必修练习题
高中必修1习题及答案

一.选择题(共36小题)1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)2.若全集U=R,集合M={x|lg(x﹣1)<0},则∁U M为()A.[2,+∞)B.(﹣∞,1]∪[2,+∞)C.(2,+∞)D.(﹣∞,1)∪(2,+∞)3.已知集合A={x|﹣2<x<4},B={x|y=lg(x﹣2)},则A∩(∁R B)=()A.(2,4) B.(﹣2,4)C.(﹣2,2)D.(﹣2,2]4.已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,]B.(,3]C.(1,)D.(,2)5.已知集合A={x|x2﹣x﹣6<0},B={x|3x>1},则A∩B=()A.(1,2) B.(1,3) C.(0,2) D.(0,3)6.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3}B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}D.{x|﹣1<x<0或1<x<3}7.已知集合A={0,1,2,3,4,5},集合B={x|x2<10},则A∩B=()A.{0,2,4}B.{3}C.{0,1,2,3}D.{1,2,3}8.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B=()A.{x|﹣2≤x≤1}B.{0,1}C.{1,2}D.{x|0≤x≤1}9.已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},则A∩B等于()A.(1,4) B.[1,4) C.{1,2,3}D.{2,3,4}10.已知全集U=R,集合A={x|y=lg(x﹣1)},集合,则A ∩B=()A.∅B.(1,2]C.[2,+∞)D.(1,+∞)11.已知集合A={x∈Z|(x+1)(x﹣2)≤0},B={x|﹣2<x<2},则A∩B=()A.{x|﹣1≤x<2}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,1}12.命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C. D.13.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题14.已知命题p:∀x>1,log2x+4log x2>4,则¬p为()A.¬p:∀x≤1,log2x+4log x2≤4 B.¬p:∃x≤1,log2x+4log x2≤4C.¬p:∃x>1,log2x+4log x2=4 D.¬p:∃x>1,log2x+4log x2≤415.下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”D.若p∧q为假命题,则p、q均为假命题16.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件17.命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A.1 B.2 C.3 D.418.下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=•,g(x)=19.函数f(x)=+的定义域是()A.[﹣2,2]B.(﹣1,2]C.[﹣2,0)∪(0,2]D.(﹣1,0)∪(0,2]20.函数f(x)=的定义域为()A.{x|x>0}B.{x|x>1}C.{x|x≥1}D.{x|0<x≤1}21.函数定义域为()A.(0,1000]B.[3,1000]C.D.22.要得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象()A.先关于x轴对称,再向右平移1个单位B.先关于x轴对称,再向左平移1个单位C.先关于y轴对称,再向右平移1个单位D.先关于y轴对称,再向左平移1个单位23.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.24.函数f(x)=2|x|﹣x2的图象为()A.B.C.D.25.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)26.函数f(x)的导函数f′(x)的图象如图所示,则下列说法正确的是()A.函数f(x)在(﹣2,3)内单调递减B.函数f(x)在x=3处取极小值C.函数f(x)在(﹣4,0)内单调递增D.函数f(x)在x=4处取极大值27.函数,满足f(x)>1的x的取值范围()A.(﹣1,1)B.(﹣1,+∞)C.{x|x>0或x<﹣2}D.{x|x>1或x<﹣1}28.函数y=的递增区间是()A.(﹣∞,﹣2)B.[﹣5,﹣2]C.[﹣2,1]D.[1,+∞)29.函数的单调递增区间是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[1,+∞)D.(﹣∞,1]30.函数f(x)=|x2﹣6x+8|的单调递增区间为()A.[3,+∞)B.(﹣∞,2),(4,+∞)C.(2,3),(4,+∞)D.(﹣∞,2],[3,4]31.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)32.函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]33.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)34.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.235.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx36.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2二.填空题(共4小题)37.已知全集U=R,集合,则集合∁U A=.38.函数f(x)=lgx2的单调递减区间是.39.已知函数f(x)=a﹣,若f(x)为奇函数,则a=.40.若函数f(x)=x2﹣|x+a|为偶函数,则实数a=.参考答案与试题解析一.选择题(共36小题)1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)【专题】11 :计算题;37 :集合思想;4A :数学模型法;5J :集合.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.2.若全集U=R,集合M={x|lg(x﹣1)<0},则∁U M为()A.[2,+∞)B.(﹣∞,1]∪[2,+∞)C.(2,+∞)D.(﹣∞,1)∪(2,+∞)【专题】5J :集合.【解答】解:集合M={x|lg(x﹣1)<0}={x|0<x﹣1<1}={x|1<x<2},∴则∁U M=(﹣∞,1]∪[2,+∞},故选:B.3.已知集合A={x|﹣2<x<4},B={x|y=lg(x﹣2)},则A∩(∁R B)=()A.(2,4) B.(﹣2,4)C.(﹣2,2)D.(﹣2,2]【专题】11 :计算题;37 :集合思想;49 :综合法;5J :集合.【解答】解:B={x|x>2};∴∁R B={x|x≤2};∴A∩(∁R B)=(﹣2,2].故选:D.4.已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,]B.(,3]C.(1,)D.(,2)【专题】37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合M={x|≤0}={x|1<x≤3},N={x|y=log3(﹣6x2+11x﹣4)}={x|﹣6x2+11x﹣4>0}={x|},∴M∩N={x|1<x≤3}∩{x|}=(1,).故选:C.5.已知集合A={x|x2﹣x﹣6<0},B={x|3x>1},则A∩B=()A.(1,2) B.(1,3) C.(0,2) D.(0,3)【专题】35 :转化思想;4O:定义法;59 :不等式的解法及应用.【解答】解:集合A={x|x2﹣x﹣6<0}={x|﹣2<x<3},B={x|3x>1}={x|x>0},∴A∩B={x|0<x<3}=(0,3).故选:D.6.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3}B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}D.{x|﹣1<x<0或1<x<3}【专题】11 :计算题;35 :转化思想;4O:定义法;5J :集合.【解答】解:由A={x|﹣1<x<3},B={x|x<0,或x>1},故A∩B={x|﹣1<x<0,或1<x<3}.故选:D.7.已知集合A={0,1,2,3,4,5},集合B={x|x2<10},则A∩B=()A.{0,2,4}B.{3}C.{0,1,2,3}D.{1,2,3}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合A={0,1,2,3,4,5},集合B={x|x2<10}={x|﹣},∴A∩B={0,1,2,3}.故选:C.8.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B=()A.{x|﹣2≤x≤1}B.{0,1}C.{1,2}D.{x|0≤x≤1}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合A={x∈N||x|≤2}={x∈N|﹣2≤x≤2}={0,1,2},B={y|y=1﹣x2}={y|y≤1},∴A∩B={0,1}.故选:B.9.已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},则A∩B等于()A.(1,4) B.[1,4) C.{1,2,3}D.{2,3,4}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵A={x∈Z||x|<4}={x∈Z|﹣4<x<4}={﹣3,﹣2,﹣1,0,1,2,3},B={x|x﹣1≥0}={x|x≥1},∴A∩B={1,2,3},故选:C.10.已知全集U=R,集合A={x|y=lg(x﹣1)},集合,则A ∩B=()A.∅B.(1,2]C.[2,+∞)D.(1,+∞)【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:由A中y=lg(x﹣1),得到x﹣1>0,即x>1,∴A=(1,+∞),由B中y==≥=2,得到B=[2,+∞),则A∩B=[2,+∞),故选:C.11.已知集合A={x∈Z|(x+1)(x﹣2)≤0},B={x|﹣2<x<2},则A∩B=()A.{x|﹣1≤x<2}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,1}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:由A中不等式解得:﹣1≤x≤2,x∈Z,即A={﹣1,0,1,2},∵B={x|﹣2<x<2},∴A∩B={﹣1,0,1},故选:B.12.命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C. D.【专题】11 :计算题;38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题:“∀x∈[1,2],x2﹣3x+2≤0的否定是,故选:C.13.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故选:D.14.已知命题p:∀x>1,log2x+4log x2>4,则¬p为()A.¬p:∀x≤1,log2x+4log x2≤4 B.¬p:∃x≤1,log2x+4log x2≤4C.¬p:∃x>1,log2x+4log x2=4 D.¬p:∃x>1,log2x+4log x2≤4【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题是全称命题,则命题的否定是特称命题,即:¬p:∃x>1,log2x+4log x2≤4,故选:D.15.下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”D.若p∧q为假命题,则p、q均为假命题【专题】15 :综合题;38 :对应思想;49 :综合法;5L :简易逻辑.【解答】解:命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”,故A正确;由x>1,可得|x|>1>0,反之,由|x|>0,不一定有x>1,如x=﹣1,∴“x>1”是“|x|>0”的充分不必要条件,故B正确;命题p:“∃x∈R,使得x2+x+1<0”,则¬p:“∀x∈R,x2+x+1≥0”,故C正确;若p∧q为假命题,则p、q中至少有一个为假命题,故D错误.故选:D.16.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件【解答】A“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,m=0时不正确;B中“∃x∈R,x2﹣x>0”为特称命题,否定时为全称命题,结论正确;C命题“p∨q”为真命题指命题“p”或命题“q”为真命题,只要有一个为真即可,错误;D应为必要不充分条件.