′(x)=,令f′(x)==0,解得x=3,当2≤x<3时,f′(x)<0,f(x)单调递减,当x≥3时,f′(x)≥0,f(x)单调递增,∴f(x)min=f(3)=﹣,故f(x)在[2,+∞)上的值域为[﹣,0),∵﹣>﹣2,∴当﹣<m <0时,当x≥0时,函数F (x )=f (x )﹣m 有三个零点, 故当﹣<m <0时,函数F (x )=f (x )﹣m 有六个零点, 故选D. 【指点迷津】1.分离参数法,先将参数分离,转化成求函数值域(最值)问题加以解决;2.通过将原函数中的变参量进行分离后变形成g(x)=l(a),则原函数的零点问题化归为与x 轴平行的直线y =l(a)和函数g(x)的图象的交点问题.【举一反三】【2015年天津卷理】已知函数()()22,2,{2,2,x x f x x x -≤=->函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A . 7,4⎛⎫+∞⎪⎝⎭ B . 7,4⎛⎫-∞ ⎪⎝⎭ C . 70,4⎛⎫ ⎪⎝⎭ D . 7,24⎛⎫⎪⎝⎭【答案】D类型四 “三招五法”一题多解【例4】【2014年全国卷Ⅰ】已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A.(2,+∞) B.(-∞,-2)C.(1,+∞) D.(-∞,-1)【答案】B【解析】法一单调性法:利用函数的单调性求解由已知得,a≠0,f′(x)=3ax2-6x,令f′(x)=0,得x=0或x=2a.当a>0时,x∈(-∞,0),f′(x)>0;x∈(0,2a),f′(x)<0;x∈(2a,+∞),f′(x)>0.所以函数f(x)在(-∞,0)和2a,+∞上单调递增,在(0,2a)上单调递减,且f(0)=1>0,故f(x)有小于零的零点,不符合题意.当a<0时,x∈(-∞,2a),f′(x)<0;x∈(2a,0),f′(x)>0;x∈(0,+∞),f′(x)<0.所以函数f(x)在(-∞,2a)和(0,+∞)上单调递减,在(2a,0)上单调递增,所以要使f(x)有唯一的零点x0且x0>0,只需f(2a)>0,即a2>4,解得a<-2.法三数形结合法:转化为两曲线的交点问题求解令f(x)=0,得ax3=3x2-1.问题转化为g(x)=ax3的图象与h(x)=3x2-1的图象存在唯一的交点,且交点横坐标大于零.当a=0时,函数g(x)的图象与h(x)的图象存在两个的交点;当a>0时,如图(1)所示,不合题意;当a<0时,由图(2)知,可先求出函数g(x)=ax3与h(x)=3x2-1的图象有公切线时a的值.由g′(x)=h′(x),g(x)=h(x),得a=-2.由图形可知当a<-2时,满足题意.法四分离参数法:参变分离,化繁为简.易知x≠0,令f(x)=0,则331ax x=-,记331()g xx x=-,2'234333(1)()xg xx x x--=-+=,可知g(x)在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g(-1)=-2,画出函数大致图象如图所示,平移直线y=a,结合图象,可知a<-2.【指点迷津】1.本题的实质是函数f(x)存在唯一的零点x0∈(0,+∞),因此可利用其代数特征转化为方程有唯一的正根来构思解析,也可以从零点本身的几何特征入手,将其转化为曲线的交点问题来突破,还可以利用选项的唯一性选取特例求解.2. 函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】【2017课标3,理11】已知函数211()2()x xf x x x a e e--+=-++有唯一零点,则a=A.12-B.13C.12D.1【答案】C【解析】方法一:函数的零点满足()2112x xx x a e e--+-=-+,设()11x x g x ee--+=+,则()()211111111x x x x x x e g x eeee e---+----'=-=-=, 当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,方法二:由函数f (x )有零点,得211(2)0x x x x a ee --+-++=有解,即211()(110)x x x a e e --+--++=有解,令1t x =-,则上式可化为2(10)ttt a e e --++=,即21t tt a e e--+=. 令21t tt e e--+h(t)=,易得h (t )为偶函数, 又由f (x )有唯一零点得函数h (t )的图象与直线y =a 有唯一交点,则此交点的横坐标为0, 所以10122a -==,故选C. 方法三:由()112()02.x x f x a ee x x ⇔--+=+=-+112x x e e ≥--++,当且仅当1x =时取“=”.2221)11(x x x ≤-+=--+,当且仅当1x =时取“=”.