平面向量的加减法ppt课件

合集下载

6.3.3平面向量的加减运算的坐标表示课件共12张PPT

6.3.3平面向量的加减运算的坐标表示课件共12张PPT

A O
C D
x
而 OD = OB + BD = (-1, 3) + (3, -1) = (2, 2)
所以顶点D的坐标为(2,2)
达标检测
1.点 A(1,-3),A→B的坐标为(3,7),则点 B 的坐标为( A )
A.(4,4)
B.(-2,4)
C.(2,10)
D.(-2,-10)
【解析】 设点 B 的坐标为(x,y),由A→B=(3,7)=(x,y)-(1,
【解】 如图,正三角形 ABC 的边长为 2,
3.已知边长为 2 的正三角形 ABC,顶点 A 在坐标原点,AB 边在 x
轴上,C 在第一象限,D 为 AC 的中点,分别求向量A→B,A→C,B→C,B→D
的坐标.
则顶点 A(0,0),B(2,0),C(2cos 60°,2sin 60°),
∴C(1,
(1, 2) = (3 - x, 4 - y)
y B
A O
C D
x
1= 3-x 2= 4-y
解得 x=2,y=2 所以顶点D的坐标为(2,2)
y B
解法2:由平行四边形法则可得
BD = BA + BC = (-2 - (-1),1 - 3) + (3 - (-1), 4 - 3) = (3, -1)
O
x
结论:一个向量的坐标等于表示此向量的有向线段 的终点的坐标减去起点的坐标.
例2:如图,已知平行四边形ABCD 的三个顶点A、B、C的坐标分别 是(-2,1)、(-1,3)、(3,4),试求顶点D的坐标.
解法1:设点D的坐标为(x,y)
AB = (-1, 3) - (-2,1) = (1, 2) DC = (3, 4) - (x, y) = (3 - x, 4 - y) 且AB = DC

6.2平面向量的运算课件共40张PPT

6.2平面向量的运算课件共40张PPT
故选 B.




即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.


解析:由=,可得四边形 ABCD 为平行四边形,


由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形




[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:


(1)+;





解:(1)+=+=.
[例 2] 化简:



(2)++;






解:(2)++=++



=(+)+
→→Biblioteka =+=0.
[例 2] 化简:












解:(2)原式=--+=(-)+(-)=+=0.



[备用例 2] 化简:--.






解:法一 --=-=.













平面向量的加法减法运算PPT课件

平面向量的加法减法运算PPT课件

ABCD


AC a b
首 相
C

第8页/共29页
练一练
a, b 如图,已知 用向量加法的平行四边形法则作出 ab
(1)
b
ab

ba
首 相
(2)
b
a
ab

a
第9页/共29页
回顾例1:平行四边形ABCD中,
AB AD AC
AD 问: 能否不移动向量 , 而移动向
量 ?结果是否和原来一样呢?
AB
。 a
说明:
① 规定 0 0
② 性质
a
a
a
a
a
a
0
第16页/共29页
2、向量的减法:
向量
a
与向量
b
的负向量的和定义为向量
a
b 与向量
的差,即
ab a b
求两个向量差的运算叫作向量的减法
第17页/共29页
a b 1、向量减法法则:已知向量 , 不共线,求作
向量 ,使 c
a a a a
a
a bbbbb
B
A
C
a b AB AC CB
第21页/共29页
a b 例1 已知如图所示向量 、 ,请画出向量
a
b
O a
A
b a b
a b
B
第22页/共29页
例2 化简:
⑴ OD OA
⑵ AB AC BD DC
解: ⑴ OD OA AD
⑵ AB AC BD DC
的向量.
这种求不共线的两个向量和的方法叫做

向量加法的平行四边形法则
首 相

平面向量的加减法 ppt课件

平面向量的加减法  ppt课件
数与向量的乘法运算叫做向量的数乘运算,容易验证,对于
任意向量a, b及任意实数、,向量数乘运算满足如下的法则:
向量加法及数乘运算
1 1 a在形a, 式上1与 a实数a的 有;关运算规 2 律的相去 a类括似号,、因移a此项 ,、实合数并a运同;算类中项
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0; (2) a+b = b+a; (3) (a+b)+ c = a +(b+c).
ppt课件
11
探究一:当向量共线时,如何相加?
(1)同向
(2)反向
a
b
a
b
A
B
C
AC = a + b
B
CA
AC = a + b
规定:a 0 0 a a
ppt课件
12
探究二:向量的加法是否具备交换律和结合律?
• 数的加法满足交换律与结合律,即对任意a,b∈R, 有a+b=b+a, (a+b)+c=a+(b+c)
• 向量的加法具备吗?你能否画图解释?
向量加法满足交换律和结合律:
a b b a (a+b)+c a (b c)
• 橡皮条在力F1与F2的作用下,从E点伸长到了O点; 同时橡皮条在力F的作用下也从E点伸长到了O点.
• 问:合力F与力F1、F2有怎样的关系?
F1+F2=F
E
O
E
O
F
F
F是以F1与F2为邻边所形成的
平行四边形的对ppt课角件线
5
向量加法运算及其几何意义