故选:B.17.命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A.1 B.2 C.3 D.4【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题P:“若x>1,则x2>1”,它是真命题;它的否命题是:“若x≤1,则x2≤1”,它是假命题;逆命题是:“若x2>1,则x>1”,它是假命题;逆否命题是:“若x2≤1,则x≤1”,它是真命题;综上,这四个命题中真命题的个数为2.故选:B.18.下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=•,g(x)=【专题】51 :函数的性质及应用.【解答】解:对于A,∵g(x)=,f(x)=|x|,∴两函数为同一函数;对于B,函数f(x)的定义域为{x|x≠0},而函数g(x)的定义域为{x|x>0},两函数定义域不同,∴两函数为不同函数;对于C,函数f(x)的定义域为{x|x≠1},而函数g(x)的定义域为R,两函数定义域不同,∴两函数为不同函数;对于D,函数f(x)的定义域为{x|x>1},而函数g(x)的定义域为{x|x<﹣1或x>1},两函数定义域不同,∴两函数为不同函数.故选:A.19.函数f(x)=+的定义域是()A.[﹣2,2]B.(﹣1,2]C.[﹣2,0)∪(0,2]D.(﹣1,0)∪(0,2]【专题】33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:f(x)=+有意义,可得,即为,解得﹣1<x<0或0<x≤2,则定义域为(﹣1,0)∪(0,2].故选:D.20.函数f(x)=的定义域为()A.{x|x>0}B.{x|x>1}C.{x|x≥1}D.{x|0<x≤1}【专题】33 :函数思想;4A :数学模型法;51 :函数的性质及应用.【解答】解:由log3x≥0,得x≥1.∴函数f(x)=的定义域为{x|x≥1}.故选:C.21.函数定义域为()A.(0,1000]B.[3,1000]C.D.【专题】33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:函数有意义,可得3﹣lgx≥0,且x>0,解得0<x≤1000,则定义域为(0,1000].故选:A.22.要得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象()A.先关于x轴对称,再向右平移1个单位B.先关于x轴对称,再向左平移1个单位C.先关于y轴对称,再向右平移1个单位D.先关于y轴对称,再向左平移1个单位【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象先关于y轴对称,再向右平移1个单位,故选:C.23.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.【专题】16 :压轴题;31 :数形结合.【解答】解:因为从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f(﹣x),再整体向右平移1个单位即可得到.即图象变换规律是:①→②.故选:A.24.函数f(x)=2|x|﹣x2的图象为()A.B.C.D.【专题】51 :函数的性质及应用.【解答】解:∵函数f(x)是偶函数,图象关于y轴对称,∴排除B,D.∵f(0)=1﹣0=0>0,∴排除C,故选:A.25.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)【专题】11 :计算题.【解答】解:设所求函数为g(x),g(x)==f(﹣|x|),C选项符合题意.故选:C.26.函数f(x)的导函数f′(x)的图象如图所示,则下列说法正确的是()A.函数f(x)在(﹣2,3)内单调递减B.函数f(x)在x=3处取极小值C.函数f(x)在(﹣4,0)内单调递增D.函数f(x)在x=4处取极大值【专题】53 :导数的综合应用.【解答】解:函数f(x)的导函数f′(x)的图象如图所示,可得x∈(﹣4,0),f′(x)>0,函数是增函数.x∈(0,4),f′(x)<0,函数是减函数.x=4时,f′(4)=0,函数取得极小值,所以选项C正确.故选:C.27.函数,满足f(x)>1的x的取值范围()A.(﹣1,1)B.(﹣1,+∞)C.{x|x>0或x<﹣2}D.{x|x>1或x<﹣1}【专题】11 :计算题;32 :分类讨论.【解答】解:当x≤0时,f(x)>1 即2﹣x﹣1>1,2﹣x>2=21,∴﹣x>1,x<﹣1,当x>0时,f(x)>1 即>1,x>1,综上,x<﹣1 或x>1,故选:D.28.函数y=的递增区间是()A.(﹣∞,﹣2)B.[﹣5,﹣2]C.[﹣2,1]D.[1,+∞)【专题】51 :函数的性质及应用.【解答】解:由5﹣4x﹣x2≥0,得函数的定义域为{x|﹣5≤x≤1}.∵t=5﹣4x﹣x2=﹣(x2+4x+4)+9=﹣(x+2)2+9,对称轴方程为x=﹣2,拋物线开口向下,∴函数t的递增区间为[﹣5,﹣2],故函数y=的增区间为[﹣5,﹣2],故选:B.29.函数的单调递增区间是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[1,+∞)D.(﹣∞,1]【专题】33 :函数思想;4J :换元法;51 :函数的性质及应用.【解答】解:令t=﹣x2+2x,则y=()t,由t=﹣x2+2x的对称轴为x=1,可得函数t在(﹣∞,1)递增,[1,+∞)递减,而y=()t在R上递减,由复合函数的单调性:同增异减,可得函数的单调递增区间是[1,+∞),故选:C.30.函数f(x)=|x2﹣6x+8|的单调递增区间为()A.[3,+∞)B.(﹣∞,2),(4,+∞)C.(2,3),(4,+∞)D.(﹣∞,2],[3,4]【专题】35 :转化思想;48 :分析法;51 :函数的性质及应用.【解答】解:函数f(x)=|x2﹣6x+8|,当x2﹣6x+8>0即x>4或x<2,可得f(x)=x2﹣6x+8=(x﹣3)2﹣1,即有f(x)在(4,+∞)递增;当x2﹣6x+8<0即2<x<4,可得f(x)=﹣x2+6x﹣8=﹣(x﹣3)2+1,即有f(x)在(2,3)递增;则f(x)的增区间为(4,+∞),(2,3).故选:C.31.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.32.函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]【专题】35 :转化思想;49 :综合法;51 :函数的性质及应用.【解答】解:令t=2x﹣x2>0,求得0<x<2,可得函数的定义域为{x|0<x<2},且y=log t,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得函数t在定义域内的增区间为(0,1],故选:A.33.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)【专题】11 :计算题;59 :不等式的解法及应用.【解答】解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C.34.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.2【解答】解:f(1)=2(1﹣a),f(﹣1)=0∵f(x)是偶函数∴2(1﹣a)=0,∴a=1,故选:C.35.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【专题】51 :函数的性质及应用.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.36.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【专题】51 :函数的性质及应用.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选:D.二.填空题(共4小题)37.已知全集U=R,集合,则集合∁U A={x|x<﹣1或x≥2} .【专题】11 :计算题;5J :集合.【解答】解:由A中不等式变形得:(x+1)(x﹣2)≤0,且x﹣2≠0,解得:﹣1≤x<2,即A={x|﹣1≤x<2},∵全集U=R,∴∁U A={x|x<﹣1或x≥2},故答案为:{x|x<﹣1或x≥2}38.函数f(x)=lgx2的单调递减区间是(﹣∞,0).【专题】51 :函数的性质及应用.【解答】解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).39.已知函数f(x)=a﹣,若f(x)为奇函数,则a=.【解答】解:函数.若f(x)为奇函数,则f(0)=0,即,a=.故答案为40.若函数f(x)=x2﹣|x+a|为偶函数,则实数a=0.【专题】51 :函数的性质及应用.【解答】解:∵f(x)为偶函数∴f(﹣x)=f(x)恒成立即x2﹣|x+a|=x2﹣|x﹣a|恒成立即|x+a|=|x﹣a|恒成立所以a=0故答案为:0.第21页(共21页)。
高一必修数学练习题含答案

高一必修数学练习题含答案一、选择题(每题3分,共15分)1. 下列哪个选项是不等式\( x^2 - 5x + 6 \leq 0 \)的解集?A. \( x \geq 6 \)B. \( x \leq 2 \)C. \( 2 \leq x \leq 3 \)D. \( x \geq 3 \)2. 函数\( f(x) = 3x^2 - 2x + 1 \)的对称轴是:A. \( x = -\frac{1}{3} \)B. \( x = \frac{1}{3} \)C. \( x = 1 \)D. \( x = 0 \)3. 若\( a \),\( b \)是二次方程\( x^2 + 2x + k = 0 \)的两个实根,且\( a^2 + b^2 = 12 \),求\( k \)的值。
A. 4B. 6C. 8D. 104. 已知\( \sin \theta = \frac{3}{5} \),\( \theta \)在第一象限,求\( \cos \theta \)的值。
A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \- \( \frac{4}{5} \)D. \( \frac{12}{13} \)5. 圆的方程为\( x^2 + y^2 = 25 \),点P(4,3)在圆上,求过点P的切线方程。
A. \( y = \frac{3}{4}x - 1 \)B. \( x = 4 \)C. \( x + y - 7 = 0 \)D. \( 3x - 4y + 5 = 0 \)二、填空题(每题2分,共10分)6. 若\( \cos \alpha = \frac{4}{5} \),\( \alpha \)在第二象限,求\( \sin \alpha \)的值。
__________。
7. 已知等差数列\( \{a_n\} \)的首项为5,公差为3,求第10项的值。
__________。
高一数学必修一全册练习题(解析版)

第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∈a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∈c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∈c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.6解析:选D.∈z=xy,x∈A,y∈B,∈z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∈集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C=____________.解析:∈C={(x,y)|x∈A,y∈B},∈满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∈M B .a ∈M C .{a }∈M D .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个. 解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________. 解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根, ∈a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围. 解:∈a =0时,原方程为-3x +2=0,x =23,符合题意.∈a ≠0时,方程ax 2-3x +2=0为一元二次方程. 由Δ=9-8a ≤0,得a ≥98.∈当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合∈∈,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊 C .2010年考入清华大学的全体学生 D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ∈π∈R ;∈3∈Q ;∈0∈N *;∈|-4|∈N *. A .1 B .2 C .3 D .4 解析:选B.