数学含绝对值不等式的解法练习题

合集下载

高2数学含绝对值不等式的解法练习题

高2数学含绝对值不等式的解法练习题

含绝对值的不等式解法1.不等式|8-3x |≤0的解集是( )A. ∅B. RC. {(1,-1)}D. ⎭⎬⎫⎩⎨⎧382.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )A. {x |-1<x <5}B. {x |x ≤0或x ≥2}C. {x |-1<x ≤0}D. {x |-1<x ≤0或2≤x <5}3.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是( )A. 11B. 10C. 16D. 154.不等式|x +2|<3的解集是 ,5.不等式|2x -1|≥3的解集是 .6.不等式1211<-x 的解集是_________________.7.解不等式 1.02122<--x x 8.解不等式3≤|x -2|<99.解不等式:842x x ---> 10.解不等式52312≥-++x x11.解下列不等式(1)512≥-+-x x ; (2) .512≤++-x x(3)5.515≤++-x x (4)5111≥++-x x绝对值不等式的证明1.若()5f x x t x =-+-的最小值为3, 则实数t 的值是________.2.. 已知|x-4|+|3-x|<a(1)若不等式的解集为空集,求a 的范围(2)若不等式有解,求a 的范围3.利用绝对值的几何意义,解决问题:要使不等式34-+-x x <a 有解,a 要满足什么条件?4、证明 c b c a b a -+-≤-5、已知 2,2cb y ca x <-<-,求证 .)()(c b a y x <+-+6、已知.2,2cb B ca A <-<-求证:cb a B A <---)()(。

7、已知.6,4cb y ca x <-<-求证:cb a y x <+--3232。

高一数学不等式练习题

高一数学不等式练习题

高一数学不等式练习题在高中数学的学习中,不等式是基础而重要的概念之一,它在解决实际问题中有着广泛的应用。

以下是一些高一数学不等式的练习题,供同学们练习和巩固知识。

练习题一:解绝对值不等式1. 解不等式 |x - 3| < 2。

2. 解不等式|x + 4| ≥ 5。

练习题二:解一元一次不等式3. 解不等式 3x - 5 > 10。

4. 解不等式 -2x + 1 ≤ -4。

练习题三:解一元二次不等式5. 解不等式 x^2 - 4x + 3 > 0。

6. 解不等式 2x^2 + 5x - 3 ≤ 0。

练习题四:解含有分式的不等式7. 解不等式 \(\frac{x - 1}{x + 2} > 0\)。

8. 解不等式 \(\frac{2x - 3}{x^2 - 1} < 0\)。

练习题五:解含有根式的不等式9. 解不等式 \(\sqrt{x} - 2 < 0\)。

10. 解不等式 \(\sqrt{2x + 3} ≥ x\)。

练习题六:解含有指数和对数的不等式11. 解不等式 \(2^x > 8\)。

12. 解不等式 \(\log_2(x - 1) < 1\)。

练习题七:解不等式组13. 解不等式组:\[\begin{cases}x + 2 > 0 \\3 - 2x ≥ 4\end{cases}\]14. 解不等式组:\[\begin{cases}3x - 1 < 5x + 2 \\x^2 - 4x + 4 ≤ 0\end{cases}\]练习题八:应用题15. 某工厂需要生产一批零件,每件零件的成本为 \(c\) 元,售价为\(s\) 元。