若a >0,则112()x x a ee a ≥--++,要使f (x )有唯一零点,则必有21a =,即12a =.若a≤0,则f(x)的零点不唯一.综上所述,12a=.三.强化训练1.【2018年新课标I卷理】已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)【答案】C【解析】2.【安徽省肥东县高级中学2019届8月调研】已知函数,若函数有两个零点,则实数的取值范围是()A. B. C. D.【答案】D【解析】若函数有两个零点,则函数的图象与有且仅有两个交点,在同一坐标系内画出函数的图象与的图象如下:3.【黑龙江省2018年仿真模拟(十)】已知函数,若关于的方程有8个不等的实数根,则的取值范围是()A. B. C. D.【答案】D【解析】绘制函数的图象如图所示,令,由题意可知,方程在区间上有两个不同的实数根,令,由题意可知:,据此可得:.即的取值范围是.本题选择D选项.4.【2019届同步单元双基双测AB卷】函数的定义域为实数集,,对于任意的都有,若在区间函数恰有三个不同的零点, 则实数的取值范围是()A. B. C. D.【答案】D【解析】,由K AC=﹣,K BC=﹣,结合图象得:m∈,故选:5.【安徽省肥东县高级中学2019届8月调研】定义在上的函数,满足,且当时,,若函数在上有零点,则实数的a取值范围是()A. B. C. D.【答案】B【解析】因为当时,,所以时,所以,此时,故.所以在上的图象如图,要使函数在上有零点,只要直线与的图象有交点,由图象可得,所以使函数在上有零点,则实数的取值范围是.故选:B.6.【安徽省皖中名校联盟2019届10月联考】设函数若互不相等的实数满足则的取值范围是()A. B. C. D.【答案】B【解析】不妨设,的图像如图所示,7.【安徽省六安市舒城中学2018届仿真(三)】函数,关于方程有三个不同实数解,则实数的取值范围为( )A. B.C. D.【答案】D【解析】当时,,即则大致图象如图所示设,①当有一个根为时,,解得,此时另一个根为,满足条件②根不是时,则满足即综上所述,故实数的取值范围为故选8.【四川省双流中学2018届一模】对于函数和,设,若所有的,都有,则称和互为“零点相邻函数”.与互为“零点相邻函数”,则实数的取值范围是()A. B. C. D.【答案】D【解析】9.【2018年浙江卷】已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】 (1,4)【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数的取值范围.详解:由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为.10.【安徽省定远重点中学2019届第一次月考】函数,定义函数,给出下列命题:①;②函数是偶函数;③当a<0时,若0<m<n<1,则有F(m)﹣F(n)<0成立;④当a>0时,函数有4个零点.其中正确命题的序号为________________________ .【答案】②③④【解析】∴F(m)−F(n)<0成立.故③正确对于④,由于,且函数,∴当x>0时,函数在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x>0时,F(x)的最小值为F(1)=1,∴当x>0时,函数F(x)的图象与y=2有2个交点,又函数F(x)是偶函数,∴当x<0时,函数F(x)的图象与y=2也有2个交点,画出图象如下图:故当a>0时,函数y=F(x)−2有4个零点.所以④正确.综上可得②③④正确.。
2019年高考数学(含解析)之 三角函数与解三角形热点问题(解题指导)

三角函数与解三角形热点问题(解题指导)三年考情分析审题答题指引1.教材与高考对接——三角函数的图象与性质【题根与题源】(必修4P 147复习参考题A 组第9题、第10题)题目9 已知函数y =(sin x +cos x )2+2cos 2x . (1)求函数的递减区间; (2)求函数的最大值和最小值.题目10 已知函数f (x )=cos 4x -2sin x cos x -sin 4 x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的最小值及取得最小值时x 的集合. 【试题评析】两个题目主要涉及三角恒等变换和三角函数的性质,题目求解的关键在于运用二倍角公式及两角和公式化为y =A sin(ωx +φ)+k 的形式,然后利用三角函数的性质求解.【教材拓展】 已知函数f (x )=4tan x sin ⎝⎛⎭⎫π2-x ·cos ⎝⎛⎭⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎡⎦⎤-π4,π4上的单调性. 【探究提高】1.将f (x )变形为f (x )=2sin ⎝⎛⎭⎫2x -π3是求解的关键,(1)利用商数关系统一函数名称;(2)活用和、差、倍角公式化成一复角的三角函数.2.把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【链接高考】(2017·山东卷)设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3,已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.2.教你如何审题——三角函数、平面向量、解三角形交汇。