∈∈正确,∈∈错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∈AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()∈教2011届高一的年轻教师;∈你所在班中身高超过1.70米的同学;∈2010年广州亚运会的比赛项目;∈1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以∈不能构成集合;由于∈∈∈中的对象具备确定性、互异性,所以∈∈∈能构成集合.4.若集合M={a,b,c},M中元素是∈ABC的三边长,则∈ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()∈M={(3,2)},N={(2,3)};∈M={3,2},N={2,3};∈M={(1,2)},N={1,2}.A.∈ B.∈C.∈ D.以上都不对解析:选B.∈中M中表示点(3,2),N中表示点(2,3),∈中由元素的无序性知是相等集合,∈中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∈MC .x ∈M ,y ∈MD .x ∈M ,y ∈M 解析:选B.∈x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∈M .7.已知∈5∈R ;∈13∈Q ;∈0={0};∈0∈N ;∈π∈Q ;∈-3∈Z .其中正确的个数为________.解析:∈错误,0是元素,{0}是一个集合;∈0∈N ;∈π∈Q ,∈∈∈正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∈A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∈-3∈A ,∈-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∈12-3=2+3=2+3×1,而2,1∈Z ,∈2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b2b =2a, 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )∈{a ,b }={b ,a };∈{a ,b }∈{b ,a };∈∈={∈};∈{0}=∈;∈∈{0};∈0∈{0}.A .6个B .5个C .4个D .3个及3个以下 解析:选C.∈∈∈∈正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∈B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∈B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∈Δ=9-4(2-a2)=1+4a2>0,∈M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0∈A B.{0}∈AC.∈∈A D.{0}∈A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A∈B解析:选C.利用数轴(图略)可看出x∈B∈x∈A,但x∈A∈x∈B不成立.3.定义A-B={x|x∈A且x∈B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∈,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ∈B },则A 与B 的关系是( ) A .A ∈B B .B ∈A C .A ∈B D .B ∈A解析:选D.∈B 的子集为{1},{2},{1,2},∈, ∈A ={x |x ∈B }={{1},{2},{1,2},∈},∈B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx =1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∈B ,故B A .答案:BA8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ∈B ,则a 的值为________. 解析:A ∈B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:∈若⎩⎪⎨⎪⎧a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性, 故a ≠0,c 2-2c +1=0,即c =1; 当c =1时,集合B 中的三个元素也相同, ∈c =1舍去,即此时无解.∈若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∈a ≠0,∈2c 2-c -1=0,即(c -1)(2c +1)=0. 又∈c ≠1,∈c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ∈A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ∈A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∈BA ,∈mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时, 由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时, 由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0. 综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ∈N B .N ∈M C .M ∩N ={2,3} D .M ∈N ={1,4}解析:选C.∈M={1,2,3},N={2,3,4}.∈选项A、B显然不对.M∈N={1,2,3,4},∈选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)} B.{0,1}C.{y|y≥0} D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∈M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∈B=A,则实数m的取值范围是________.解析:A∈B=A,即B∈A,∈m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∈N=N;Q∈R=R∈Q;Q∩N=N中,正确的个数是() A.1B.2C.3 D.4解析:选C.只有Z∈N=N是错误的,应是Z∈N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∈A={3,5,6,8},B={4,5,7,8},∈A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∈B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∈a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∈P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3} B.{x|x≥1}C.{x|2≤x<3} D.{x|x>2}解析:选A.∈A={x|1≤x≤3},B={x|x>2},∈A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∈T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∈T =R ,∈⎩⎪⎨⎪⎧a +8>5,a <-1.∈-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∈A ∩B ={2,3},∈3∈B ,∈m =3. 答案:38.满足条件{1,3}∈M ={1,3,5}的集合M 的个数是________. 解析:∈{1,3}∈M ={1,3,5},∈M 中必须含有5, ∈M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∈; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∈B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∈A ∩B ={3},∈由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∈B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:∈当a -3≤5,即a ≤8时,A ∈B ={x |x <a -3或x >5}. ∈当a -3>5,即a >8时,A ∈B ={x |x >5}∈{x |x <a -3}={x |x ∈R }=R . 综上可知当a ≤8时,A ∈B ={x |x <a -3或x >5}; 当a >8时,A ∈B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∈,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∈,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∈U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∈U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∈R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∈B ={x |x <1},∈∈R B ={x |x ≥1}, ∈A ∩∈R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A={0,1},(∈U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∈U A={x|2≤x≤5},则a=________.解析:∈A∈∈U A=U,∈A={x|1≤x<2}.∈a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∈U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∈U B={3,4,5},∈A∩(∈U B)={3,4}.2.已知全集U={0,1,2},且∈U A={2},则A=()A.{0} B.{1}C.∈ D.{0,1}解析:选D.∈∈U A={2},∈2∈A,又U={0,1,2},∈A={0,1}.3.(2009年高考全国卷∈)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∈B,则集合∈U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∈B={3,4,5,7,8,9},A∩B={4,7,9},∈∈U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∈N=UC.(∈U N)∈M=U D.(∈U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∈U N)∈M ={3,4,5,7},(∈U M)∩N={2,6},M∈N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∈U(A∈B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∈A={1,2},∈B={2,4},∈A∈B={1,2,4},∈∈U(A∈B)={3,5}.6.已知全集U =A ∈B 中有m 个元素,(∈U A )∈(∈U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∈B 中有m 个元素,∈(∈U A )∈(∈U B )=∈U (A ∩B )中有n 个元素, ∈A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∈B )∩(∈U C )=________. 解析:∈A ∈B ={2,3,4,5},∈U C ={1,2,5}, ∈(A ∈B )∩(∈U C )={2,3,4,5}∩{1,2,5}={2,5}. 答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∈U A ={1},则实数a 的值是________. 解析:∈U ={2,3,a 2-a -1},A ={2,3},∈U A ={1}, ∈a 2-a -1=1,即a 2-a -2=0, 解得a =-1或a =2. 