重点小学奥数之裂项
小学六年级奥数 裂项第一讲

小学六年级奥数裂项第一讲一、教学目标:1. 掌握分数裂项的基本原理。
2.掌握裂差和裂和的联系与区别二、重点难点:裂项的技巧去分数运算三、教学内容:知识梳理1、常见的裂项一般是将一项拆分成两项或多项的和或差,使拆分后的项可前后抵消或凑整,这种题目看似结构复杂,但一般无需进行复杂的计算。
一般裂项分为分数裂项和整数裂项,其中分数裂项是重要考点。
2、分数裂项的技巧分数裂项实质是异分母分数加减法的逆运算,关键是找分母上的数和分子上的数的和差倍关系。
第一类:“裂差”型运算。
当分母是两数相乘的形式,分子表示为分母上两数的差(基本型),则可以进行裂差。
两项的裂差非常重要,一定要掌握。
第二类:“裂和”型运算。
当分母是两数相乘形式,分子可表示分母上两数的和(基本型),则可以进行裂项和。
四、归纳总结1、裂差型基本形式:2、裂项和基本形式:3、裂项的实质和意义裂项的实质:实质是异分母分数的逆运算,关键是要找到分母上几个乘数和分子上数的和差倍关系;裂项的意义:裂差与裂和都是为了简便运算,摆脱繁琐的计算。
五、课堂检测~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~例1仿照例题的步骤,计算下列各题,你发现了什么规律?分析:先通分(把分母都变成各分母之积),分母相同后,再相加或者相减,把两项整理成一项,注意步骤的完整例2 仿照例题的步骤,计算下列各题,你发现了什么规律?在此处键入公式。
在此处键入公式。
分母拆分为两个数字的乘积,分子拆分为两个数字的差或和,分子上的两个数字要和分母上的两个数字相同。
把一个分数拆分成两个分数的和或差,最后再把这两各数分别约分化简。
例3 阅读下列巧算方法,解决问题:分析:分析拆分为两个数字的乘积,分子拆分为这两个数字的差(如果分子不是这两个数的差,那么就先变成差,相应的也要让此分数再乘上一个数使得结果和原分数相等),分子上的两个数字要和分母上的两个数字相同。
小学奥数裂项公式汇总

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
小学奥数裂项公式汇总

小学奥数裂项公式汇总 It was last revised on January 2, 2021裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n (2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n 证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n 证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n 3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
小学奥数裂项公式汇总

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫ ⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫ ⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)ab b a b b a a b a b a 11+=⨯+⨯=⨯+(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式)()(2b2+=a--baba完全平方和(/差)公式2222±=a+±(b)baba本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
1.4小学奥数必学分数裂项与整数裂项与通项归纳

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
重点小学奥数裂项公式汇总

2.求和:
证:
3.求和:
证:
4.求和:
证:5.求和:证:为 ,特殊数列求和公式
平方差公式
完全平方和(/差)公式
裂项运算常用公式
一、分数“裂差”型运算
(1)对于分母可以写作两个因数乘积的分数,即 形式的,这里我们把较小的数写在前面,即a<b,那么有:
????
(2)对于分母上为3个或4个连续自然数乘积形式的分数,即有:
二、分数“裂和”型运算
常见的裂和型运算主要有以下两种形式:
(1) ???
???
(2)
???
???
裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”
分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或凑整
三、整数裂项基本公式
(1)?
????
(2)
(3)
(4)
(5)
裂项求和部分基本公式
1.求和:
小学五年级奥数 分数裂项初步(寒假课程)