若工厂希望每件零件的利润不低于 5 元,求 \(c\) 和\(s\) 之间的关系。

16. 某公司计划购买一批电脑,每台电脑的价格不超过 3000 元。

如果公司希望每台电脑的利润率不低于 20%,求电脑的最低进价。

高中数学-绝对值不等式的解法练习

高中数学-绝对值不等式的解法练习

高中数学-绝对值不等式的解法练习一、选择题1.如果1x <2和|x |>13同时成立,那么实数x 的取值范围是( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13<x <12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-13,或x >13解析:解不等式1x <2,得x <0或x >12.解不等式|x |>13,得x >13或x <-13.∴实数x 的取值范围为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13.答案:B2.不等式2<|2x +3|≤4的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x ≤12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x <12C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x <-52或-12<x ≤12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x ≤-52或-12<x ≤12解析:由2<|2x +3|≤4,可得2<2x +3≤4或 -4≤2x +3<-2.解得-12<x ≤12或-72≤x <-52.答案:C3.关于x 的不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为集合M ,且2∉M ,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫14,+∞ B .⎣⎢⎡⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎦⎥⎤0,12 解析:因为2∉M ,所以2∈∁R M .所以⎪⎪⎪⎪⎪⎪2a -12≤a ,即-a ≤2a -12≤a .解得a ≥14.答案:B4.不等式|3-x |+|x +4|>8的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92或x >72 D .R解析:|3-x |+|x +4|>8⇔⎩⎪⎨⎪⎧x ≤-4,3-x -x -4>8或⎩⎪⎨⎪⎧-4<x <3,3-x +x +4>8或⎩⎪⎨⎪⎧x ≥3,x -3+x +4>8⇔⎩⎪⎨⎪⎧x ≤-4,-1-2x >8或⎩⎪⎨⎪⎧-4<x <3,7>8或⎩⎪⎨⎪⎧x ≥3,2x >7.∴x <-92或x >72.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-92或x >72.答案:C 二、填空题5.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,则a =________. 解析:由原不等式的解集,可知-53,13为原不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3,⎪⎪⎪⎪⎪⎪13a -2=3.解得a =-3. 答案:-36.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则实数x 的取值范围是________. 解析:由已知,有|2x -1|+x +3≤5,即|2x -1|≤2-x .所以x -2≤2x -1≤2-x ,即⎩⎪⎨⎪⎧2x -1≤2-x ,2x -1≥x -2,即⎩⎪⎨⎪⎧x ≤1,x ≥-1.所以-1≤x ≤1.答案:[-1,1]三、解答题7.已知一次函数f (x )=ax -2. (1)当a =3时,解不等式|f (x )|<4; (2)解关于x 的不等式|f (x )|<4;(3)若关于x 的不等式|f (x )|≤3对任意x ∈[0,1]恒成立,求实数a 的取值范围. 解:(1)当a =3时,f (x )=3x -2,所以|f (x )|<4⇔|3x -2|<4⇔-4<3x -2<4⇔ -2<3x <6⇔-23<x <2.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2. (2)|f (x )|<4⇔|ax -2|<4⇔-4<ax -2<4⇔-2<ax <6.当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2a <x <6a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6a <x <-2a . (3)|f (x )|≤3⇔|ax -2|≤3⇔-3≤ax -2≤3⇔-1≤ax ≤5⇔⎩⎪⎨⎪⎧ax ≤5,ax ≥-1.因为x ∈[0,1], 所以-1≤a ≤5.所以实数a 的取值范围为[-1,5].8.