数学研讨 专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

合集下载

专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

专题八  立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

专题八 立体几何第二十三讲 空间中点、直线、平面之间的位置关系一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D2.(2018全国卷Ⅱ)在长方体1111-ABCD A B C D 中,1==AB BC ,1=AA 线1AD 与1DB 所成角的余弦值为A .15B C D 3.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤5.(2017新课标Ⅱ)已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A B C D 6.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则R QPABC DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α7.(2016年全国I )平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI 平面ABCD =m ,αI 平面11ABB A =n ,则m ,n 所成角的正弦值为A.2 B.2 C.3 D .138.(2015福建)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“l ∥α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2015浙江)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CD B '--的平面角为α,则10.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 11.(2014浙江)设,m n 是两条不同的直线,,αβ是两个不同的平面A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥则m α⊥C .若,,m n n ββα⊥⊥⊥则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 12.(2014辽宁)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥13.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15AB m =,25AC m =,30BCM ∠=︒则tan θ的最大值ABCD 14.(2014四川)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A1A. B.C .D . 15.(2013新课标Ⅱ)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足,l m l n ⊥⊥,,l l αβ⊄⊄,则A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l16.(2013广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥17.(2012浙江)设l 是直线,,αβ是两个不同的平面A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, l ∥α,则l ⊥β18.(2012浙江)已知矩形ABCD ,1AB =,BC =将ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 19.(2011浙江)下列命题中错误..的是 A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β20.(2010山东)在空间,下列命题正确的是A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行 二、填空题21.(2018全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为_____. 22.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)23.(2015浙江)如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .24.(2015四川)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,,E F 分别为,AB BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为_________.25.(2017新课标Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最小值为60°;其中正确的是________.(填写所有正确结论的编号) 三、解答题26.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.D 11B 1A 1DCBA求证:(1)AB ∥平面11A B C ;(2)平面11ABB A ⊥平面1A BC .27.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.C 1B 1A 1CBA(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.28.(2017浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC AD ∥,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.EDCBAP29.(2017江苏)如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .FABCDE30.(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.31.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.32.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E BC A --的余弦值.33.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '= (I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.34.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(Ⅰ)证明MN平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.BD35.(2014山东)如图,四棱锥P ABCD -中,AP PCD ⊥平面,AD BC ∥,1,,2AB BC AD EF ==分别为线段,AD PC 的中点.(Ⅰ)求证:AP BEF ∥平面; (Ⅱ)求证:BE PAC ⊥平面.36.(2014江苏)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证:(Ⅰ)直线PA ∥平面DEF ;(Ⅱ)平面BDE ⊥平面ABC .37.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD求三棱锥E ACD -的体积.38.(2014天津)如图四棱锥P ABCD -的底面ABCD是平行四边形,BA BD ==,2AD =,PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值.39.(2013浙江)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==,PA =120ABC ∠=,G 为线段PC 上的点.PDB(Ⅰ)证明:BD ⊥面APC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC ⊥面BGD ,求PGGC的值. 40.(2013辽宁)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(Ⅰ)求证:BC PAC ⊥平面;(Ⅱ)设Q 为PA 的中点,G 为AOC ∆的重心,求证:QG ∥平面PBC .41.(2012江苏)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.1求证:(Ⅰ)平面ADE ⊥平面11BCC B ;(Ⅱ)直线1//A F 平面ADE .42.(2012广东)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高.(Ⅰ)证明:PH ⊥平面ABCD ; (Ⅱ)若1,1PH AD FC ===,求三棱锥E BCF -的体积;(Ⅲ)证明:EF ⊥平面PAB .43.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点.C求证:(Ⅰ)直线EF ∥平面PCD ; (Ⅱ)平面BEF ⊥平面PAD .44.(2011广东)如图在椎体P ABCD -中,ABCD是边长为1的棱形,且DAB ∠=60︒,PA PD ==2PB =,E ,F 分别是BC ,PC 的中点.(Ⅰ)证明:AD ⊥平面DEF ;(Ⅱ)求二面角P AD B --的余弦值.45.(2010天津)如图,在五面体ABCDEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC∥AD ,CD =1,AD =,∠BAD =∠CDA =45°.(Ⅰ)求异面直线CE 与AF 所成角的余弦值; (Ⅱ)证明CD ⊥平面ABF ; (Ⅲ)求二面角B EF A --的正切值.46.(2010浙江)如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°.E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C '的中点.(Ⅰ)求证:BF ∥平面A DE ';(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.。