答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∈U A )∩B =∈,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∈∈U A ={x |x <-m },∈B ={x |-2<x <4},(∈U A )∩B =∈, ∈-m ≤-2,即m ≥2, ∈m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∈U B )∈P ,(A ∩B )∩(∈U P ).解:将集合A 、B 、P 表示在数轴上,如图.∈A ={x |-4≤x <2},B ={x |-1<x ≤3},∈A ∩B ={x |-1<x <2}. ∈∈U B ={x |x ≤-1或x >3}, ∈(∈U B )∈P ={x |x ≤0或x ≥52},(A ∩B )∩(∈U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∈U A )={2},A ∩(∈U B )={4},U =R ,求实数a ,b 的值.解:∈B ∩(∈U A )={2}, ∈2∈B ,但2∈A .∈A ∩(∈U B )={4},∈4∈A ,但4∈B .∈⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∈a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∈R B ,求实数a 的取值范围.解:∈R B ={x |x ≤1或x ≥2}≠∈, ∈A∈R B ,∈分A =∈和A ≠∈两种情况讨论. ∈若A =∈,此时有2a -2≥a , ∈a ≥2.∈若A ≠∈,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2.∈a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∈ B .∈或{1} C .{1} D .∈或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∈或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =x +103-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∈(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2, 故函数值域为{-1,-2,2}. 答案:{-1,-2,2} 10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值. 解:(1)∈f (x )=11+x ,∈f (2)=11+2=13, 又∈g (x )=x 2+2, ∈g (2)=22+2=6. (2)由(1)知g (2)=6, ∈f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数). ∈ax +1≥0,a <0,∈x ≤-1a ,即函数的定义域为(-∞,-1a ].∈函数在区间(-∞,1]上有意义, ∈(-∞,1]∈(-∞,-1a ],∈-1a ≥1,而a <0,∈-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x=1x1+1x(x ≠0), ∈f (t )=t1+t (t ≠0且t ≠-1),∈f (x )=x1+x(x ≠0且x ≠-1). 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∈2f (2)-3f (1)=5,2f (0)-f (-1)=1,∈⎩⎪⎨⎪⎧ k -b =5k +b =1,∈⎩⎪⎨⎪⎧k =3b =-2,∈f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________. 解析:令2x =t ,则x =t 2,∈f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x2-1. 答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x非负数非正数y1 -1B.x 奇数 0 偶数 y1-1C.x 有理数 无理数 y1-1D.x 自然数 整数 有理数 y1-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∈f (t )=4t -12-1,∈f (12)=16-1=15. 法二:令1-2x =12,得x =14,∈f (12)=16-1=15. 3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∈g (x +2)=2x +3=2(x +2)-1, ∈g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∈f (0)=(0-1)2+c =0, ∈c =-1,∈f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( ) A .y =12x (x >0) B .y =24x (x >0)C .y =28x (x >0) D .y =216x (x >0) 解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x . 7.已知f (x )=2x +3,且f (m )=6,则m 等于________. 解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1, ∈f [1f 3]=f (1)=2. 答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1. 再令-b =x ,即得f (x )=x 2+x +1. 11.已知f (x +1x )=x 2+1x 2+1x ,求f (x ).解:∈x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∈f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x )+1.∈f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∈f (2+x )=f (2-x ),∈f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a , ∈f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∈ax 2-4ax +3=0的两实根的平方和为10, ∈10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a , ∈a =1.∈f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .16解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 x >0x -1 x <0,再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 20≤x ≤3x 2+6x-2≤x ≤0的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集. 4.已知f (x )=⎩⎪⎨⎪⎧x +2x ≤-1,x 2-1<x <22x x ≥2,若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∈f (x )=x 2=3,x =±3,而-1<x <2,∈x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧x +12 x ≤-1,2x +1 -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∈⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∈⎝⎛⎭⎫-12,1D.⎝⎛⎭⎫-12,12∈(1,+∞) 解析:选C.f (a )>1∈⎩⎪⎨⎪⎧ a ≤-1a +12>1或⎩⎪⎨⎪⎧-1<a <12a +1>1或⎩⎪⎨⎪⎧a ≥11a -1>1∈⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12∈a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∈⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f x -2, x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0. 答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组⎩⎪⎨⎪⎧x +2≥0x +x +2·1≤5或⎩⎪⎨⎪⎧x +2<0x +x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 -1≤x ≤11 x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R. 由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∈260÷52=5(小时),260÷65=4(小时),∈s =⎩⎪⎨⎪⎧52t 0≤t ≤5,260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ∈BC ,DH ∈BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ∈当点F 在BG 上时, 即x ∈[0,2]时,y =12x 2;∈当点F 在GH 上时, 即x ∈(2,5]时,y =x +x -22×2=2x -2; ∈当点F 在HC 上时,即x ∈(5,7]时, y =S 五边形ABFED =S 梯形ABCD -S Rt∈CEF=12(7+3)×2-12(7-x )2 =-12(x -7)2+10.综合∈∈∈,得函数解析式为y =⎩⎪⎨⎪⎧12x 2x ∈[0,2]2x -2 x ∈2,5].-12x -72+10 x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8. 2.函数f (x )在R 上是增函数,若a +b ≤0,则有( ) A .f (a )+f (b )≤-f (a )-f (b ) B .f (a )+f (b )≥-f (a )-f (b ) C .f (a )+f (b )≤f (-a )+f (-b ) D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断. ∈a +b ≤0,∈a ≤-b ,b ≤-a . 又∈函数f (x )在R 上是增函数, ∈f (a )≤f (-b ),f (b )≤f (-a ). ∈f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:∈y =x x -1;∈y =x 2+x ;∈y =-(x +1)2;∈y =x1-x +2.其中在(-∞,0)上为减函数的是( )A .∈B .∈C .∈∈D .∈∈∈解析:选A.∈y =x x -1=x -1+1x -1=1+1x -1.其减区间为(-∞,1),(1,+∞).∈y =x 2+x =(x +12)2-14,减区间为(-∞,-12).∈y =-(x +1)2,其减区间为(-1,+∞), ∈与∈相比,可知为增函数.4.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 解析:对称轴x =k 8,则k 8≤5,或k8≥8,得k ≤40,或k ≥64,即对称轴不能处于区间内.答案:(-∞,40]∈[64,+∞)1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞) 解析:选A.根据y =-x 2的图象可得.2.若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( )A .单调递增B .单调递减C .先减后增D .无法判断解析:选D.函数单调性强调x 1,x 2∈[-1,3],且x 1,x 2具有任意性,虽然f (0)<f (1),但不能保证其他值也能满足这样的不等关系.3.已知函数y =f (x ),x ∈A ,若对任意a ,b ∈A ,当a <b 时,都有f (a )<f (b ),则方程f (x )=0的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上解析:选C.由题意知f (x )在A 上是增函数.若y =f (x )与x 轴有交点,则有且只有一个交点,故方程f (x )=0至多有一个根.4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 解析:选D.∈a 2+1-a =(a -12)2+34>0,∈a 2+1>a ,∈f (a 2+1)<f (a ),故选D.5.下列四个函数在(-∞,0)上为增函数的是( ) ∈y =|x |;∈y =|x |x ;∈y =-x 2|x |;∈y =x +x|x |.A .∈∈B .∈∈C .∈∈D .∈∈解析:选C.