已知对区间⎝ ⎛⎦⎥⎤0,54内的一切实数a ,满足关于x 的不等式|x -a |<b 的x 也满足不等式|x -a 2|<12,试求实数b 的取值范围.解:设A ={x ||x -a |<b },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪|x -a 2|<12, 则A ={x |a -b <x <a +b ,b >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a 2-12<x <a 2+12. 由题意,知当0<a ≤54时,A ⊆B .所以⎩⎪⎨⎪⎧a -b ≥a 2-12,a +b ≤a 2+12,0<a ≤54.所以b ≤-a 2+a +12且b ≤a 2-a +12.因为0<a ≤54,所以-a 2+a +12=-a -122+34∈⎣⎢⎡⎦⎥⎤316,34,a 2-a +12=⎝ ⎛⎭⎪⎫a -122+14∈⎣⎢⎡⎦⎥⎤14,1316.所以b ≤316且b ≤14.从而b ≤316.故实数b 的取值范围为⎝ ⎛⎦⎥⎤0,316.一、选择题1.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:由|x -a |<1,得a -1<x <a +1. 由|x -b |>2,得x <b -2或x >b +2. ∵A ⊆B ,∴a -1≥b +2或a +1≤b -2. ∴a -b ≥3或a -b ≤-3.∴|a -b |≥3. 答案:D2.若关于x 的不等式|2x +1|-|x -4|≥m 恒成立,则实数m 的取值范围为( ) A .(-∞,-1] B .⎝ ⎛⎦⎥⎤-∞,-52C .⎝⎛⎦⎥⎤-∞,-92 D .(-∞,-5] 解析:设F (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4.如图所示,F (x )min =-32-3=-92.故m ≤F (x )min =-92.答案:C二、填空题3.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则实数a 的取值范围是________.解析:∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=12-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,即⎪⎪⎪⎪⎪⎪a -14+|a |≤14.根据绝对值的几何意义,知0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 4.若函数f (x )是R 上的减函数,且函数f (x )的图像经过点A (0,3)和B (3,-1),则不等式|f (x +1)-1|<2的解集是________.解析:∵|f (x +1)-1|<2,∴-2<f (x +1)-1<2,即-1<f (x +1)<3.∴f (3)<f (x +1)<f (0).∵函数f (x )在R 上是减函数, ∴0<x +1<3.解得-1<x <2. 答案:{x |-1<x <2} 三、解答题5.如图所示,点O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点.设x 表示点C 与原点的距离,y 表示点C 到点A 的距离的4倍与点C 到点B 的距离的6倍之和.(1)将y 表示为x 的函数;(2)要使y 的值不超过70,实数x 应该在什么范围内取值? 解:(1)依题意,得y =4|x -10|+6|x -20|,0≤x ≤30. (2)由题意,得x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30.(*)当0≤x ≤10时,不等式组(*)化为 4(10-x )+6(20-x )≤70,解得9≤x ≤10. 当10<x <20时,不等式组(*)化为 4(x -10)+6(20-x )≤70,解得10<x <20. 当20≤x ≤30时,不等式组(*)化为 4(x -10)+6(x -20)≤70,解得20≤x ≤23. 综上,实数x 的取值范围是[9,23]. 6.已知函数f (x )=|x -a |.(1)若关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若关于x 的不等式f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:法一 (1)由f (x )≤3,得|x -a |≤3. 解得a -3≤x ≤a +3.又关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5.解得a =2.(2)由(1),得a =2,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5;当x>2时,g(x)>5.综上,函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].法二(1)同法一.(2)由(1),得a=2,f(x)=|x-2|.设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].。