高三数学总复习 8.3空间点、直线、平面之间的位置关系

高三数学总复习 8.3空间点、直线、平面之间的位置关系

河北省抚宁县第六中学高三数学总复习 8.3空间点、直线、平面之间的位置关系选用教材高中总复习优化设计知识模块立体几何课型复习教学目标知识与技能理解空间直线、平面位置关系的定义过程与方法了解四个公理和等角定理,并能以此作为推理的依据情感态度价值观建立立体感重点理解空间直线、平面位置关系的定义难点了解四个公理和等角定理,并能以此作为推理的依据关键对组成空间的基本元素:点、线、面之间的位置关系要掌握教学方法及课前准备学生自主探究讲练结合教学流程多媒体辅助教学内容一、平面的基本性质【例1】定线段AB所在的直线与定平面α相交,P为直线AB外一点,且P不在α内,若直线AP,BP 与α分别交于C,D点,求证:不论P在什么位置,直线CD必过一定点.证明:设定线段AB所在直线为l,与平面α交于O点,即l∩α=O.由题意可知,AP∩α=C,BP∩α=D,∴C∈α,D∈α.又∵AP∩BP=P,∴AP,BP可确定一平面β,且C∈β,D∈β.∴CD=α∩β.∵A∈β,B∈β,∴lβ.∴O∈β.∴O∈α∩β,即O∈CD.∴不论P在什么位置,直线CD必过一定点.方法提炼证明三点共线通常有两种方法:一是首先找出两个平面,然后证明这三点都是这两个平面的公共点,于是可得这三点都在这两个平面的交线上,即三点共线;二是选择其中两点确定一条直线,然后证明另一点也在这条直线上,从而得出三点共线.二、空间中两条直线的位置关系【例2】在正方体ABCD­A1B1C1D1中,E是CD的中点,连接AE并延长与BC的延长线交于点F,连接BE并延长交AD的延长线于点G,连接FG.求证:直线FG平面ABCD,且直线FG∥直线A1B1.【例2】证明:已知E是CD的中点,在正方体ABCD­A1B1C1D1中,有A∈平面ABCD,E∈平面ABCD,所以AE平面ABCD.又因为AE∩BC=F,所以F∈AE.从而F∈平面ABCD.同理G∈平面ABCD,所以FG平面ABCD.因为EC 12 AB,故在Rt△FBA中,CF=B C,同理DG=AD.又在正方形ABCD中,BC AD,所以CF DG.所以四边形CFGD是平行四边形.所以FG∥CD.又CD∥AB,AB∥A1B1,所以直线FG∥直线A1B1.方法提炼1.证明或判断空间两直线平行最常用的方法是公理4.平行线的传递性即若a∥b,b∥c,则a∥c. 2.判断两直线为异面直线的常用方法.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图.【典例】 已知正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为__________.解析:设正方体的棱长为a.连接A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角,在△AEA 1中,cos ∠AEA 12222235a a a a a ⎛⎫⎛⎫+++- ⎪ ⎪=. 答案:35答题指导:1.(1)在用平行平移的方法将异面直线所成的角转化为三角形内角时,忽视对三角形内角“即为两异面直线所成角或其补角”的叙述.(2)通过解三角形得到某一内角的余弦值为负值后,忽视角的范围,不知将其转化为正值来处理.2.求异面直线所成角一般用平移法:①一作:即找或作平行线,作出异面直线所成的角.②二证:即证明作出的角是异面直线所成的角.③三求:解三角形,求出所作的角,注意为锐角或直角.1.关于直线m ,n 与平面α,β,有以下四个命题:①若m ∥α,n ∥β且α∥β,则m ∥n m ∥n ⊥β且α⊥β,则m ∥n ;③若m ⊥α,n ∥β且α∥β,则m ⊥n ;④若m ⊥α,n ⊥β且α其中真命题有( )..若,BBCAD若四面体ABCDCAD。