分数计算技巧(裂项)(寒假课程)2、分数裂和:⑴目的:抵消.本讲主线⑵特点:分子为分母之和.1.分数计算裂差.2.分数计算裂和.⑶公式:ab11⑷口诀:分数裂项两肩挑.【课前小练习】(★)计算:1、分数裂差:⑴目的:抵消.⑵特点:分子相同、分母为连续的等差数列.⑶公式:111 1()a b a b差值⑷口诀:分数裂项两肩挑.,之后乘以差值分之一111 111⑴⑵⑶233457版块一∶分数计算-裂差【例1】(★★)计算:111 1122334910 【例2】(★★★)1111 1133********【巩固】(★★)计算:11 1......101111125960 【拓展】(★★★☆)444 414477104952_____1【拓展】(★★★)⑵计算:1111 124466881098100444 4......1559939797101版块二∶分数计算-裂和【例3】(★★★)4812162024计算:133557799111113【例4】(★★★★)【例5】(★★★)计算:11111111 1 2612203042567290 3112339759839 26122038042015791113151719 ⑵126122030425672902【例6】(★★★★)2 3 5 6 8 9 11 12 98 991 4 47 710 1013 97100 【超常大挑战】(★★★★)1 1 1 11 2 3 2 3 4 3 4 5 98 99 100知识大总结【今日讲题】例2, 例3, 例5, 超常大挑战1、分数裂差:⑴特点:分子相同、分母为连续的等差数列.⑵公式: 1 1 1 1( )a b a b差值2、分数裂和:⑴特点:分母为连续等差数列,分子为分母之和.⑵公式:a b 1 1a b a b 【讲题心得】_______________________________________________ ______________________________________.【家长评价】_______________________________________________ __________________________________.抵消3。
奥数裂项经典例题

1、已知某数列的前n项和为Sn = n^2 + 2n,求第n项的表达式为:A. 2n + 1(答案)B. n + 2C. 2nD. n^2 + 12、假设某函数为f(x) = x^3 + 3x^2 + 3x + 1,求f(2)的值。
A. 15B. 17(答案)C. 19D. 213、某几何问题中,已知一个正六边形的边长为a,求其面积为:A. (3√3 / 2) * a^2(答案)B. (√3 / 2) * a^2C. (3/2) * a^2D. (√3) * a^24、在某个数列中,如果a1 = 1,an = 2 * an-1 + 1,求a4的值为:A. 7(答案)B. 8C. 9D. 105、设f(x) = 2x^2 - 3x + 5,求f(1)的值:A. 4B. 5C. 6(答案)D. 76、已知一个数列的公差为3,首项为5,求第6项。
A. 20B. 22(答案)C. 18D. 157、如果一个数列的前n项和为Sn = n^3,求第n项。
A. n^2(答案)B. 3n^2C. n^3D. n^48、在一次考试中,某科目的期末分数为60分,若每次考试分数增加x分,求通过的分数为70分,则x的取值范围。
A. x < 10B. x = 10(答案)C. x > 10D. x ≤109、设等差数列的首项为a,公差为d,求第n项an的表达式为:A. an = a + (n - 1)d(答案)B. an = a + ndC. an = ad + nD. an = (a + d)n10、若一个数列的前n项和S(n) = n(n + 1)/2,求a(n)的值。
A. nB. n + 1C. n - 1D. 2n - 1(答案)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点小学奥数之裂项 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!公式法、裂项相消法、错位相减法、倒序相加法等。
(关键是找数列的通项结构)
1、分组法求数列的和:如an=2n+3n
2、错位相减法求和:如an=n·2^n
3、裂项法求和:如an=1/n(n+1)
4、倒序相加法求和:如an=n
5、求数列的最大、最小项的方法:
①an+1-an=……如an=-2n2+29n-3
②(an>0)如an=
③an=f(n)研究函数f(n)的增减性如an=an^2+bn+c(a≠0)
6、在等差数列中,有关Sn的最值问题——常用邻项变号法求解:
(1)当a1>0,d<0时,满足{an}的项数m使得Sm取最大值.
(2)当a1<0,d>0时,满足{an}的项数m使得Sm取最小值.
在解含绝对值的数列最值问题时,注意转化思想的应用。
对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。
如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。
而裂项法就是一种行之有效的巧算和简算方法。
通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。
下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。
例1、计算1×2+2×3+3×4+4×5+……+98×99+99×100
分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。
算式的特点概括为:数列公差为1,因数个数为2。
1×2=(1×2×3-0×1×2)÷(1×3)
2×3=(2×3×4-1×2×3)÷(1×3)
3×4=(3×4×5-2×3×4)÷(1×3)
4×5=(4×5×6-3×4×5)÷(1×3)
……
98×99=(98×99×100-97×98×99)÷(1×3)
99×100=(99×100×101-98×99×100)÷(1×3)
将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。
解:1×2+2×3+3×4+4×5+……+98×99+99×100 =(99×100×101-0×1×2)÷3
=333300
计算之裂项习题1
计算之裂项习题2。