∈y =|x |=-x (x <0)在(-∞,0)上为减函数; ∈y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;∈y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;∈y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有( )∈若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ∈函数y =x 2在R 上是增函数; ∈函数y =-1x在定义域上是增函数;∈y =1x 的单调递减区间是(-∞,0)∈(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而∈不对;∈y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;∈y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);∈y =1x 的单调递减区间不是(-∞,0)∈(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知 f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∈0<x 1<x 2,∈x 1-x 2<0,x 1x 2>0. ∈b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34 )的大小关系为________.解析:∈a 2-a +1=(a -12)2+34≥34,∈f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________. 解析: y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x x >0x 2-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数. 解:(1)∈f (1)=0,f (3)=0,∈⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∈f (x )=x 2-4x +3, ∈设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3) =(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4), ∈x 1-x 2<0,x 1>2,x 2>2, ∈x 1+x 2-4>0.∈f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∈函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.解:由题意可得⎩⎪⎨⎪⎧-1≤x -1≤1-1≤1-3x ≤1,x -1<1-3x即⎩⎪⎨⎪⎧0≤x ≤20≤x ≤23,x <12∈0≤x <12.12.设函数y =f (x )=ax +1x +2在区间(-2,+∞)上单调递增,求a 的取值范围.解:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2, ∈f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2 =ax 1+1x 2+2-ax 2+1x 1+2x 1+2x 2+2=x 1-x 22a -1x 1+2x 2+2.∈f (x )在(-2,+∞)上单调递增, ∈f (x 1)-f (x 2)<0. ∈x 1-x 22a -1x 1+2x 2+2<0,∈x 1-x 2<0,x 1+2>0,x 2+2>0, ∈2a -1>0,∈a >12.1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-aD .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 2.函数y =x +1-x -1的值域为( ) A .(-∞, 2 ] B .(0, 2 ] C .[2,+∞)D .[0,+∞)解析:选B.y =x +1-x -1,∈⎩⎪⎨⎪⎧x +1≥0x -1≥0,∈x ≥1.∈y =2x +1+x -1为[1,+∞)上的减函数,∈f (x )max =f (1)=2且y >0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2, 对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1.则xy 的最大值为________.解析:y 4=1-x 3,∈0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是( ) A .1 B .0 C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知, f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.。
必修一数学练习题及答案

必修一数学练习题及答案一、选择题1. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为()A. 1B. 2C. 3D. 42. 函数f(x)=2x^2-3x+1在区间(-∞,-1)上是()A. 增函数B. 减函数C. 常数函数D. 非单调函数3. 若sinθ+cosθ=a,则sin^2θ+cos^2θ的值为()A. a^2B. 1C. 2D. 04. 已知等差数列的前三项为2, 5, 8,求该数列的第10项。
A. 23B. 21C. 20D. 195. 已知点A(1,2)和点B(4,6),求线段AB的中点坐标。
A. (2,4)B. (3,5)C. (4,8)D. (5,7)二、填空题1. 已知圆的方程为(x-3)^2+(y+1)^2=25,求该圆的半径。
2. 函数y=x^3-2x^2+3x-1在x=1处的导数为______。
3. 若等比数列的前三项为3, 9, 27,求该数列的公比。
4. 已知直线l1: y=2x+1和直线l2: y=-4x-7,求两直线的交点坐标。
5. 已知正弦函数y=sin(2x-π/3)的周期为π,求其振幅。
三、解答题1. 解不等式:|x+2|-|x-3|<4。
2. 已知函数f(x)=x^3-3x^2+2,求其在区间[1,3]上的最大值和最小值。
3. 求椭圆x^2/a^2+y^2/b^2=1(其中a>b>0)的焦点坐标。
4. 已知某函数的导数为f'(x)=6x^5-15x^4+6x^3,求原函数f(x)。
5. 证明:对于任意实数x,等式e^x > 1+x恒成立。
答案:一、选择题1. B2. A3. B4. A5. B二、填空题1. 半径为5。
2. 导数为-3。
3. 公比为3。
4. 交点坐标为(-1,-5)。
5. 振幅为1。
三、解答题1. 解不等式:首先考虑绝对值,将不等式分为两部分,当x<-2时,不等式变为-x-2+x-3<4,解得x>-5,所以x属于(-5,-2);当-2≤x<3时,不等式变为x+2+x-3<4,解得x<2.5,所以x属于[-2,3);当x≥3时,不等式变为x+2-x+3<4,无解。
高中物理必修一练习题

高中物理必修一练习题一、选择题(每题3分,共30分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
当一个物体受到的力为F,质量为m时,其加速度a的计算公式是:A. a = F/mB. a = m/FC. a = F × mD. a = m × F2. 假设一个物体在水平面上做匀速直线运动,摩擦力f与物体所受的拉力F相等。
如果物体的质量为m,重力加速度为g,那么物体所受的拉力F是:A. F = mgB. F = 2mgC. F = mg/2D. F = mg + f3. 一个物体从静止开始自由落体运动,忽略空气阻力,其下落h高度所需的时间t与下列哪个公式相符:A. t = √(2h/g)B. t = √(h/g)C. t = 2h/gD. t = h/g4. 一个物体在竖直方向上做匀加速直线运动,初速度为v0,加速度为a,经过时间t后的速度v与下列哪个公式相符:A. v = v0 + atB. v = v0 - atC. v = v0 × atD. v = v0 / at5. 根据能量守恒定律,一个物体从高度h自由落下,忽略空气阻力,其势能转化为动能。
当物体落地时,其动能Ek与下列哪个公式相符:A. Ek = mghB. Ek = 1/2 mghC. Ek = mgh/2D. Ek = 2mgh6. 假设一个物体在水平面上做匀速圆周运动,其半径为r,线速度为v,那么物体所受的向心力Fc与下列哪个公式相符:A. Fc = mv²/rB. Fc = mvrC. Fc = r × mv²D. Fc = mv² × r7. 一个物体在竖直方向上做简谐振动,其振幅为A,周期为T,那么物体在振动过程中的最大速度vmax与下列哪个公式相符:A. vmax = 2πA/TB. vmax = A/TC. vmax = 2A/TD. vmax = √(2A/g)8. 假设一个物体在水平面上做匀加速直线运动,初速度为v0,加速度为a,经过时间t后,物体的位移s与下列哪个公式相符:A. s = v0t + 1/2 at²B. s = v0t - 1/2 at²C. s = v0²/2aD. s = 2v0t - at²9. 一个物体在竖直方向上做匀减速直线运动,初速度为v0,加速度为a,经过时间t后物体停止,那么物体的位移s与下列哪个公式相符:A. s = v0t - 1/2 at²B. s = v0t + 1/2 at²C. s = v0²/2aD. s = 2v0t - at²10. 根据动量守恒定律,两个质量分别为m1和m2的物体发生完全非弹性碰撞,碰撞后两物体粘在一起,那么碰撞后的速度v与下列哪个公式相符:A. v = (m1 + m2)v1 / (m1 + m2)B. v = (m1v1 + m2v2) / (m1 + m2)C. v = (m1v1 - m2v2) / (m1 + m2)D. v = (m1v1 + m2v2) / (m1 - m2)二、填空题(每题2分,共20分)11. 牛顿第三定律指出,作用力与反作用力大小________,方向________。
数学练习题高一必修一

数学练习题高一必修一一、集合与函数(1) {x | x是小于5的自然数}(2) {x | x²3x+2=0}(1) 2∈{1, 2, 3}(2) {a, b}={b, a}3. 设A={1, 2, 3},B={2, 3, 4},求A∪B、A∩B、AB。
4. 若f(x)=2x+1,求f(3)、f(1)。
(1) f(x)=|x|,g(x)=x²(2) f(x)=x²,g(x)=√(x⁴)二、指数函数与对数函数(1) 0.0032(2) 5600000(1) 2^3 × 2^5(2) (3^2)^43. 已知f(x)=3^x,求f(2)、f(1)。
(1) log₂8=3(2) log₁₀100=2(1) log₂16 log₂2(2) log₃(1/27)三、三角函数(1) sin30°=1/2(2) cos90°=02. 已知sinα=1/2,求α的值(α为锐角)。
(1) tan45°(2) cot60°4. 已知cosθ=1/2,求θ的值(θ为钝角)。
5. 若sinα=3/5,求cosα的值。
四、数列(1) 2, 4, 6, 8,(2) 1, 3, 9, 27,(1) 1, 3, 5, 7,(2) 2, 4, 8, 16,3. 已知等差数列的首项为3,公差为2,求第10项。
4. 已知等比数列的首项为2,公比为3,求第5项。
(1) 1, 2, 3, 4,(2) 1, 1/2, 1/4, 1/8,五、不等式1. 解下列不等式:(1) 3x 7 > 2x + 4(2) 5 2(x 1) ≤ 3x2. 已知不等式组:\[\begin{cases}2x 3y > 6 \\x + 4y ≤ 8\end{cases}\]求解该不等式组。
3. 对下列不等式进行化简:(1) (x 2)(x + 3) > 0(2) (2x + 1)(3 x) < 04. 已知x > 0,求解不等式2^x > 4。
数学必修一练习题汇总(含答案)