专题八立体几何第二十三讲空间中点、直线、平面之间的位置关系

专题八立体几何第二十三讲空间中点、直线、平面之间的位置关系

&专题八立体几何第二十三讲 空间中点、直线、平面之间的位置关系2019 年1.(2019全国III 文8)如图,点 N 为正方形 ABCD 的中心,△ ECD 为正三角形,平面 ECD 丄 平面ABCD M 是线段ED 的中点,则A . BM=EN, 且直线 BM 、 EN 是相交直线B . BM 毛N, 且直线 BM , EN 是相交直线C . BM=EN, 且直线 BM 、 EN 是异面直线D . BM^EN, 且直线 BM , EN 是异面直线2. (2019全国1文19)如图,直四棱柱 ABCD- A 1B 1C 1D 1的底面是菱形, AA i =4, AB=2,Z BAD=60°, E , M , N 分别是 BC, BB 1, A 1D 的中点.(1) 证明:MN //平面GDE ; (2) 求点C 到平面GDE 的距离.3. ( 2019全国II 文7)设a, B 为两个平面,则a// B 的充要条件是A.a 内有无数条直线与 B 平行B. a 内有两条相交直线与 B 平行C. a, B平行于同一条直线D. a, B垂直于同一平面4. (2019北京文13)已知I, m是平面外的两条不同直线•给出下列三个论断:①I丄m :②m // :③I丄.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:5. (2019江苏16)如图,在直三棱柱ABC— A1B1C1中,D, E分别为BC, AC的中点,AB=BC. 求证:(1)A1B1 //平面DEC;(2)BE丄GE.6. (2019全国II文17)如图,长方体ABCDAB1C1D1的底面ABCD是正方形,点E在棱AA1 上,BE丄EG.(1)证明:BE丄平面EBC1;(2)若AE=A1E, AB=3,求四棱锥E BB1C1C的体积.7. (2019全国III文19)图1是由矩形ADEB Rt A ABC和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF=2, Z FBC=60°.将其沿AB, BC折起使得BE与BF重合,连结DG,如图2.(1) 证明图2中的A, C, G, D四点共面,且平面ABC丄平面BCGE(2) 求图2中的四边形ACGD的面积.8. (2019北京文18)如图,在四棱锥P ABCD中,PA 平面ABCD,底部ABCD为菱形, E为CD的中点.(I)求证:BD丄平面PAC;(H)若/ ABC=60°,求证:平面PAB丄平面PAE图1(川)棱PB上是否存在点F,使得CF//平面PAE?说明理由.9. (2019天津文17)如图,在四棱锥P ABCD中,底面ABCD为平行四边形,VPCD为等边三角形,平面PAC 平面PCD , PA CD , CD 2, AD 3,(I)设G , H分别为PB , AC的中点,求证:GH //平面PAD ;(n)求证:PA 平面PCD ;(川)求直线AD与平面PAC所成角的正弦值•10. (2019江苏16)如图,在直三棱柱ABC— A1B1C1中,D, E分别为BC, AC的中点,AB=BC. 求证:(1)A1B1 //平面DEC;(2)BE X C1E11. (2019浙江19 )如图,已知三棱柱ABC A1B1C1 ,平面AACC1 平面ABC, ABC 90 , BAC 30 ,AA AC AC, E,F 分别是AC, A1B1 的中点.(1)证明:EF BC ;(2)求直线EF与平面A1BC所成角的余弦值.12. (2019北京文18)如图,在四棱锥P ABCD中,PA 平面ABCD,底部ABCD为菱形,E为CD 的中点.(I)求证:BD丄平面PAC;(H)若/ ABC=60°,求证:平面PAB丄平面PAE(川)棱PB上是否存在点F,使得CF//平面PAE?说明理由.13. (2019全国1文16)已知/ ACB=90 ° , P为平面ABC外一点,PC=2,点P到/ACB两边AC, BC的距离均为J3,那么P到平面ABC的距离为_______________ .15. (2019天津文17)如图,在四棱锥P ABCD中,底面ABCD为平行四边形,VPCD 为等边三角形,平面PAC 平面PCD , PA CD , CD 2, AD 3,(I)设G , H分别为PB , AC的中点,求证:GH //平面PAD ;侧棱长均相等,P是棱VA上的点(不1. (2018全国卷n )在正方体ABCD A13G D1中,E为棱C。

