中职数学平面向量的加法上课ppt课件

合集下载

人教版中职数学拓展模块一:3.2.1向量的加法课件(共21张PPT)

人教版中职数学拓展模块一:3.2.1向量的加法课件(共21张PPT)
活动 2
调动思维,探究新知
想一想
如果向量, 共线时,如何作出 +?
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
注:
对于零向量与任意向量 ,都有
+0 = 0+ = .
活动 3
巩固练习,提升素养
解 (1)在平面内任取一点 A,作向量 = ,

在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
我们把这种求两个向量和的作图法则称为向量加法
的平行四边形法则.
特别提示
向量加法的平行四边形法则特点是两个向量首首相连.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学
拓展模块(一)
第三单元 平面向量
3.2.1向量的加法
人民教育出版社
第三单元 平面向量
3.2.1向量的加法
学习目标
知识目标
理解向量加法的概念,理解向量加法的三角形法则与平行四边形法则;
学生运用自主探讨、合作学习,理解向量运算与数的运算的区别和联系,理
能力目标
解向量加法的几何意义,掌握运用向量加法的三角形法则与平行四边形法求
活动 3
巩固练习,提升素养
例3 某人先向东走 3 km,接着向北走 3 km.求这
ห้องสมุดไป่ตู้
个人的位移.
课堂小结
3.2.1
/作业布置/
P75,练习1./2./3./4.
闻过而终礼,知耻而后勇。
感谢观看

6.2平面向量的运算课件共40张PPT

6.2平面向量的运算课件共40张PPT
故选 B.




即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.


解析:由=,可得四边形 ABCD 为平行四边形,


由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形




[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:


(1)+;





解:(1)+=+=.
[例 2] 化简:



(2)++;






解:(2)++=++



=(+)+
→→Biblioteka =+=0.
[例 2] 化简:












解:(2)原式=--+=(-)+(-)=+=0.



[备用例 2] 化简:--.






解:法一 --=-=.













平面向量的加减法 ppt课件

平面向量的加减法  ppt课件
数与向量的乘法运算叫做向量的数乘运算,容易验证,对于
任意向量a, b及任意实数、,向量数乘运算满足如下的法则:
向量加法及数乘运算
1 1 a在形a, 式上1与 a实数a的 有;关运算规 2 律的相去 a类括似号,、因移a此项 ,、实合数并a运同;算类中项
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0; (2) a+b = b+a; (3) (a+b)+ c = a +(b+c).
ppt课件
11
探究一:当向量共线时,如何相加?
(1)同向
(2)反向
a
b
a
b
A
B
C
AC = a + b
B
CA
AC = a + b
规定:a 0 0 a a
ppt课件
12
探究二:向量的加法是否具备交换律和结合律?
• 数的加法满足交换律与结合律,即对任意a,b∈R, 有a+b=b+a, (a+b)+c=a+(b+c)
• 向量的加法具备吗?你能否画图解释?
向量加法满足交换律和结合律:
a b b a (a+b)+c a (b c)
• 橡皮条在力F1与F2的作用下,从E点伸长到了O点; 同时橡皮条在力F的作用下也从E点伸长到了O点.
• 问:合力F与力F1、F2有怎样的关系?
F1+F2=F
E
O
E
O
F
F
F是以F1与F2为邻边所形成的
平行四边形的对ppt课角件线
5
向量加法运算及其几何意义

中职数学平面向量的加法上课27页PPT

中职数学平面向量的加法上课27页PPT
不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
中职数学平面向量的加法上课
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

中职教育数学《平面向量的加法》课件

中职教育数学《平面向量的加法》课件

b
(4) a
0.
(5) a
c b
用 一 用
1、平行四边形ABCD中
(1)AB + AD =
(2) AB + BC + CD = (3) AC + CD + DO= (4) AC + CD + DA =
D
C
O
A
B
2、 AB + EF + FG + BC + DE + CD + GA =
2、化简: (1) AB + BC + CA= (2)(AB + MB)+ BO + OM = (3) OA + OC + BO + CO =
共同点与不同点?
向量的加法的性质:
(1)、a 0 0 a,
a (a) 0
(2)、a
b
b
a
(3)、(a
b)
c
a
(b
c)
例1.如图,已知向量 a, b,求作向量 a b 。
作法1:在平面内任取一点O,
b
作 OA a ,AB b ,
a
则 OB a b 。
O
a
A
b
ab
B
三角形法则
角来表示)。
解:(2)在Rt ABC中,| AB | 2,| BC | 2 3
D
C
| AC | | AB |2 | BC |2
22 (2 3)2
tan
4 CAB
2
3
3
2
BAC 60。
A
B
答:船实际航行速度为4km/h,方向与水的流速间的夹角为60º。