第一章综合练习一、选择题(每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x) ③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y =f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x=-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( ) A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f(x)=(m-1)x2+6mx+2是偶函数,∴m=0.∴f(x)=-x2+2.∴f(0)=2,f(1)=1,f(-2)=-2,∴f(-2)<f(1)<f(0).答案:f(-2)<f(1)<f(0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设A={x|-2≤x≤5},B={x|m-1≤x≤2m+1},(1)当x∈N*时,求A的子集的个数;(2)当x∈R且A∩B=Ø时,求m的取值范围.解:(1)∵x∈N*且A={x|-2≤x≤5},∴A={1,2,3,4,5}.故A的子集个数为25=32个.(2)∵A∩B=Ø,∴m-1>2m+1或2m+1<-2或m-1>5,∴m<-2或m>6.18.(12分)已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠Ø且B⊆A,求a,b的值.解:(1)当B=A={-1,1}时,易得a=0,b=-1;(2)当B含有一个元素时,由Δ=0得a2=b,当B={1}时,由1-2a+b=0,得a=1,b=1当B={-1}时,由1+2a+b=0,得a=-1,b=1.19.(12分)已知函数f(x)=xax+b(a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.解:∵f(x)=xax+b且f(2)=1,∴2=2a+b.又∵方程f(x)=x有唯一实数解.∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a .(1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2. (2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600, y 2=4x +1800+(x100+4)×300=7x +3000. 令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3. (2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].第二章综合练习一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( ) A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下() A.0.015克B.(1-0.5%)3克C.0.925克 D.1000.125克解析:设该放射性元素满足y=a x(a>0且a≠1),则有12=a100得a=(12)1100.可得放射性元素满足y=[(12)1100]x=(12)x100.当x=3时,y=(12)3100=100(12)3=1000.125.答案:D6.函数y=log2x与y=log 12x的图象()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于y=x对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y=lg(21-x-1)的图象关于()A.x轴对称B.y轴对称C.原点对称D.y=x对称解析:f(x)=lg(21-x-1)=lg1+x1-x,f(-x)=lg1-x1+x=-f(x),所以y=lg(21-x-1)关于原点对称,故选C.答案:C8.设a>b>c>1,则下列不等式中不正确的是() A.a c>b c B.log a b>log a cC.c a>c b D.log b c<log a c解析:y=x c在(0,+∞)上递增,因为a>b,则a c>b c;y=log a x在(0,+∞)上递增,因为b>c,则log a b>log a c;y=c x在(-∞,+∞)上递增,因为a>b,则c a>c b.故选D.答案:D9.已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)是()A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为() A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.(2)当0<a<1时,图象如上图2,不满足题意.答案:A12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1. 答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12. 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22. 当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax ),其中0<a <1. (1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-ax 11-ax 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎪⎨⎪⎧1-ax >0,①1-ax <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a1-a}.第三章综合练习一、选择题(每小题5分,共60分)1.二次函数f(x)=2x2+bx-3(b∈R)的零点个数是() A.0B.1C.2D.4解析:∵Δ=b2+4×2×3=b2+24>0,∴函数图象与x轴有两个不同的交点,从而函数有2个零点.答案:C2.函数y=1+1x的零点是()A.(-1,0) B.-1 C.1 D.0解析:令1+1x=0,得x=-1,即为函数零点.答案:B3.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()解析:把y=f(x)的图象向下平移1个单位后,只有C图中图象与x轴无交点.答案:C4.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在(-2,2)上仅有一个实数根,则f(-1)·f(1)的值()A.大于0 B.小于0C.无法判断D.等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部.答案:C5.函数f (x )=e x -1x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内. 答案:B6.方程log 12x =2x -1的实根个数是( ) A .0 B .1 C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台解析:设产量为x 台,利润为S 万元,则S =25x -y =25x -(0.1x 2-11x +3000) =-0.1x 2+36x -3000=-0.1(x -180)2+240,则当x =180时,生产者的利润取得最大值. 答案:D8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0D .以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水()A.10吨B.13吨C.11吨D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为() 答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则()A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:那么方程2x=x2的一个根所在区间为()A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f(x)=x3-2x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f(x)=ax2-bx+1的零点为-12,13,则a=__________,b=__________.解析:由韦达定理得-12+13=ba,且-12×13=1a.解得a=-6,b=1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l,则这块场地面积y与场地一边长x的关系为________.图1解析:由题意知场地的另一边长为l-2x,则y=x(l-2x),且l-2x>0,即0<x<l2.答案:y=x(l-2x)(0<x<l 2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1% 即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a =10, ∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3. 18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800x m ,于是鱼池与路的占地面积为 y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2. 答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c , 得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0). (3)令p (x )=0,即-12x 2+14x -50=0, 解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~2003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52, ∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=32x+52能基本反映产量变化.(3)f(7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.必修1综合练习一、选择题(每小题5分,共60分)1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}解析:∵A ∩B ={1,2},∴(A ∩B )∪C ={1,2,3,4}. 答案:D2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A )∩(∁U B ). 答案:D3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝ ⎛⎭⎪⎫12的值为( )A .1B .3C .15D .30解析:g (1-2x )=1-x 2x 2,令12=1-2x ,则x =14,∴g ⎝ ⎛⎭⎪⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7)B .(5,7)C .(-4,-3)∪(5,7)D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎪⎨⎪⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C 6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ) A .单调递减无最小值 B .单调递减有最大值 C .单调递增无最大值D .单调递增有最大值解析:2x +1在(-∞,+∞)上递增,且2x +1>0, ∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( ) A .0 B .1 C .2D .3解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( ) A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错; 函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D 错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝ ⎛⎭⎪⎫1102=10,∴H 1=103.答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m的取值范围是( )A .(0,12) B .(-1,1) C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1, 解得0<m <12,即m ∈(0,12). 答案:A12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎨⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:2314.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪0≤k <3415.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数. 证明:设x 1<x 2<0,则g (x 1)-g (x 2)=k x 1-k x 2=k (x 2-x 1)x 1x 2.∵x 1<x 2<0,∴x 1x 2>0,x 2-x 1>0,又∵k <0,∴g (x 1)-g (x 2)<0,即g (x 1)<g (x 2),∴g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.解:当Q ≠Ø,且P ∩Q =Ø时,⎩⎪⎨⎪⎧ 2k -1<2,2k -1≥k +1,或⎩⎪⎨⎪⎧k +1>5,2k -1≥k +1.解得k >4;当Q =Ø时,即2k -1<k +1,即k <2时,P ∩Q =Ø.综上可知,当P ∩Q =Ø时,k <2或k >4.