高考数学试题与三角函数习题精选精讲

透视高考数学试题与三角函数有关的五大热点解答三角高考题的一般策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关三角公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的三角公式,促使差异的转化。
三角函数恒等变形的基本策略:(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次,即二倍角公式降次。
(4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
(5)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
三、与三角函数有关的五大热点问题1.三角函数的图象问题:这是一类研究三角函数的奇偶性、对称性、单调性与函数图像的交点坐标及图像变换问题,解此类问题一定要注意三角函数的周期在解题中决定作用,千万不可忽视。
例1.(06某某卷)设函数f (x )=3cos 2cos+sin ωrcos ωx+a(其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个高点的横坐标为6x . (Ⅰ)求ω的值; (Ⅱ)如果f (x )在区间⎥⎦⎤⎢⎣⎡-65,3ππ上的最小值为3,求a 的值. 1()cos 2sin 22sin 23 2,6321.2f x x x x ωωαπωαπππωω=+++⎛⎫=+++ ⎪⎝⎭⋅+==解:(I )依题意得解之得)57 ,0,,36361 sin()1,2351 (),36212x x x f x παπππππππαα++⎡⎤⎡⎤∈-+∈⎢⎥⎢⎥⎣⎦⎣⎦-≤+≤⎡⎤--++⎢⎥⎣⎦-++=(II)由(I )知,f(x)=sin(x+3又当时,故从而在上取得最小值因此,由题设知故α=例2.(06某某卷)已知函数f (x )=A 2sin ()x ωϕ+(A >0,ω>0,0<ϕ<2π函数,且y =f (x )的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2). (1)求ϕ;(2)计算f (1)+f (2)+… +f (2 008). 解:(I )2sin ()cos(22).22A Ay A x x ωϕωϕ=+=-+()y f x =的最大值为2,0A >.2, 2.22A AA ∴+== 又其图象相邻两对称轴间的距离为2,0ω>,12()2,.224ππωω∴==22()cos(2)1cos(2)2222f x x x ππϕϕ∴=-+=-+.()y f x =过(1,2)点,cos(2) 1.2πϕ∴+=-22,,2k k Z πϕππ∴+=+∈22,,2k k Z πϕπ∴=+∈,,4k k Z πϕπ∴=+∈又0,2πϕ<<4πϕ∴=.(II )解法一:4πϕ=,1cos()1sin .222yx x πππ∴=-+=+(1)(2)(3)(4)21014f f f f ∴+++=+++=.又()y f x =的周期为4,20084502=⨯,(1)(2)(2008)45022008.f f f ∴++⋅⋅⋅+=⨯=解法二:2()2sin ()4f x x πϕ=+223(1)(3)2sin ()2sin ()2,44f f ππϕϕ∴+=+++=22(2)(4)2sin ()2sin ()2,2f f πϕπϕ+=+++=(1)(2)(3)(4) 4.f f f f ∴+++= 又()y f x =的周期为4,20084502=⨯,(1)(2)(2008)45022008.f f f ∴++⋅⋅⋅+=⨯=例3.(06某某卷)已知函数f (x )=sin 2x +3x cos x +2cos 2x ,x ∈R.(I )求函数f (x )的最小正周期和单调增区间;(Ⅱ)函数f (x )的图象可以由函数y =sin2x (x ∈R )的图象经过怎样的变换得到?本小题主要考查三角函数的基本公式、三角恒等变换、三角函数的图象和性质等基本知识,以及推理和运算能力。
2019年高考数学压轴题专题01嵌套函数问题(解析版)

典例 3 已知函数 f x
x2 2ax a 1,x 0,
{
gx
ln x , x 0,
x2 1 2a . 若函数 y f g x 有 4 个
零点,则实数 a 的取值范围是 ________.