平面向量加减法课件

平面向量加减法课件

在物理学中的应用
01
平面向量加减法在物理学中的性质和定理
02
向量的加法满足平行四边形定则
向量的减法满足三角形定则
03
在物理学中的应用
向量的数乘满足标量积定理
1
2
平面向量加减法在物理学中的实际应用
确定力的合成与分解
3
在物理学中的应用
计算物体的运动轨迹和速度
解决物理问题,如力学、电磁学等
05
平面向量加减法的练习 与巩固
平行法则适用于任何两个相同的向量 。通过将一个向量分解成两个相同的 子向量,可以找到原始向量的和。这 个法则也可以用于任何数量的相同向 量。
04
平面向量加减法的应用
解向量方程
求解向量方程的解 根据给定的向量方程,确定未知量
通过加减法运算,解出未知量的值
解向量方程
检验解的正确性,确 保解符合原始向量方 程
向量减法的几何意义
两个向量相减,得到的新的向量的方向和大小与原来的两个向量有关系。
02
平面向量加减法的运算 性质
向量的加法交换律
总结词
向量加法满足交换律
详细描述
设$\mathbf{a}$和$\mathbf{b}$是平面向量,则有$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,即向量加法满足交换律。ຫໍສະໝຸດ 练习题一:判断题总结词
掌握平面向量加减法的基本概念
判断下列说法是否正确
向量a+向量b的和向量等于向量a与 向量b之和。(×)
判断下列说法是否正确
向量a与向量b的和向量等于向量a+ 向量b。(×)
判断下列说法是否正确

中职数学《平面向量的加法》说课课件

中职数学《平面向量的加法》说课课件

数学课程“创新杯“大 赛
教材分析
教法学法
教学过程
教学反思
问题一
向量加法的定义 给出的做出 向量和的方法是 什么?
问题二 说教材
还有没有别的方 法作出和向量?
问题三
这两个法则各自 有什么特点和 关键点?
问题五
向量加法有哪些 运算律?
问题四
对于两个共线向 量如何作出它们 的和?
《平面向量的加法》
数学课程“创新杯“大 赛
a
问题四 对于两个共线向 量如何作出它们 的和?
情况一:方向相同
情况二:方向相反
b
说教材
a
b
A
B
C
A
C
B
AC=a b
AC=a b
《平面向量的加法》
数学课程“创新杯“大 赛
教材分析
教法学法
教学过程
教学反思
类比猜想,填写下表
说教材
问题五
实数a, b, c
问题一 向量加法的定义 给出了如何做出 向量和的方法是 什么?
a
b
a
A
三角形法则
B
b
C
a +b
《平面向量的加法》
数学课程“创新杯“大 赛
教材分析
教法学法
教学过程
教学反思
说教材 问题二
还有没有别的方 法作出和向量?
平行四边形法则
《平面向量的加法》
数学课程“创新杯“大 赛
教材分析
数学课程“创新杯“大 赛
教材分析
教法学法
教学过程
教学反思
教学重点
说教材
教学难点
平面向量加法法则 及其应用

中职数学基础模块下册《平面向量的概念》课件

中职数学基础模块下册《平面向量的概念》课件

向量的投影可以看作是向量在某个方 向上的分量,通过计算向量的数量积 可以得到向量的投影。
速度和加速度的计算
在运动学中,速度和加速度可以表示 为位置向量的时间导数,通过计算向 量的数量积可以得到速度和加速度的 大小。
THANKS
感谢观看
数量积的几何意义
01
数量积表示向量a与向量b的长度 和它们之间的夹角的余弦值的乘 积。
02
当两向量同向时,数量积为两向 量长度之积;当两向量反向时, 数量积为两向量长度之差的绝对 值。
数量积的应用举例
力的合成与分解
向量的投影
在物理中,力可以视为向量,力的合 成与分解可以通过计算向量的数量积 来实现。
详细描述
向量模是表示向量长度的概念, 记作|a|。向量模具有非负性、齐 次性、三角形不等式等性质。
向量模的计算方法
总结词
掌握向量模的计算方法是实际应用中必不可少的技能。
详细描述
向量模的计算公式为|a| = 根号(x^2 + y^2),其中x和y分别是向量在x轴和y轴上的分量。此外,还有 向量模的运算性质,如|a+b|≤|a|+|b||a-b|≤|a|+|b||a-b|≥||a|-|b||等,这些性质在实际问题中具有广泛 的应用。
平面向量数乘的定义与性质
总结词
数乘是标量与向量的乘积,结果仍为 向量,满足分配律。
详细描述
数乘是实数与向量的乘积,其实质是 标量与向量的乘积。数乘的结果仍为 向量,且满足分配律,即 m(a+b)=ma+mb。
平面向量加法与数乘的几何意义
总结词
平面向量加法的几何意义是将两个向量首尾相接, 按平行四边形法则或三角形法则确定的合成向量; 数乘的几何意义是改变向量的模长和方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题一
向量加法的定义 给出的做出
向量和的方法是 什么?
问题五
向量加法有哪些 运算律?
问题二
还有没有别的方 法作出和向量?
问题四
对于两个共线向 量如何作出它们
的和?
问题三
这两个法则各自 有什么特点和
关键点?
[问题1]向量 加法的定义 给出了如何 做出向量和 的方法是什 么?
向量加法的定义:已知向量 a , b,在平
a
b
( 6) b
a
ab
a
题目三:想想你的生活中哪些实例用到我们今天 学习的向量和的知识?
评价内容 第一组 第二组 第三组 第四组 第五组 第六组
学生小组活动评价表
练习1
练习2 练习3