空间点直线平面之间的位置关系(课堂PPT)

空间点直线平面之间的位置关系(课堂PPT)

a
α
BAlLeabharlann βα alP
β b
(1)
(2)
解:1) A,B,=l,a=A,a=B
2) a,b,=l,al=P, bl=P, ab=P
12
2.1.2 空间中直线与直线 之间的位置关系
13
两条直线的位置关系
思考1:同一平面内两条直线有几种位置关系? 空间中的两条直线呢?
b
C
a
14
1)教室内日光灯管所在直线与黑板左右两 侧所在直线的位置关系如何?
10
平面的基本性质
思考3:如果两个平面有一个公共点, 那么还会有其它公共点吗?如果有这些
公共点有什么特征?
公理3 如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线.
P , 且 P I l , 且 P l
作用:判断两个平面位
Pl
置关系的基本依据
11
例题
例1 如图,用符号表示下列图形中点、直线、 平面之间的位置关系.
直线AB 和直线HG
23
平行直线
观察
如图, 在长方体ABCD—A′B′C′D′中,
BB′∥AA′,DD′∥AA′,那么BB′与DD′平行
吗?
D'
C'
A'
B'
D A
答:平行
C B
24
平行直线
公理4 平行于同一直线的两条直线互相平行.
如果a//b,b//c,那么a//c
空间中的平行线具有传递性
D
C
F
答:四边形EFGH是菱形
A
因为EF 1 AC,EH 1 BD
2
2
H E

空间点、直线、平面之间的位置关系(教师版)

空间点、直线、平面之间的位置关系(教师版)