含绝对值不等式的解法练习题高一数学(含解析)

含绝对值不等式的解法练习题高一数学(含解析)

含绝对值不等式的解法练习题高一数学(含解析)含绝对值不等式的解法练习题高一数学含绝对值不等式的解法练习题1.不等式1|2x-1|2的解集是( )A.(- ,0)(1, )B.(- ,0)][1, ])C.(- ,0)[1, ]D.(-,- )[1, ]答案:B解析:原不等式等价于-2-1或12.解得-2.假如a0,那么下列各式中错误的是( )A. B.a+cb+c C.adbd D.a-cb-c答案:C解析:反例可举d=0.3.已知a1,则不等式|x|+a1的解集是( )A.{x|a-1C. D.R答案:D解析:由|x|+a1,得|x|1-a.∵a1,1-a0.故该不等式的解集为R.4.在数轴上与原点距离不大于2的点的坐标的集合是( )A.{x|-2C.{x|-22}D.{x|x2或x-2}答案:C解析:由绝对值的几何意义易知.5.关于任意实数x,不等式|x|m-1恒成立,则实数m的取值范畴是_______ __________.答案:m1解析:|x|m-1对一切实数x恒成立,则m-1应不大于|x|的最小值,即m-10,得m1.6.|x-1||x+1|的解集是______________.答案:{x|x0}解析:原不等式可化为(x-1)2(x+1)2,解得x0.7.已知集合A={x||x+7|10},B={x|?|x-5|?2c},又AB=B,求实数c的范畴.解:先解|x+7|10,得x+710或x+7-10,有x3或x-17,即A={x|x3若x-17}.由AB=B得B A,对B讨论如下情形:(1)B= 有c(2)B 有c0,解|x-5|2c,得-2c解得c-11或c1.取c1,即0由(1)(2)知实数c的取值范畴是{c|c{c|0能力提升踮起脚,抓得住!8.已知集合M={x| 1},P={x|x-t0},要使MP= ,则t的取值范畴是( )A.{t|t1}B.{t|t1}C.{t|t1}D.{t|t1}答案:A解析:M={x|-11},P={x|xt},由MP= 知t1.9.若|x-4|+|x-3|A.aB.aC.aD.a3或a-4答案:B解析:由几何意义:|x-4|+|x-3|的最小值为1,则当a1时,原不等式的解集为空集.10.不等式|6-|2x+1||1的解集是________________.答案:{x|x-4或-3解析:原不等式等价于6-|2x+1|1或6-|2x+1|-1,又等价于-55或2x+17或2x+1-7.解之可得.11.不等式|x-2|+|x-3|9的解集是________________.答案:{x|-2解析:当x3时,原不等式为x-2+x-39,解得x7,即有3当23时,为x-2+3-x9,即19成立,即有2当x2时,为2-x+3-x9,解得x-2,即有-2综合得原不等式的解集为{x|37}{x|23}{x|-212.设A={x||2x-1|1},B={x||2x-a|1},AB= ,AB=R,求实数a的值.解:|2x-1|1 2x-11或2x-1-1,即x1或x0,即A={x|x1或x解|2x-a|1,得-11,即,即B={x| }.由AB= ,AB=R,图示如下:可得解得a=1.13.关于实数x的不等式|x- | 与|x-a-1|a的解集依次记为A与B,求使A B的a的取值范畴.解:由|x- | ,得- ,因此2aa2+1.由|x-a-1|a,得-ax-a-1a,则12a+1,要使A B,就必须即故a的取值范畴为2.拓展应用跳一跳,够得着!14.已知aR,则(1-|a|)(1+a)0的解集为( )A.|a|B.aC.|a|D.a1且a-1答案:D解析:(1)a0时,(1-|a|)(1+a)=(1-a)(1+a)a(2)a0时,(1+a)(1+a)=(1+a)20,且a-1.综合知a1,且a-1.15.已知关于x的不等式|x+2|+|x-3|答案:a5解析:∵|x+2|+|x-3|5恒成立,当a5时,|x+2|+|x-3|故要使|x+2|+|x-3|16.设不等式|x+1|-|x-2|k的解集为R,求实数k的取值范畴.解法一:依照绝对值的几何意义,|x+1|能够看作数轴上点P(x)到点A(-1)的距离|PA|,|x-2|能够看作是数轴上点P(x)到点B(2)的距离|PB|,则|x+1|-|x-2|=| PA|-|PB|.如图所示:当点P在线段AB上时,-3|PA|-|PB|3,当P在A点左侧时,|PA|-|PB|=-3,当P在B点右侧时,|PA|-|PB|=3,则不等式-3|x+1|-|x-2|3恒成立.故使原不等式的解集为R的实数k的取值范畴是k-3.解法二:令y=|x+1|-|x-2|课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