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.解:因为函数f (x )为一次函数,所以f (x )在[-1,1]上是单调函数,f (x )在[-1,1]上的最大值为max{f (-1),f (1)}.分别取x =0和x =2,得⎩⎪⎨⎪⎧4f (1)-2f (-1)=18,4f (-1)-2f (1)=24,解得f (1)=10,f (-1)=11,所以函数f (x )在[-1,1]上的最大值为f (-1)=11.又因为f (1)<f (-1),所以f (x )在R 上是减函数,所以f (2007)>f (2008).20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上单调递增.故⎩⎪⎨⎪⎧ f (2)=2f (3)=5,即⎩⎪⎨⎪⎧ 4a -4a +2+b =29a -6a +2+b =5,解得⎩⎪⎨⎪⎧a =1b =0 ②当a <0时,f (x )在[2,3]上单调递减.故⎩⎪⎨⎪⎧f (2)=5f (3)=2,即⎩⎪⎨⎪⎧4a -4a +2+b =59a -6a +2+b =2,解得⎩⎪⎨⎪⎧a =-1b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-mx =x 2-(2+m )x +2,由题意知2+m 2≤2或2+m2≥4,∴m ≤2或m ≥6. 21.(12分)设函数y =f (x ),且lg(lg y )=lg3x +lg(3-x ). (1)求f (x )的解析式和定义域; (2)求f (x )的值域; (3)讨论f (x )的单调性.解:(1)lg(lg y )=lg[3x ·(3-x )],即lg y =3x (3-x ),y =103x (3-x ).又⎩⎪⎨⎪⎧3x >0,3-x >0,所以0<x <3,所以f (x )=103x (3-x )(0<x <3).(2)y =103x (3-x ),设u =3x (3-x )=-3x 2+9x =-3⎝⎛⎭⎪⎫x 2-3x +94+274=-3(x -32)2+274.当x =32∈(0,3)时,u 取得最大值274,所以u ∈(0,274],y ∈(1,10274].(3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数,而y =10u是增函数,所以在⎝ ⎛⎦⎥⎤0,32上f (x )是递增的;当32<x <3时,u 是减函数,y =10u 是增函数,所以f (x )是减函数.22.(12分)已知函数f (x )=lg(4-k ·2x )(其中k 为实数), (1)求函数f (x )的定义域;(2)若f (x )在(-∞,2]上有意义,试求实数k 的取值范围. 解:(1)由题意可知:4-k ·2x >0,即解不等式:k ·2x <4, ①当k ≤0时,不等式的解为R ,②当k >0时,不等式的解为x <log 24k ,所以当k ≤0时,f (x )的定义域为R ; 当k >0时,f (x )的定义域为(-∞,log 24k ).(2)由题意可知:对任意x ∈(-∞,2],不等式4-k ·2x >0恒成立.得k <42x ,设u =42x , 又x ∈(-∞,2],u =42x 的最小值1.所以符合题意的实数k 的范围是(-∞,1).。
高中物理必修一练习题

第一章运动的描述第1节质点参考系和坐标系1.物体的________随时间的变化叫机械运动,它是自然界中最简单、最基本的运动形式.2.我们研究物体的运动时,在某些特定情况下,可以不考虑物体的______和______,把它简化为一个__________的点,这样的点称为质点,质点是一个__________的物理模型.将物体看做质点是有条件的.例如,在研究地球的公转时,地球的大小______(填“可以”或“不可以”)忽略;在研究列车沿平直轨道运动的速度变化时,车厢各点的运动情况______(填“相同”或“不同”),可用车上任一点的运动代表列车的运动,这时______(填“可以”或“不可以”)把列车看做质点.3.在描述物体的运动时,首先要选定某个其他物体做参考,这个被选定做参考的、假定为______的其他物体,叫参考系.4.我们坐在校园里,欣赏毛泽东的一句诗词:“坐地日行八万里,巡天遥看一千河”时,我们感觉静止不动,是因为选取______为参考系,而“坐地日行八万里”,是选取______为参考系.5.为了定量地描述物体的位置及位置的变化,需要在所选的参考系上建立适当的__________.如果物体沿直线运动,为了定量描述物体的位置及位置的变化,往往以这条直线为x轴,在直线上规定______、______和__________,建立直线坐标系.如图1所示,若某一物体运动到A点,此时它的位置坐标x A=______,若它运动到B点,此时它的位置坐标x B=______.图16.下列关于质点的说法中正确的是()A.只有体积很小的物体才能看成质点B.只有质量很小的物体才能看成质点C.质点一定代表一个小球D.质点不一定代表一个很小的物体7.坐在火车里的乘客,总感到车厢外的树在“向后跑”,他选择的参考系是()A.乘坐的火车B.远处的山C.车外的树D.太阳8.在一段有绝缘包皮的电线上,有一个漂亮的瓢虫和一个黑色的蚂蚁在爬行,沿电线建立一个坐标系,瓢虫和蚂蚁在某一时刻的位置如图2中的x1和x2所示,则瓢虫和蚂蚁的位置坐标各是多少?图2【概念规律练】知识点一质点的概念1.关于质点,下列说法中正确的是()A.质点是一个理想化模型,实际上不存在B.因为质点没有大小,所以与几何中的点是一样的C.凡是小的物体,皆可以看成质点;凡是大的物体,皆不能看成质点D.如果物体的形状和大小对于所研究的问题属于无关或次要因素时,即可把物体看成质点2.在以下哪些情况中可将物体看成质点()A.研究某学生骑车回校的速度B.对某学生骑车姿势进行生理学分析C.研究火星探测器从地球到火星的飞行轨迹D.研究火星探测器降落火星后如何探测火星的表面知识点二参考系3.甲、乙两辆汽车在平直的公路上并排行驶,甲车内的旅客看见窗外的树木向东移动,乙车内的旅客发现甲车没有运动,如果以地面为参考系,上述事实表示()A.甲车向西运动,乙车不动B.乙车向西运动,甲车不动C.甲车向西运动,乙车向东运动D.甲、乙两车以相同的速度都向西运动4.甲、乙两辆汽车均以相同的速度行驶,下列有关参考系的说法正确的是()A.如果两辆汽车均向东行驶,若以甲车为参考系,乙车是静止的B.如果观察的结果是两辆车均静止,参考系可以是第三辆车C.如果以在甲车中一走动的人为参考系,乙车仍是静止的D.如果甲车突然刹车停下,乙车仍向东行驶,以乙车为参考系,甲车往西行驶知识点三坐标系5.一个小球从距地面4 m高处落下,被地面弹回,在距地面1 m高处被接住,坐标原点定在抛出点正下方2 m处,坐标轴的正方向设为向下,则小球的抛出点、落地点、接住点的位置坐标分别是()A.2 m,-2 m,-1 m B.-2 m,2 m,1 mC.4 m,0,1 m D.-4 m,0,-1 m【方法技巧练】一、判断一个物体能否看成质点的方法7.2009年10月1日,我国在北京成功地举行了建国60周年国庆大阅兵,气势恢宏的场面,极大地激发了全国人民的爱国热情和建设好现代化祖国的信心,下列说法中正确的是() A.研究正在列队通过天安门的女子方队的队形时,可以把队员看成质点B.研究从天安门上空飞过的歼11飞机的机群数量时,可以把飞机看成质点C.欣赏我国首批战斗机女飞行员驾驶的飞机通过天安门的壮观场面时,飞机可以看成质点D.研究女兵方队从东华表起正步通过天安门,到达西华表的时间时,不能把女兵方队看成质点8.在火车从北京到上海的运动过程中,下列说法正确的是()A.火车车轮只做平动B.火车车轮的平动可以用质点模型分析C.计算火车从北京到上海的运动时间时,可将火车视为质点D.计算火车经过一座桥的时间时,可将火车视为质点二、巧取参考系来分析物体的相对运动9.甲、乙、丙三人各乘一个热气球,甲看到楼房匀速上升,乙看到甲匀速上升,甲看到丙匀速上升,丙看到乙匀速下降,那么,从地面上看,甲、乙、丙的运动情况可能是() A.甲、乙匀速下降,v乙>v甲,丙停在空中B.甲、乙匀速下降,v乙>v甲,丙匀速上升C.甲、乙匀速下降,v乙>v丙,丙匀速下降,且v丙>v甲D.以上说法均不对1.关于质点,下列说法中正确的是()A.质点一定是体积和质量极小的物体B.因为质点没有大小,所以与几何中的点没有区别C.研究运动员在马拉松比赛中运动的快慢时,该运动员可看做质点D.欣赏芭蕾舞表演者的精彩表演时,可以把芭蕾舞表演者看做质点2.在下列情形中,可以将研究对象看做质点的是()A.地面上放一只木箱,在上面的箱角处用水平力推它,在研究它是先滑动还是先翻转时B.在2008年北京奥运会上研究刘翔在男子110米栏比赛中的跨栏动作时C.研究“嫦娥一号”卫星在绕地球飞行及绕月球飞行的轨迹时D.研究“嫦娥一号”在轨道上飞行的姿态时3.在研究物体的运动时,下列物体中可以当作质点处理的是()A.研究一端固定且可绕该端转动的木杆的运动时,此杆可作为质点来处理B.在大海中航行的船,要确定它在大海中的位置时,可以把它当作质点来处理C.研究杂技演员走钢丝的表演时,杂技演员可以当作质点来处理D.研究地球绕太阳公转时,地球可以当作质点来处理4.关于参考系,下列说法正确的是()A.研究物体的运动必须选取参考系B.甲、乙两人均以相同的速度向正东行走,若以甲为参考系,则乙是静止的C.车站平行停靠着两列火车,甲火车上的人只能看到乙火车,当他看到乙火车动了,一定是乙火车开动了D.我们平时说楼房静止,是指楼房相对于地球的位置是不变的5.敦煌曲子词中有这样的诗句:“满眼风波多闪烁,看山恰似走来迎,仔细看山山不动,是船行.”其中“看山恰似走来迎”和“是船行”所选的参考系分别是()A.船和山B.山和船C.地面和山D.河岸和流水6.第一次世界大战时,一位法国飞行员在2 000 m高空飞行时,发现座舱边有一个与他几乎相对静止的小“昆虫”,他顺手抓过来一看,原来是一颗子弹头,发生这个故事是因为()A.子弹静止在空中B.子弹飞行得很慢C.飞机飞行得很快D.子弹与飞机同方向飞行,且飞行的速度很接近7.地面的观察者看雨滴是竖直下落的,坐在匀速行驶的列车车厢中的乘客看雨滴是() A.水平向前运动B.水平向后运动C.倾斜落向前下方D.倾斜落向后下方8.下列说法正确的是()A.甲、乙两人均以相同速度向正东方向行走,若以甲为参考系,则乙是静止的B.甲、乙两人均以相同速度向正东方向行走,若以乙为参考系,则甲是静止的C.两辆汽车在公路上沿同一直线行驶,且它们之间的距离保持不变,若观察结果是两辆车都静止,则选用的参考系,必定是其中的一辆汽车D.两人在公路上行走,速度大小不同、方向相同,选择其中任一人作为参考系,则两人都是静止的9.某校高一的新同学分别乘两辆汽车去市公园游玩.两辆汽车在平直公路上运动,甲车内一同学看见乙车没有动,而乙车内一同学看见路旁的树木向西移动.如果以地面为参考系,那么,上述观察说明()A.甲车不动,乙车向东运动B.乙车不动,甲车向东运动C.甲车向西运动,乙车向东运动D.甲、乙两车以相同的速度都向东运动第一章运动的描述第1节质点参考系和坐标系课前预习练1.空间位置2.形状大小有质量理想化可以相同可以3.不动4.地面地心5.坐标系原点正方向单位长度 3 m-2 m6.D[质点是理想化的物理模型,物体能否看做质点与物体的体积大小、质量大小无关,故A、B、C错误,D正确.]7.A8.x1=2 m x2=-2 m课堂探究练1.AD[质点是一个理想化的物理模型,尽管不是实际存在的物体,但它是实际物体的一种近似反映,是为了研究问题的方便而进行的科学抽象,它突出了事物的主要特征,抓住了主要因素,忽略了次要因素,使所研究的复杂问题得到了简化.]2.AC[研究学生的骑车速度或探测器的飞行轨迹时,其大小和形状的影响可忽略不计,故可以看成质点.但当研究学生的骑车姿势时,学生的身躯和四肢就构成了研究的对象,故不能把学生看成质点.当火星探测器在火星表面探测时,探测器的动作直接影响探测的效果,所以探测器不能看成质点,故正确答案为A、C.]点评能否把一个物体看做质点,并不是由物体的形状和大小来决定的,而是由它的形状和大小对所研究问题的影响程度决定的.一般来说,如果在研究的问题中,物体的形状、大小及物体上各部分运动的差异是次要的或不起作用的因素时,物体就可看做质点.3.D[乙车相对甲车内的人没有运动,说明甲、乙两车运动情况相同;以甲车内的人为参考系,树向东运动,则以树为参考系,甲车向西运动,所以甲、乙两车以相同的速度向西运动,故正确答案为D.]点评①描述物体是否运动首先要选定一个参考系,以此为标准来衡量物体是运动的还是静止的,参考系一旦确定,对物体运动的描述也唯一确定.②参考系的选择是任意的,但应以观测方便和使运动的描述简单为原则.研究地面上物体的运动时,常选地面为参考系.4.ABD[两车的速度相同时,其相对位置不变,以其中任一辆车为参考系,另一辆车是静止的,故A正确;若第三辆车丙与甲、乙两车同向同速行驶,以丙车为参考系时,甲、乙两车均静止,故B正确;若一人在甲车中走动时,他与乙车的相对位置是变化的,则乙车是运动的,故C错误;甲车突然刹车停下,乙车向东行驶,甲车与乙车间的距离增大,甲车相对乙车向西运动,故D正确.]5.B[根据题意建立如右图所示的坐标系,A点为抛出点,坐标为-2 m,B点为坐标原点,D点为地面,坐标为2 m,C点为接住点,坐标为1 m,故正确答案为B.]6.见解析解析可以以冰场中央为坐标原点,向东为x轴正方向,向北为y轴正方向,建立水平面内的直角坐标系,这样就可以准确地描述运动员的位置了.