【答案】
51 ,1
1,
2
【解析】令 f t 0,t g x
当 1 a 0 时 f t 有两个零点 t1 1,t2 1,需 1 2a 1 a 1 当 1 a=0 时 f x 有三个零点, t1 1,t2 0, t3 =2 , 1 2a
4
现考虑函数 y= h( x) 的零点 . 当 | c| = 2 时, f ( t ) = c 有两 个根 t 1, t 2 满足 | t 1| = 1, | t 2| = 2,而 f ( x) = t 1 有三个不同的根 , f ( x) = t 2 有两个不同的根 ,故 y= h( x) 有 5 个零点 . 当 | c| < 2 时, f ( t ) = c 有三个不同的根 t 3, t 4, t 5 满足 | t i | <2, i = 3,4,5 ,而 f ( x) = t i ( i = 3,4,5) 有 三个不同的根 ,故 y= h( x) 有 9 个零点 . 综上可知 ,当 | c| =2 时, 函数 y= h( x) 有 5 个零点 ;当 | c| < 2 时, 函数 y=h( x) 有 9 个零点 . 4. 已知函数 f ( x) ax2 bx c (a 0) ,且 f ( x) x 没有实数根, f ( f ( x)) x 是 否有实数根?并证
程 f (t ) 0 中求 t ,再带入方程 g ( x) t 中求 x 的值.
1. 设函数 f (x) ex x a ( a R , e 为自然对数的底数) ,若曲线 y sin x 上存在点 ( x0 , y0 ) ,
副题02 三角函数的图象和性质-2019年高考数学二轮透析23题对对碰 Word版含解析

2019届二轮透析高考数学23题对对碰【二轮精品】 第一篇副题2 三角函数的图象和性质【主题考法】主题点考题形式为选择填空题,主要考查三角函数的周期性、单调性、奇偶性、最值、有界性、图象的平移和伸缩变换及图像及图像应用,考查运算求解能力、转化化归思想、数形结合思想。
分值为5分,在复习时应予以关注.【主题回扣】1.常用三种函数的图象性质(下表中k ∈Z )2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数.3.三角函数的两种常见变换(1)y =sin x ――――――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变 y =A sin(ωx +φ)(A >0,ω>0).y =A sin(ωx +φ)(A >0,ω>0).4.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口.【易错提醒】1.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.2.求y =A sin(ωx +φ)的单调区间时,要注意ω,A 的符号.若ω<0时,应先利用诱导公式将x 的系数转化为正数后再求解;在书写单调区间时,不能弧度和角度混用,需加2k π时,不要忘掉k ∈Z ,所求区间一般为闭区间.3.三角函数图象变换中,注意由y =sin ωx 的图象变换得到y =sin(ωx +φ)时,平移量为||ωπ,而不是φ. 【主题考向】考向一 三角函数的单调性【解决法宝】求三角函数的单调区间时应注意以下几点:(1)形如的函数的单调区间,基本思路是把x ωϕ+看作是一个整体,由求得函数的增区间,由求得函数的减区间. (2)形如的函数,可先利用诱导公式把x 的系数变为正数,得到,由得到函数的减区间,由得到函数的增区间.(3)对于,等,函数的单调区间求法与类似. 例1【2019届北京市人大附中模拟一】若函数与的对称轴完全相同,则函数在哪个区间上单调递增( )A .B .C .D .【分析】先根据已知条件求出 ,即可求出)(x f 的解析式,再利用整体代换求出)(x f 单调递增区间. 【解析】由2xk π得x,即函数f (x )的对称轴为x ,由ωxk π得x,则ω=2,即f (x )=2sin (2x ),由2k π2x 2k π,k ∈Z ,得k πx ≤k π,k ∈Z ,∵x ∈[0,π],∴当k =0时,x,即0≤x,故选A .考向二 三角函数的周期性与奇偶性【解决法宝】1.对三角函数的奇偶性的问题,首先要对函数的解析式进行恒等变换,化为一个角的三角函数,再根据定义、诱导公式去或图像判断所求三角函数的奇偶性,对奇偶性熟记下列结论可以快速解题:①是奇函数的充要条件为;②是偶函数的充要条件为;③是奇函数的充要条件为;④是偶函数的充要条件为;2.