人教版高中数学第二章2平面向量的减法(共18张PPT)教育课件

人教版高中数学第二章2平面向量的减法(共18张PPT)教育课件

练习1,已知AB, AD是两个不共线的向量, 求 AB AD, AB AD
D
C
A
B
AC AB AD DB AB AD
特殊的,
当a, b方向相同时:
a
b
ab
C
A
B
CB a b
当a, b方向相反时:
b
a
C
b
a
A•
B
CB a b
(1)两个向量的差仍然是一个向量 (2)a b 与a、b之间是关系:
若船自身的速度方向垂直于河岸,船能垂直于河岸驶去吗?
v0
v
若要使船能垂直过河,你能求出船自身行驶速度的大小与方向吗?
1、向量的减法:求两个向量差的运算(差仍为向量)
相反向量 : 长度相等,方向相反的向量 记作 a ,
a 与 a 互为相反向量 .
(a ) a
AB BA
规定,零向量的相反向量仍是零向量 ,即 0 0 .

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。

平面向量加减法课件

平面向量加减法课件

在物理学中的应用
01
平面向量加减法在物理学中的性质和定理
02
向量的加法满足平行四边形定则
向量的减法满足三角形定则
03
在物理学中的应用
向量的数乘满足标量积定理
1
2
平面向量加减法在物理学中的实际应用
确定力的合成与分解
3
在物理学中的应用
计算物体的运动轨迹和速度
解决物理问题,如力学、电磁学等
05
平面向量加减法的练习 与巩固
平行法则适用于任何两个相同的向量 。通过将一个向量分解成两个相同的 子向量,可以找到原始向量的和。这 个法则也可以用于任何数量的相同向 量。
04
平面向量加减法的应用
解向量方程
求解向量方程的解 根据给定的向量方程,确定未知量
通过加减法运算,解出未知量的值
解向量方程
检验解的正确性,确 保解符合原始向量方 程
向量减法的几何意义
两个向量相减,得到的新的向量的方向和大小与原来的两个向量有关系。
02
平面向量加减法的运算 性质
向量的加法交换律
总结词
向量加法满足交换律
详细描述
设$\mathbf{a}$和$\mathbf{b}$是平面向量,则有$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,即向量加法满足交换律。ຫໍສະໝຸດ 练习题一:判断题总结词
掌握平面向量加减法的基本概念
判断下列说法是否正确
向量a+向量b的和向量等于向量a与 向量b之和。(×)
判断下列说法是否正确
向量a与向量b的和向量等于向量a+ 向量b。(×)
判断下列说法是否正确

平面向量的加法减法与数乘运算课件

平面向量的加法减法与数乘运算课件

数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向

平面向量的加减法PPT文档36页

平面向量的加减法PPT文档36页
ቤተ መጻሕፍቲ ባይዱ
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
平面向量的加减法
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[例1] 如图所示,
已知向量a,b,c试作出向量a+b+c.
[精解详析] 法一:如图 1 所示,
uuur 首先在平面内任取一点 O,作向量 OA =
uuur
uuur
a,再作向量 AB =b,则得向量 OB =a+b;
uuur
uuur
然后作向量 BC =c,则向量 OC =(a+b)+c
=a+b+c 即为所求.
uuur 解:用 AB 表示向正东行驶 10 km 的位移, uuur BC 表示沿北偏东 30°方向行驶了 15 km
uuur 的位移,则 AC 表示小船两次的合位移(如 图).
14
例题讲解
[例 2] 化简或计算:
uuur uuur uuur
(1) CD + BC + AB ;
uuur uuur uuur uuur uuur
OE,则 OE = OD + OC =a+b+c 即为所
求.
12
跟踪练习
1.如图,已知平行向量 a、b,求作 a+b.
uuur
uuur
uuur
解:作 OA =a,AB =b,则 OB =a+b 就是求作的向量.
13
2.小船向正东方向行驶了 10 km,又沿北偏东 30°方向行驶 了 15 km,作出小船两次的合位移.
11
uuur
法二:如图 2 所示,首先在平面内任取一点 O,作向量 OA =a,
uuur
uuur
uuur
OB =b,OC =c,以 OA、OB 为邻边作▱OADB,连接 OD,则 OD
uuur uuur
= OA + OB =a+b.
再以 OD、OC 为邻边作▱ODEC,连接 uuur uuur uuur
(2) AB + DF + CD + BC + FA .
uuur uuur uuur uuur uuur uuur
[精解详析] (1) CD + BC + AB =( AB + BC )+ CD uuur uuur uuur
= AC + CD = AD .
uuur uuur uuur uuur uuur
提示:有. 问题4:在问题3中,物体为什么没沿水平或垂直方 向运动?
提示:力的合力不在这两个方向上.
4
一、向量加法的定义和法则 1.向量加法的定义 求 两个向量和的运算,叫做向量的加法.
2.求向量和的方法
(1)三角形法则:
已知非零向量a、b,在平面上任取一点A,