含有绝对值不等式的解法典型例题

含有绝对值不等式的解法典型例题

含绝对值不等式的解法例1 解绝对值不等式|x+3|>|x-5|.解:由不等式|x+3|>|x-5|两边平方得>|x-5||x+3|22,x-5)即(x+3)>(.x>1x>1}.原不等式的解集为{∴ x|22,可在22,两边平方脱去绝对于两边都含“单项”绝对值的不等式依据|x|=x评析对值符号.当然,此例可按绝对值定义讨论脱去绝对值符号,但解题繁琐.的取值范围是|x-2|>k恒成立,则实数k例2 对任意实数x,若不等式|x+1|-)( C.k≤3 A.k<3 B.k<-3.k≤-3 D|的最小值x-2x>k对任意实数恒成立,只要|x+1|-|x+1分析要使||-|x-2|2-1x到的距离,|x-2|的几何意义为点x到大于k.因|x+1|的几何意义为数轴上点-3,与2的距离的差,其最小值为-1x+1的距离,||-|x-2|的几何意义为数轴上点x到.选B ∴ k<-3,∴此例利用绝对值的几何意义使问题迅速得解,若采用其他方法则解答过程冗评析长.>x+3.3例解不等式|3x-1|两种情况讨论.分析解此类不等式,要分x+3≥0和x+3<0x≥两种情况求解:和x+3≥0,即x≥-3时,原不等式又要分-3≤x< 解:当- ;①-,此时不等式的解为3≤x<,即当-3≤x< 时,-3x+1>x+3x<-x≥时,3x-1>x+3,即x>2,此时不等式的解为x>2.②当又当x+3<0,即x<-3时,不等式是绝对不等式.③取①、②、③并集知不等式的解集为x<-,或x>2}.x{|2x+3|-||<1解不等式例4|x-5- 分别使上式两个绝对值中代数式的值为零,它们将数轴分成三段:5和x=解:x=于是,原不等式变为(Ⅰ)或(Ⅱ)或(Ⅲ)<x≤5, x<-7,解(Ⅱ)得解(Ⅰ)得x>5;解(Ⅲ)得x> }即为原不等式的解集.x|x<-7或(Ⅰ)(Ⅱ)(Ⅲ)的并集{说明解这类绝对值不等式(仅限绝对值符号里面是一次式)可分如下几个步骤:第一步令每个绝对值号里的一次因式等于零求出相应的根;第二步把这些根按从小到大的顺序排号并把数轴分成相应的若干个区间;第三步根据所分区间去掉绝对值符号,组成若干个不等式组,最后分别解每个不等式组,取结果的并集就是原不等式的解.例5解不等式1≤|2x-1|<5.原不等式等价于解法一:或②①1≤x<3;解①得 -2<x≤0.解②得原不等式的解集为∴{x|-2<x≤0或1≤x<3}.解法二:原不等式等价于1≤2x-1<5,或 -5<2x-1≤-1,即 2≤2x<6,或 -4<2x≤0,解得 1≤x<3,或 -2<x≤0.∴原不等式的解集为{x|-2<x≤0,或1≤x<3}.评析比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是|≤ba≤x≤b,或-b≤x≤-a(a≥0).a≤|x这一规律对我们今后解题很有作用,要在理解的基础上加以记忆.本例亦可用图像法求解,不妨一试.例6 解不等式|x+3|+|x-3|>8.分析这是一个含有两个绝对值符号的不等式,为了使其转化为解不含绝对值符号的不等式,要进行分类讨论.解法一:由代数式|x+3|、|x-3|知,-3和3把实数集分为三个区间:x<-3,-3≤x<3,x≥3.当x<-3时,-x-3-x+3>8,即x<-4,此时不等式的解为x<-4;①当-3≤x<3时,x+3-x+3>8,此时无解;②当x≥3时,x+3+x-3>8,即x>4,此时不等式的解为x>4.③取①、②、③的并集得原不等式的解集为{x|x<-4,或x>4}.点评解这类绝对值符号里是一次式的不等式,其一般步骤是:(1)令每个绝对值符号里的一次式为零,并求出相应的根;(2)把这些根由小到大排序并把实数集分为若干个区间;求出它们的解集;解这些不等式,由所分区间去掉绝对值符号组成若干个不等式,)3(.(4)取这些不等式的解集的并集就是原不等式的解集.模仿例1,我们还有解法二:不等式|x+3|+|x-3|>8表示数轴上与A(-3),B(3)两点距离之和大于8的点,而A,B两点距离为6.因此线段AB上每一点到A、B的距离之和都等于6.如下图,要找到A,B距离之和为8的点,只须由点B向右移1个单位(这时距离之和增加2个单位),即移到点B(4),或由点A向左移1个单位,即移到点A(-4).11可以看出,数轴上点B(4)向右的点或者点A(-4)向左的点到A、B两点的距离之11和均大于8.∴原不等式的解集为{x|x<-4,或x>4}.解法三:分别画出函数y=|x+3|+|x-3|和y=8的图像,如下图.21=y1不难看出,要使y>y,只须x<-4,或x>4.21∴原不等式的解集为{x|x<-4,或x>4}.点评对于形如|x-a|+|x-b|>c,或|x-a|-|x-b|<c的不等式,利用不等式的几何意义或者画出左、右两边函数的图像去解不等式,更为直观、简捷.这又一次体现了数!形结合思想方法的优越性.。