对三角函数周期问题,先利用三角公式将函数解析式化为一个角的三角函数,再利用下列方法求三角函数周期:①利用周期函数的定义; ②利用公式:和的最小正周期为2||πω,的最小正周期为||πω; ③利用图象.例2 【广东省深圳实验等六校2018届第一次联考】已知函数,下列结论中错误的是( ).A. 的图象关于点中线对称B.的图象关于对称C.的最大值为D.既是奇函数,又是周期函数【分析】通过计算是否为0,即可判断选项A 是否正确;通过计算即可判定是否成立,即可判定B 是否正确;利用倍角公式、换元法和导数即可求出函数)(x f 的最值;利用函数奇偶性的概念与函数周期定义即可对D 作出判断.【解析】项,因为.即,故函数图象关于点成中心对称.故正确;项,,故函数图象关于直线对称,故项正确;项,,令,,令,得或,根据函数的单调性分析得有极大值,而当时,,时,,所以时,取得最大值,即的最大值为,故项错误;项,因为,所以函数是奇函数,且图象关于对称,即,,因此,从而.即函数是以为周期的奇函数,故选.考向三 三角函数的对称性【解题法宝】先利用三角公式将函数解析式化为一个角的三角函数,再利用正弦函数、余弦函数、正切函数的对称性及整体思想,求解对称轴和对称中心,也可以利用对称轴过最值点解题. 例3【2019届贵州省贵阳市期末】已知直线,分别是曲线与的对称轴,则A .2B .0C .D .【分析】先分别求出)(x f 与)(x g 的对称轴21,x x ,即可求出21x x -,代入)(x f 即可求出值.【解析】由得,即的对称轴为,,的对称轴为,,直线,分别是曲线与的对称轴,,,,,则,,,则,故选C .考向四 三角函数的值域与最值【解题法宝】先利用三角公式将函数解析式化为形如的一个角的三角函数,再根据所给自变量的范围,利用不等式性质求出ϕω+x 范围,再利用函数x y sin =图像与性质求出的值域(最值),即可求出的值域(最值).例4 【2019届广东省汕头市一模】将函数的图象向右平移个单位长度,得到函数的图象,则在上的最大值为( ) A .B .C .D .1【分析】先根据图象平移求出()g x 的解析式,再利用复合函数求值域的方法,即可()g x 在]83,8[ππ-的值域,即可得出最大值..【解析】将函数的图象向右平移个单位长度,得到函数的图象,则,因为,所以,所以当时,即时,函数取得最大值,最大值为,故选C.考向五 三角函数的图象及其应用【解决法宝】1.函数sin y x =的图象变换得到的图象的步骤(1)确定中的参数的方法:在由图象求解析式时,若最大值为M ,最小值为m ,则2M m A -=,2M m k +=,ω由周期T 确定,即由2Tπω=求出,ϕ由特殊点确定.。
高考数学:解析三角函数复习重点

2019高考数学:解析三角函数复习重点这一部分的重点是一定要从初中锐角三角函数的定义中跳出来。
在教学中,我注意到有些学生仍然在遇到三角函数题目的时候画直角三角形协助理解,这是十分危险的,也是我们所不提倡的。
三角函数的定义在引入了实数角和弧度制之后,已经发生了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数——弧度制的角。
有了这样一个思维上的飞跃,三角函数就不再是三角形的一个附属产品(初中三角函数很多时候依附于相似三角形),而是一个具有独立意义的函数表现形式。
既然三角函数作为一种函数意义的理解,那么,它的知识结构就可以完全和函数一章联系起来,函数的精髓,就在于图象,有了图象,就有了所有的性质。
对于三角函数,除了图象,单位圆作为辅助手段,也是非常有效——就好像配方在二次函数中应用广泛是一个道理。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
专题3.8 三角函数与其他知识综合运用-奋战到底之2019年高考数学高分套路 Word版含解析

姓名,年级:时间:第八讲三角函数与其他知识的综合运用考向一解三角形与三角函数综合【例1】设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角。
(1)证明:B-A=错误!;(2)求sin A+sin C的取值范围。
【答案】见解析【解析】(1)证明:由a=b tan A及正弦定理,得错误!=错误!=错误!,所以sin B=cos A,即sin B=sin错误!。
因为B为钝角,所以A为锐角,所以错误!+A∈错误!,则B=错误!+A,即B-A=错误!.(2)由(1)知,C=π-(A+B)=π-错误!=错误!-2A>0,所以A∈错误!。
于是sin A+sin C=sin A+sin错误!=sin A+cos2A=-2sin2A+sin A+1=-2错误!2+错误!。