如果要描述飞机的位置,则需要确定一点(如观察者所在的位置)为坐标原点,建立三维直角坐标系来描述.7.BD[研究女子方队的队形时,队员的体形不能忽略,因此不能把队员看成质点,故A 错;研究从天安门上空飞过的歼11飞机的机群数量时,完全可以忽略飞机的大小和形状,因此可以把飞机看成质点,故B对;欣赏飞机的飞行表演时不能把飞机看成质点,故C错;研究女兵方队从东华表起正步通过天安门,到达西华表的时间时,需要考虑队列的长度,因此不能把女兵方队看成质点,故D对.]8.BC[车轮整体上随车做平动,但车轮上各点又绕车轴转动,若研究车轮随车整体的平动时,可用质点模型分析,故A错,B对;由于火车本身的长度相对北京到上海的距离是很小的,可忽略不计,而相对一座桥其长度是不可忽略的,故C对,D错.]方法总结物体的大小和形状对所研究问题的影响可以忽略不计时,可以把物体视为质点.如地球比较大,但在研究地球绕太阳公转时,地球的大小就变成次要因素,我们完全可以把地球当作质点来看待.然而,在研究地球的自转时,就不能把地球看成质点了.研究火车从北京到上海的运动时间可以把火车视为质点,但研究火车过桥的时间就不能把火车看成质点了.9.AB[甲、乙、丙三人在观察其他物体的运动时,是以自己所乘的热气球为参考系的,应根据参考系的定义来判定甲、乙、丙的运动情况,楼房和地面连为一体,是同一个参考系,甲看到楼房匀速上升,说明甲相对于地面匀速下降;乙看到甲匀速上升,说明乙也在匀速下降,且乙下降的速度v乙大于甲下降的速度v甲,即v乙>v甲;甲看到丙匀速上升,有三种可能性:(1)丙静止.(2)丙匀速上升.(3)丙匀速下降,且速度关系为v丙<v甲.综上可知,选项A、B正确.]课后巩固练1.C[物体能否被看做质点与物体本身的体积和质量的大小无关,主要是看其大小和形状能否可以忽略,故A错;质点有质量,几何中的点没有质量,所以不同,故B错;研究运动员长跑的运动速度时,可以忽略运动员的大小和形状,故可看做质点,故C正确;表演者跳舞时其身体的各个部分动作不能忽略,所以不能看做质点,故D不正确.]2.C[当研究木箱的翻转时,其大小和形状不能忽略,所以不能看做质点,故A错;在研究刘翔的跨栏动作时,不能忽略其肢体的动作及形状,所以不能看做质点,故B错;研究“嫦娥一号”绕地球及月球的飞行轨迹时,其大小和形状均可忽略,可看做质点,但研究它的飞行姿态时,就不能看做质点,故C对,D错.]3.BD[物体能否看做质点,主要取决于物体的大小和形状在所研究的问题中是否属于次要的、可忽略的因素,而不仅仅取决于物体的大小和形状.研究物体的转动时,物体各点运动的差异是不能忽略的,不能看做质点,故A错.杂技演员走钢丝时要利用身体的各个部位保持平衡,也不能看做质点,C错.据此可判断只有B、D项正确.]4.ABD 5.A6.D[子弹与飞机虽然都飞得很快,但若飞行速度很相近,则飞行员和子弹几乎相对静止,那么飞行员就很容易抓住子弹,D正确.]7.D[乘客是以列车为参考系看雨滴运动的,雨滴在下落的同时还相对列车向后运动,故乘客看到的雨滴是倾斜落向后下方,D正确.]8.AB[由运动和静止的相对性可知,A、B正确,D错误.C选项除可选其中一辆车为参考系外,也可选与两车速度相同的第三辆车为参考系,故C错误.]9.D[乙车内一同学看见路旁的树木向西移动,说明乙车向东运动;甲车内一同学看见乙车没有动,说明甲、乙两车相对静止.综合这两点可知,甲、乙两车以相同的速度都向东运动,D正确.]10.(1)B(2)C解析(1)坐标轴的正方向向东,则位置在坐标原点以东为正,在坐标原点以西为负,汽车最初在原点以西且距原点3 km处,所以最初位置是-3 km,同理最终位置是2 km,故B正确.(2)坐标原点向西移5 km后,最初位置在原点的东方,距原点2 km.最终位置还在原点以东,距离变为7 km,故C正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2(三)抛体运动与圆周运动考点11 运动的合成与分解【单项选择题】1.(2009-06)如图所示,一条小船过河,河水流速v l=3米/秒,船在静水中速度v2=4米/秒,船头方向与河岸垂直,关于小船的运动,以下说法正确的是A.小船相对于岸的速度大小是7米/秒B.小船相对于岸的速度大小是5米/秒C.小船相对于岸的速度大小是1 米/秒D.小船的实际运动轨迹与河岸垂直2.(2010-06)某一时刻,一物体沿水平和竖直方向的分速度分别为8 m/s和6m/s,则该物体的速度大小是A.2 m/s B.6 m/s C.10 m/s D.14 m/s3.(2010-06)在某一高度以3 rn/s的速度沿水平方向抛出一物体,忽略空气阻力,当物体的速度为5m/s时,其竖直方向的分速度为A.3 m/s B.4m/s C.5 m/s D.6m/s4.(2011-06)做平抛运动的小球,竖直方向的分速度大小v,与时间t的关系如下列图象,其中正确的图象是考点12 抛体运动【单项选择题】1.(2009-06)如图,小球以一定速度沿水平方向离开桌面后做平抛运动,这样的平抛运动可分解为水平方向和竖直方向的两个分运动,下列说法正确的是A.水平方向的分运动是匀加速运动B.竖直方向的分运动是匀加速运动C.水平方向的分速度为零D.竖直方向的分速度不变2.(2010-06)下列做平抛运动的物体是A.升空的火箭B.树上落下的果实C.投向篮框的篮球D.水平飞行的飞机释放的物体3.(2010-06)向空中抛出一个石子,若不计空气阻力,石子在飞行过程中,下列说法正确的是A.石子质量越大,加速度越大B.石子质量越大,加速度越小C.石子的加速度大于重力加速度D.石子的加速度等于重力加速度4.(2012-01)如图4所示,用平抛竖落仪做演示实验,a小球做平抛运动的同时b小球做自由落体运动,观察到的实验现象是A.两小球同时到达地面B.a小球先到达地面C.b小球先到达地面D.a小球初速度越大在空中运动时间越长【多项选择题】5.(2012-01)图23为自动喷水装置的示意图。
喷头高度为H,喷水速度为v,若要增大喷洒距离L,下列方法中可行的有A.减小喷水的速度vB.增大喷水的速度vC.减小喷头的高度HD.增大喷头的高度H考点13 匀速圆周运动、角速度、线速度、向心加速度考点14 匀速圆周运动的向心力【单项选择题】1.(2009-06)如图所示,由于地球的自转,地球表面上P、Q两点均绕地球自转轴做匀速圆周运动,对于P、Q 两点的运动,下列说法正确的是A.P 、Q 两点的线速度大小相等B.P、Q两点的角速度大小相等C.P点的角速度比Q 点的角速度大D.P点的线速度比Q 点的线速度大2.(2010-06)如图所示,细杆上固定两个小球a和b,杆绕O点做匀速转动.下列说法正确的是A.a、b两球角速度相等B.a、b两球线速度相等C.a球的线速度比b球的大D.a球的角速度比b球的大3.(2011-06)广州的广州塔和上海的东方明珠塔都随地球的自转一起转动,下列说法正确的是A.两座塔的加速度相同B.两座塔的线速度相同C.两座塔的运动周期相同D.两座塔的角速度不同4.(2009-06)如图,一个圆盘在水平面内绕通过中心的竖直轴匀速转动,盘上一小物体相对圆盘静止,随圆盘一起运动。
关于这个物体受到的向心力,下列说法中正确的是A.向心力方向指向圆盘中心B.向心力方向与物体的速度方向相同C.向心力方向与转轴平行D.向心力方向保持不变5.(2009-06)宇航员乘坐宇宙飞船环绕地球做匀速圆周运动时,下列说法正确的是A.地球对宇航员没有引力B.宇航员处于失重状态C.宇航员处于超重状态D.宇航员的加速度等于零6.(2010-06)绕地球做匀速圆周运动的人造卫星,其向心力来源于A.卫星自带的动力B.卫星的惯性C.地球对卫星的引力D.卫星对地球的引力7.(2010-06)如图11所示,飞机在竖直平面内俯冲又拉起,这一过程可看作匀速圆周运动.在最低点时,飞行员对座椅的压力为F.设飞行员所受重力为G.则飞机在最低点时A.F=0 B.F<G C.F=G D.F>G8.(2011-06)飞机做可视为匀速圆周运动的飞行表演。
若飞行半径为2000m,速度为200m/s,则飞机的向心加速度大小为A.0.1m/s2B.10m/s2C.20m/s2D.40m/s29.(2012-01)如图16所示,汽车过拱形桥时的运动可以看做匀速圆周运动,质量为1吨的汽车以20m/s的速度过桥,桥面的圆弧半径为500m,g取9.8m/s2,则汽车过桥面顶点时对桥面的压力是A.800N B.9000N C.10000N D.10800N10.(2012-01)如图18所示,小球在水平面内做匀速圆周运动。
小球在运动过程中A.速度不变B.角速度不变C.受到的合外力不变D.向心加速度不变【多项选择题】11.(2011-06)关于地球同步卫星,下列说法正确的是A.卫星距地面的高度不确定B.卫星的运行轨道在地球的赤道平面内C.卫星的运行周期与地球的自转周期相同D.卫星的运行角速度与地球的自转角速度相同12.(2012-01)一架做飞行表演的飞机,在水平面内做匀速圆周运动。
若已知飞机飞行轨迹为半径为3000m,飞行的线速度为150m/s,可以求出的有A.飞机的角速度B.飞机的向心力C.飞机运动的周期D.飞机的向心加速度考点15 离心现象【单项选择题】1.(2009-06)下列现象中,与离心运动无关的是A.汽车转弯时速度过大,乘客感觉往外甩B.汽车急刹车时,乘客身体向前倾C.洗衣机脱水桶旋转,将衣服上的水甩掉D.运动员投掷链球时,在高速旋转的时候释放链球2.(2011-06)下列运动项目中利用离心现象的是A.投篮球B.扣杀排球C.投掷链球D.投掷飞镖3.(2012-01)下列现象中,与离心现象无关的是A.用洗衣机脱去湿衣服中的水B.旋转雨伞上的水滴C.汽车紧急刹车时,乘客身体向前倾斜D.运动员将链球旋转起来后掷出【多项选择题】4.(2010-06)下列属于离心现象的是A.投篮球B.投掷标枪C.用洗衣机脱去湿衣服中的水D.旋转雨伞甩掉雨伞上的水滴(四)机械能和能源考点16 功和功率【单项选择题】1.(2009-06)某一物体在大小为F的恒外力作用下运动,在时间t内的位移为s,若F与s方向相同,则F在这段时间内对物体做的功W是A.W=F/t B.W=F/s C.W=Ft D.W=Fs2.(2012-01)如图6所示,雪撬在与水平方向成α角的拉力F作用下,由静止沿水平面向前运动一段位移s,在此过程中,拉力F对雪撬所做的功为A.FssinαB.Fs C.FscosαD.Fstanα3.(2012-01)一质量为2kg物体在外力作用下,由静止开始做直线运动,到达某点时速度为2m/s,在此过程中外力对物体做的功是A.2J B.4J C.8J D.16J4.(2011-06)盘山公路依山而建,这样修建的目的是A.减小汽车上山所需的牵引力B.增加汽车的功率C.减少汽车上山过程所做的功D.提高汽车的机械效率5.(2012-01)拖拉机耕地时一般比在道路上行驶时速度慢,这样做的目的是A.节省燃料B.提高柴油机的功率C.提高传动机械的效率D.增大拖拉机的牵引力6.(2011-06)如图2所示,在固定的光滑斜面上,物块受到重力G和支持力N的作用。
在物块下滑的过程中,下列说法正确的是A.G、N都做功B.G做功、N不做功C.G不做功,N做功D.G、N都不做功7.(2009-06)起重机用20s 的时间将重物吊起,整个过程中做的功是20000J,在此过程中起重机的平均功率是A.200W B.500W C.1000W D.2000W8.(2012-01)关于功率和功率的单位,下列说法正确的是A.物体做功越快,功率越大B.物体做功越多功率一定越大C.在国际单位制中,功率的单位是牛顿D.在国际单位制中,功率的单位是焦耳【多项选择题】9.(2009-06)关于做功和功率,下列说法正确的有A.地面支持力对静止在地面上的物体不做功B.举重运动员举起杠铃的过程中对杠铃做了功C.在国际单位制中,功率的单位是牛顿D.在国际单位制中,功率的单位是瓦【注】2010年6月、2011年6月原题照考考点17 动能、动能定理及其应用【单项选择题】1.(2010-06)某同学投掷铅球.每次出手时,铅球速度的大小相等,但方向与水平面的夹角不同.关于出手时铅球的动能,下列判断正确的是A.夹角越大,动能越大B.夹角越大,动能越小C.夹角为45°时,动能最大D.动能的大小与夹角无关2.(2010-06)水平地面上,一运动物体在10 N摩擦力的作用下,前进5 m后停止,在这一过程中物体的动能改变了A.10 J B.25 J C.50 J D.100 J3.(2011-06)某同学将质量为3kg的铅球,以8m/s的速度投出,铅球在出手时的动能是A.12J B.24J C.96J D.192J4.(2011-06)骑自行车上坡前往往要用力蹬几下,这样做的目的是A.增大车的惯性B.减小车的惯性C.减小车的动能D.增大车的动能5.(2012-01)赛道上的赛车做加速运动,速度为v和速度为2v时赛车动能之比是A.1:1 B.1:2 C.1:4 D.1:36.(2012-01)距离水平地面3米高处以2m/s的速度抛出一个小球。
若不计空气阻力,则小球落到水平地面时的速度大小为(g取10m/s2)A.0m/s B.5.6m/s C.8m/s D.32m/s考点18 重力做功与重力势能【单项选择题】1.(2009-06)如图5所示,一固定光滑斜面高度为H ,质量为m 的小物块沿斜面从顶端滑到底端,下列说法正确的是A.重力做功大于mgH B.重力做功小于mgHC.重力做负功,大小是mgH D.重力做正功,大小是mgH2.(2009-06)做竖直上抛运动的物体,重力对物体做功的情况是A.上升过程做正功B.上升过程不做功C.下落过程做正功D.下落过程不做功3.(2010-06)图2所示为竖直平面内的三条路径.物体沿路径1、2、3从P点运动到Q点的过程中,重力做功分别为W1、W2和W3,下列判断正确的是A、W1>W2B、W1>W3C、W2>W3D、W1=W2=W34.(2010-06)如图3所示,质量为m的小球,从离桌面日高处自由下落.已知桌面离地高度为h,若以桌面为参考平面,则小球落到地面时的重力势能为(g为重力加速度)A.-mgh B.-mg(H+h)C.mgH D.mg(H-h)【多项选择题】5.(2011-06)如图12所示,一装置固定在水平地面上,AB是半径为R的14光滑圆轨道,上端A离地面的高度为H。