《含绝对值不等式的解法》课堂同步练习

《含绝对值不等式的解法》课堂同步练习

一、解答题(共10小题,满分0分)1.解下列不等式(1)2|2x﹣1|>1.(2)4|1﹣3x|﹣1<0(3)|3﹣2x|≤x+4.(4)|x+1|≥2﹣x.(5)|x2﹣2x﹣4|<1(6)|x2﹣1|>x+2.(7)|x|+|x﹣2|≥4(8)|x﹣1|+|x+3|≥6.(9)|x|+|x+1|<2(10)||x|﹣|x﹣4||>2.2.已知不等式|x﹣2|<a(a>0)的解集为{x∈R|﹣1<x<c},求a+2c的值.3.解关于x的不等式|x2﹣a|<a(a∈R)4.解关于x的不等式:①解关于x的不等式|mx﹣1|<3;②|2x+3|﹣1<a(a∈R)5.解不等式(1)|3x﹣1|<x+2;(2)|3x﹣1|>2﹣x.6.解不等式(1)|2x+1|+|3x﹣2|≥5;(2)|x﹣2|+|x﹣1|≥5.7.解不等式(1)|x﹣2|<|x+1|;(2)4<|2x﹣3|≤7.8.若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于_________.9.不等式|x﹣1|+|x+3|>a,对一切实数x都成立,则实数a的取值范围是_________.10.例4.已知A={x||2x﹣3|<a},B={x||x|≤10},且A不包含于B,求实数a的取值范围.参考答案与试题解析一、解答题(共10小题,满分0分)1.解下列不等式(1)2|2x﹣1|>1.(2)4|1﹣3x|﹣1<0(3)|3﹣2x|≤x+4.(4)|x+1|≥2﹣x.(5)|x2﹣2x﹣4|<1(6)|x2﹣1|>x+2.(7)|x|+|x﹣2|≥4(8)|x﹣1|+|x+3|≥6.(9)|x|+|x+1|<2(10)||x|﹣|x﹣4||>2.,或<﹣,即﹣<,即,或,解得,或,故不等式的解集为,∴﹣<,∴<<{x|x,解得﹣≤≤≥≤,即1+﹣}<>对应点的距离之和,而﹣≤2.已知不等式|x﹣2|<a(a>0)的解集为{x∈R|﹣1<x<c},求a+2c的值.3.解关于x的不等式|x2﹣a|<a(a∈R),或﹣<,或﹣<4.解关于x的不等式:①解关于x的不等式|mx﹣1|<3;②|2x+3|﹣1<a(a∈R)时,时,﹣<时,原不等式的解集为﹣﹣5.解不等式(1)|3x﹣1|<x+2;(2)|3x﹣1|>2﹣x.<.,或<﹣.6.解不等式(1)|2x+1|+|3x﹣2|≥5;(2)|x﹣2|+|x﹣1|≥5.时,﹣﹣时,时,,﹣≥7.解不等式(1)|x﹣2|<|x+1|;(2)4<|2x﹣3|≤7.{x|或{x|或8.若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于﹣4.9.不等式|x﹣1|+|x+3|>a,对一切实数x都成立,则实数a的取值范围是(﹣∞,4).10.例4.已知A={x||2x﹣3|<a},B={x||x|≤10},且A不包含于B,求实数a的取值范围.时,。