uuur AB
=a,
uuur BC
以O为
起点
的对角线
uuur OC
就是a与b的和,如图.这种作两个向量
和的方法叫做向量加法的平行四边形法则.
对于零向量与任一向量a,规定:a+0= 0 + a =a .
6
二、向量加法的运算律 问题1:数的加法满足交换律和结合律,向量的加法 是否也满足交换律和结合律?
提示:满足. 问题2:你能验证向量也满足结合律吗?
1,则|
uuur AB

uuur AD
|为
A.1
B. 2
C.3
D.2 2
uuur uuur uuur
解析:正方形 ABCD 中, AB + AD = AC
uuur uuur uuur
∴| AB + AD |=| AC |= 2.
答案:B
()
16
2.化简下列各式:
uuur uuur uuur
(1) PB + OP + OB
uuur uuur uuuur uuur = AB + BO + OM + MB

uuur AO

uuur OB

uuur AB
.
17
例题讲解
[例 3] 船在静水中的速度为 20 m/min,水流的速度为 10 m/min,如果船从岸边出发沿垂直于水流的航线到达对岸,求船 行进的方向.
uuur uuur uuur uuuur
2 AB + MB + BO + OM
uuur uuur uuur uuur uuur uuur
解:1 PB + OP + OB =( OP + PB )+ OB
uuur uuur
= OB + BO =0.
uuur uuur uuur uuuur 2 AB + MB + BO + OM
=b,则向量
uuur AC
叫做a与
uuur
b的和或和向量,记作a+b,即a+b= AB + uuur uuur BC = AC .上述求两个向量和的方法,称为向量加法的三角
形法则.
5
(2)平行四边形法则:
uuur
已知两个不共线向量a,b,作 OA =a
uuur OB
=b,以a,b为邻边作▱OACB,则
(2) AB + DF + CD + BC + FA
uuur uuur uuur uuur uuur
=( AB + BC )+( CD + DF )+ FA uuur uuur uuur uuur uuur
= AC + CF + FA = AF + FA =0.
15
跟踪练习
1.正方形
ABCD
的边长为
2.2 平面向量的运算
1
2.2.运算吗?请举例说明. 提示:能,如力的合成. 问题2:如果两个力F1,F2作用于同一个物体上, 当物体静止时,说明了什么? 提示:F1+F2=0.
3
问题3:做斜上抛运动的物体在水平方向上有速度 吗?在竖直方向上有速度吗?
uuuur uuuur uuuuur
uuuuuur uuuuur
有 A0 A1 A1A2 A2 A3 L An1An A0 An ,这可以称为向量加法
的多边形法则.
2.在向量加法的三角形法则中,可得|a|+|b|≥|a+b|.其
中,“=”在有一者为零向量或两个向量共线且方向相同时取
得.
10
例题讲解
uuur uuur uuur
如图所示: AC = AB + AD (平行四边形法则, uuur uuur uuur AC = AB + BC (三角形法则).
9
(3)在使用三角形法则时,应注意“首尾连接”;在使用平
行四边形法则时应注意两向量起点相同.
(4)三角形法则可以推广为多边形法则,即对于几个向量,
提示:如图,a+b+c=(a+b)+c=a+(b+c).
7
(1)向量加法的交换律:a+b= b+a ; (2)向量加法的结合律:(a+b)+c= a+(b+c.)
8
深化理解
1.对两种求向量和的方法的理解. (1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量求和,平行四边形法 则只适用于两个不共线的向量求和. (2)当两个向量不共线时,两个法则是一致的.
相关文档
最新文档