综合评价 ☆☆ ☆☆ ☆ ☆☆☆ ☆ ☆☆
学生根据自身情况,自主选择完成。
必做题
P29习题 1、2、3
THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS
THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS
课题: 平面向量的加法
生活中有向量 生活中用向量
济南
香港
台湾
飞机从A到B,再改变方向从B到C,则两次位移的和
uuur uuur uuur AB BC AC
济南
A
台湾
C
香港
B
rC
A
ar
b
B
难点突破
rr r a 向作量uAuBu加rr=法ar的,定作义uB:uCur已=知br,向作量向量, buA,uCur在,则平向面量上任uAuC取ur 叫一做点A向量, a 与 b 的和(或和向量)。
uuur
AC
29
因为 tan CAB 25 ,由计算器得 CAB 680
D
C
A
B
答:船实际航行速度的大小约为5.4km/h,方向与水的流速间的
夹角约为 680。
根据图示填空
作出向量的和
举出生活实例
1、根据图示填空:
E
D
C A
B
uuur uuur uuur AB BC _A__C__
uuur uuur uuur
实数a,b, c
ab ba
(a b) c a (c
(aab)
b
cba
a (b
c)
注意向量的方向性
例题:长江两岸之间没有大桥的地方,常常通过轮渡进行运输,如图 所示,一艘船从长江南岸点出发,以5km/h的速度向垂直于对岸的 方向行驶,同时江水的速度为向东2km/h.
a



b

b a a+b
b a a+b a b
三角形法则——首尾相接,始终相连 平行四边形法则——首首相接,始终相连
1、方向相同
a b
2、方向相反
a
b
A
B
AC = a + b
C
[问题4] 对于两 个共线 向量如 何作出 它们的 和?
BCA
AC = a + b
通过类比猜想,填写下表
[问题5] 向量的 加法有 哪些运 算律?
(1)试用向量表示江水速度,船速以及船实际航行的速度 ; (2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,
精确到度)
船实际航行速度
D
C
船速
A 水速 B
uuur
uuur
解:(1)如图,ADuu表ur示船速,AB 表示水速,以AD、AB为邻
边(2作)平在行直四角边三形角,则形中AC,Au表uBu示r 船2实,际Bu航uCur行的5速,所度以。
r
ar
b
ar +br
ar ar +br
br
三角形法则
平行四边形法则
● 更多精典超值方案狂点这儿:
THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS
面上任取一点A,作 AB = a,作 BC = b,作 向量AC ,则向量 AC 叫做向量 a 与 b 的和 (或和向量)。
Bb
C
a
a
.
a+b
b
A
三角形 法则
[问题2]还
有没有别
的方法作 出和向量?
a
b
b a a+b a
b
平行四边形 法则

角 形
a

[问题3]

b
这两个法
则各自有

什么特点

和关键点? 四
选做题
例2中若船想以 2km/h的速度垂 直到达对岸,问 船航行速度的大 小和方向是多少?
思量考ar:与如向何量求b向r
的负向量的和
板书设计
7.2.1 平面向量的加法
rr r a 向作量uAuBu加rr=法ar的,定作义uB:uCur已=知br,向作量向量, buA,uCur在,则平向面量上任uAuC取ur 叫一做点A向量, a 与 b 的和(或和向量)。
BC CD _B__D__
uuur AB
uuur BC
uuur CD
uuur _A__D__
uuur uuur uuur uuur uuur AB BC CD DE _A__E__
2、作图
(1) a b
b
a
(3) a b b
a
b
(5)
b
ab
ba
(2) b
ab b
a
(4) a b
b
相关文档
最新文档