高一数学含绝对值不等式的解法练习题

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法一、选择题1.已知a <-6,化简26a -得( ) A. 6-a B. -a -6C. a +6D. a -62.不等式|8-3x |≤0的解集是( ) A. ∅B. RC. {(1,-1)}D. ⎭⎬⎫⎩⎨⎧38 3.绝对值大于2且不大于5的最小整数是( ) A. 3B. 2C. -2D. -54.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )A. {x |-1<x <5}B. {x |x ≤0或x ≥2}C. {x |-1<x ≤0}D. {x |-1<x ≤0或2≤x <5}5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A 中的元素个数是( ) A. 11 B. 10 C. 16 D. 156.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N ( ) A. {4-≥y y } B. {51≤≤-y y } C. {14-≤≤-y y } D. ∅7.语句3≤x 或5>x 的否定是( )A. 53<≥x x 或B. 53≤>x x 或C. 53<≥x x 且D. 53≤>x x 且 二、填空题1.不等式|x +2|<3的解集是 ,不等式|2x -1|≥3的解集是 .2.不等式1211<-x 的解集是_________________. 3.根据数轴表示a ,b ,c 三数的点的位置,化简|a +b |+|a +c |-|b -c |= ___ .三、解答题1.解不等式 1.02122<--x x 2.解不等式 x 2 - 2|x |-3>03.已知全集U = R , A ={x |x 2- 2 x - 8>0}, B ={x ||x +3|<2},求:(1) A ∪B , C u (A ∪B ) (2) C u A , C u B , (C u A )∩(C u B )4.解不等式3≤|x -2|<9 7.解不等式|3x -4|>1+2x .5.画出函数|21|x-||x y ++=的图象,并解不等式| x +1|+| x -2|<4.6.解下列关于x 的不等式:1<| x - 2 |≤77.解不等式2≤|5-3x |<9 11.解不等式|x -a |>b8.解关于x 的不等式:|4x -3|>2x +19.解下列关于x 的不等式:021522≤---x x x含绝对值的不等式解法答案一、选择题(共7题,合计35分) 1.1760答案:B 2.1743答案:D 3.1744答案:D 4.1773答案:D 5.2075答案:C 6.4109答案:B 7.1672答案:D二、填空题(共5题,合计21分)1.1539答案:{-5<x <1},{x |x ≥2或x ≤-1}2.1725答案:{x |0<x <4}3.1602答案:⎭⎬⎫⎩⎨⎧≤≤-3434x x4.1728答案:a <35.1788答案:0三、解答题(共19题,合计136分) 1.1510答案:{x |x >10或x <-10}2.1502答案:{}33-<>x x x 或3.1509答案:(1) A ∪B = {x |x <-1或x >4=, C U (A ∪B )= {x |-1≤x ≤4}(2) C U A = {x |-2≤x ≤4}, C U B = {x |x ≤-5或x ≥-1}, (C U A )∩(C U B ) = {x |-1≤x ≤4}4.1535答案:⎭⎬⎫⎩⎨⎧>-<317x x x 或5.1597答案:⎭⎬⎫⎩⎨⎧≥-≤2721x x x 或6.1598答案:{x |-7<x ≤-1或5≤x <11}7.1599答案:⎭⎬⎫⎩⎨⎧><553x x x 或8.1600答案:2523<<-x9.1538答案:⎭⎬⎫⎩⎨⎧>-<032x x x 或 10.1554答案:⎭⎬⎫⎩⎨⎧<≤≤<-31437134x x x 或 11.1536答案:当b <0时,解集为R ;当b =0时,解集为{x |x ∈R 且x ≠a };当b >0时,解集为{x |x <a -b 或x >a +b }.12.1601答案:a 的取值范围为a >5 13.1721答案:-5≤x <1或3<x ≤9.14.1722答案:x >2或x <1/3.15.1723答案:|x -1|+|x -2|<3⇔0<x <1或1≤x <2或2≤x <3⇔0<x <3.16.1724答案:当m >0时,原不等式的解集是{x |-3m <x <2m };当m =0时,原不等式的解集是∅;当m <0时,原不等式的解集是{x |2m <x <-3m }. 17.1726答案:x <-1/2或0<x <4.18.1727答案:x ≤-3或2<x ≤519.4121答案:21<a <32。

高一数学 含绝对值不等式的解法练习题

高一数学 含绝对值不等式的解法练习题

高一数学 含绝对值不等式的解法练习题一、 选择题:1、不等式|2-x |>0的解集是( )A 、φB 、RC 、{2}D 、{x|x ≠2}2、与不等式|2-3x |>1同解的是 ( )A 、2-3x >1±B 、3x-2>1或3x-2<-1C 、2-3x >1D 、-1<2-3x <1 3、设全集U={x||x -2|>1},A ={x||x +1|≤1},则C U A 等于 ( )A 、{x|x <-2或x >0}B 、{x|x <1或x >3}C 、{x|x <-2或0<x <1或x >3}D 、{x|1<x<3}4、不等式|ax+b|≤c 的解集为非空集合,则c 的取值范围是 ( ) A 、c ≥0 B 、c>0 C 、c<0 D 、c ≤05、若不等式|1-kx |<2的解集是{x |-1<x <3},则的k 为 ( )A 、-2<k<1B 、31-<k<1 C 、k=1 D 、k=-3 6、不等式1|12|1>+x 的解集是 ( ) A 、{x|0<x <1}B 、{x|-1<x <0}C 、{x|-1<x <0且x ≠21-}D 、{x|x<-1或x >0} 二、 填空题:7、若2∈{x _______________。

8 的解集为_______________。

9、不等式|_____________________。

10、|x +2|-|x -1|<a 的解集为非空集合,则实数a 的取值范围是______。

三、 解答题(不够写的请做在背面)11、设A ={x ||x-1|>2},B={x ||x -5|<c},若A B =A ,求实数c 的取值范围。

12、解下列不等式:(1) |2x+51|≥21 (2) |2x -1|<2-3x (3)|2-x |-|2x +5|>2x 答案 :一、选择题 DBCACC一、 填空题 {a|a>-3或a<-5}, {x|0≤x<2}, {x|x>2,或x<0}, a>-3二、 解答题 c ≤2 x ≥203或x ≤207- x<53-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档