因为0〈A〈π4,所以0〈sin A〈错误!,因此错误!<-2错误!2+错误!≤错误!。
由此可知sin A+sin C的取值范围是错误!。
【举一反三】1.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC 于点D,且BD=1,则4a+c的最小值为________。
【答案】9【解析】因为∠ABC=120°,∠ABC的平分线交AC于点D,所以∠ABD=∠CBD=60°,由三角形的面积公式可得错误!ac sin120°=错误!a sin60°+错误!c sin60°,化简得ac=a+c,又a>0,c〉0,所以错误!+错误!=1,则4a+c=(4a+c)·错误!=5+错误!+错误!≥5+2 错误!=9,当且仅当c=2a时取等号,故4a+c的最小值为9。
2.在△ABC中,内角A,B,C的对边分别为a,b,c,外接圆的半径为1,且错误!=错误!,则△ABC面积的最大值为________。
【答案】错误!【解析】因为错误!=错误!,所以错误!=(2c-b)错误!,由正弦定理得sin B sin A cos B=(2sin C -sin B)sin B cos A,又sin B≠0,所以sin A cos B=(2sin C-sin B)cos A,所以sin A cos B +sin B cos A=2sin C cos A,sin(A+B)=2sin C cos A,即sin C=2sin C cos A,又sin C≠0,所以cos A=错误!,sin A=错误!.设外接圆的半径为r,则r=1,由余弦定理得bc=错误!=b2+c2-a2=b2+c2-(2r sin A)2=b2+c2-3≥2bc-3(当且仅当b=c时,等号成立),所以bc ≤3,所以S△ABC=错误!bc sin A=错误!bc≤错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.方法综述
近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与图象和性质等结合考查.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度仍然以中低档为主,重在对基础知识的考查,淡化特殊技巧,强调通解通法,其中对函数()ϕω+=x A y sin R x ∈的图象要求会用五点作图法作出,并理解它的性质:
(1)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期; (2)函数图象与x 轴的交点是其对称中心,相邻两对称中心间的距离也是其函数的半个周期; (3)函数取最值的点与相邻的与x 轴的交点间的距离为其函数的4
1
个周期. 本专题举例说明解答此类问题的方法、技巧.
二.解题策略
类型一 立足于基本性质,确定()ϕω+=x A y s i n
中d 的“基本量” 【例1】【2016高考新课标1卷】已知函数()sin()(0),2
4
f x x+x π
π
ωϕωϕ=>≤=-
,
为()f x 的零
点,4
x π
=
为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫
⎪⎝⎭
,单调,则ω的最大值为( ) (A )11 (B )9 (C )7 (D )5 【答案】B 【解析】 【指点迷津】 一般来说:
(1)若函数(0)()0y Asin x A ωϕω>>=+,有两条对称轴x a x b =,=,则有||()22
T
kT
a b k Z ∈-=+; (2)若函数(0)()0y Asin x A ωϕω>>=+,有两个对称中心()(),0,0M a N b ,,则有
||()22
T kT
a b k Z ∈-=+;
(3)若函数(0)()0y Asin x A ωϕω>>=+,有一条对称轴x a =,一个对称中心(),0M b ,则有
||()42
T kT
a b k Z ∈-=+.学科&网
(4)研究三角函数
的性质,最小正周期为
,最大值为
.
求对称轴只需令,求解即可,
求对称中心只需令,单调性均为利用整体换元思想求解.
【举一反三】
【安徽省江淮六校2019届高三上开学联考】将函数的图象向
左平移个单位,得到函数的图像,若在上为增函数,则的最大值为()A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
即,
令可得函数的一个单调递增区间为:,
在上为增函数,则:,据此可得:,
则的最大值为2.
本题选择B选项. 学科#网
类型二立足于等价转化,破解三角函数综合问题
【例2】【广东省深圳实验,珠海一中等六校2019届高三第一次联考】已知是函数
的最大值,若存在实数使得对任意实数总有
成立,则的最小值为
A. B. C. D.
【答案】B
【解析】
【指点迷津】
利用公式可以求出:①的周期;②单调区间(利用正弦
函数的单调区间可通过解不等式求得);③值域:;④对称轴及对称中心(由
可得对称轴方程,由可得对称中心横坐标.
【举一反三】
【上海市2018年5月高考模拟(一)】已知为常数),若对于任意都有
,则方程在区间内的解为__________
【答案】或
【解析】
三.强化训练
1.【2018届广东省佛山市高三检测(二)】已知函数的图象在区间上不单调,
则的取值范围为( )
A. B. C. D.
【答案】B
2.【2018届齐鲁名校教科研协作体山东、湖北部分重点中学高考模拟(三)】已知函数
,若的最小值为,且,则的单调递增区间为()
A. B.
C. D.
【答案】B
【解析】
由,且的最小值为,
可知:,∴,
又,则,
∵,∴,所以.
令,解得.
故可求得的单调递增区间为,
故选B.
3.【辽宁省六校协作体2018-2019学年高二上学期期初考】已知函数,若
在区间内没有零点,则的取值范围是()
A. B. C. D.
【答案】B
【解析】
4.【山西省太原市2018届三模】已知函数的图象过点,且在
上单调,同时的图象向左平移个单位之后与原来的图象重合,当,且时,
,则()
A. B. -1 C. 1 D.
【答案】B
【解析】
由函数的图象过点,
∴,解得,学!科网
又,∴,
又的图象向左平移π个单位之后为,
由两函数图象完全重合知;
又,∴,∴ω=2;
∴,
令,得其图象的对称轴为
当,对称轴.
∴,
∴
故选B. 学%科网
5.将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到的图象,
若,且,则的最大值为()
A. B. C. D.
【答案】A
【解析】
的图象向左平移个单位长度,
再向上平移1个单位长度,
得到
,
,
且,
,
,
因为,
所以时,取为最小值;
时,取为最大值
最大值为,故选A.
6.已知,函数,若对任意给定的,总存在,使得,则的最小值为()
A. B. C. 5 D. 6
【答案】D
【解析】分析:先化简函数的解析式得,再解方程f(x)=0得到
,再分析得到,再讨论a=0的情况得到w的范围,再综合即得w的最小值. 7.【河南省信阳高级中学2019届高三第一次大考】如图,已知函数的图象与坐标轴交于点,直线交的图象于另一点,是的重心.则的外接圆的半径为
A. 2 B. C. D. 8
【答案】B
【解析】
又,
∴,
∴,
令得,
∴点的坐标为,
∴,故,
∴.
又点是的中点,
∴点的坐标为,
∴.
设的外接圆的半径为,则,
∴.
故选B.学科*网
8.【福建省百校2018届临考冲刺】若函数与都在区间
上单调递减,则的最大值为()
A. B. C. D.
【答案】B
【解析】
9.【江西省南昌市2018届三模】如图,直线与单位圆相切于点,射线从出发,绕着点逆时针旋转,在旋转分入过程中,记,经过的单位圆内区域(阴影部分)的面积为,记,
对函数有如下四个判断:
①当时,;②时,为减函数;
③对任意,都有;
④对任意,都有
其中判断正确的序号是__________.
【答案】①③
【解析】
如图,
10.【2019年一轮复习讲练测】设函数,给出以下四个论断:①它的图象关于直线对称;②它的图象关于点对称;③它的周期是;④它在区间上是
增函数.以其中两个论断作为条件,余下论断作为结论,写出你认为正确的一个命题________________. 【答案】两个正确的命题为(1)①③②④;(2)②③①④.
(2)验证②③①④成立:
由③得的周期为,则,
∴,
由②得
∵,学科&网
∴,
∴.
由于,所以的图象关于直线对称,故①成立.
由,得,所以在上为增函数,故④成立.
由此可得②③①④.
所以正确的一个命题为①③②④或②③①④.。