空间点、直线、平面之间的位置关系(教师版)一、知识概述本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.二、重难点知识归纳1、平面(1)平面概念的理解直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.(2)平面的表示法①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.②字母表示:常用等希腊字母表示平面.(3)涉及本部分内容的符号表示有:①点A 在直线l内,记作;②点A 不在直线l内,记作;③点A 在平面内,记作;④点A 不在平面内,记作;⑤直线l 在平面内,记作;⑥直线l 不在平面内,记作;注意:符号的使用与集合中这四个符号的使用的区别与联系.(4)平面的基本性质公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.符号表示为:.注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.公理2:过不在一条直线上的三点,有且只有一个平面.符号表示为:直线AB存在唯一的平面,使得.注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:.注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.公理的推论:推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间直线(1)空间两条直线的位置关系①相交直线:有且仅有一个公共点,可表示为;②平行直线:在同一个平面内,没有公共点,可表示为a//b;③异面直线:不同在任何一个平面内,没有公共点.(2)平行直线公理4:平行于同一条直线的两条直线互相平行.符号表示为:设a、b、c是三条直线,.定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.(3)两条异面直线所成的角注意:①两条异面直线a,b所成的角的范围是(0°,90°].②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:(i)在空间任取一点,这个点通常是线段的中点或端点.(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.(iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围. 3.空间直线与平面直线与平面位置关系有且只有三种: (1)直线在平面内:有无数个公共点;(2)直线与平面相交:有且只有一个公共点; (3)直线与平面平行:没有公共点. 4.平面与平面两个平面之间的位置关系有且只有以下两种:(1)两个平面平行:没有公共点; (2)两个平面相交:有一条公共直线. 三、典型例题剖析1.在正方体的八个顶点中,共可确定( )个平面.A .6B .12C .18D .20解析:正方体有六个面,这八个顶点确定6个平面;每两条平行的边(不在正方体的面上)所在的直线确定一个面,共6个面(上下,前后,左右各两个);对应每一个顶点有三个点确定的平面共有8个平面.所以由正方体的八个顶点共可确定6+6+8=20个平面. 故选D .2.设a 、b 、c 是空间中三条直线,下面给出四个命题,下列命题中,真命题的个数是( ) ①如果,则a//c ;②若a 、b 相交,b 、c 相交,则a 、c 相交; ③若a 、b 共面,b 、c 共面,则a 、c 共面; ④若a 、b 异面,b 、c 异面,则a 、c 异面. A .0 B .1 C .2 D .3 解析:对于①,在这两个条件下,直线a 和c 还可以异面,故为假命题.对于②,a 、c 不一定相交,也可以平行,也可以异面,故也为假命题.对于③,a 、c 还可以异面,假命题.对于④,a 、c 可以平行,也可以相交,则不一定异面,还是假命题.故真命题个数为0,选A.3.一条直线与三条平行直线都相交,求证:这四条直线共面. 已知:a//b//c ,.求证:直线a ,b ,c ,l 共面. 分析:先将已知和求证改写成符号语言.证明四线共面,可先由其中的两条直线确定一个平面,然后证明其余的直线均在此平面内.也可先由其中两条直线确定一个平面,另两条直线确定平面,再证平面重合.证明:,a 、b 确定一个平面,设为.又. 又即.同理b 、c 确定一个平面,.平面与都过两相交直线b 与l .两相交直线确定一个平面,与重合.故l 与a 、b 、c 共面.4.如图,的三边AB ,BC ,AC 平面相交,交点分别为P ,Q ,R ,求证:P ,Q ,R 三点在一条直线上.分析:欲证明P ,Q ,R 三点在一条直线上,只需证明P ,Q ,R 三点是两个平面的公共点,由公理2知,P ,Q ,R 三点一定在两个平面的交线上. 证明:如图,A ,B ,C 三点确定的为平面ABC ,直线AB 在平面ABC 内,直线与平面的交点为P ,所以点P 在平面ABC 内,也在平面内,也就是P 是平面ABC 与平面的公共点,故平面与平面ABC 相交,设其交线为l ,则. 同理,所以P ,Q ,R 在一条直线上.它们都在平面与平面ABC 的交线l 上. 点拨:在立体几何中,证明三个点(或更多的点)共线通常所使用的方法都是利用公理2,证明这些点是两个平面的公共点.5.已知:a 、b 是两条异面直线,直线a 上的两点A 、B 的距离为6,直线b 上的两点C 、D 的距离为8,AC 、BD 的中点分别为M 、N ,且MN=5.求异面直线a 、b 所成的角.分析:本题的关键在于依据异面直线所成角的定义构造和异面直线a 、b 平行的两条相交直线,然后把它们归纳到某一三角形中求解.解:如图所示,连接BC ,并取BC 的中点O ,连接OM 、ON .OM 、分别是和线, OM 、b 所成的角. 又, 在中,又6. AB =(1)BC (2)AA '7.①若直线l l α∥.②若直线l ③④若直线l A .0 答案:B.8. 若直线a A.αB.αC.α内存在唯一的直线与a 平行 D.α内的直线与a 都相交 答案:B.9. 已知a ,b ,c 是三条直线,角a b ∥,且a 与c 的夹角为θ,那么b 与c 夹角为 . 答案:θ.10. 如图,AA '是长方体的一条棱,这个长方体中与AA '垂直的棱共 条.答案:8条.11. 如果a ,b 是异面直线,直线c 与a ,b 都相交,那么这三条直线中的两条所确定的平面共有 个. 答案:2个.12. 已知两条相交直线a ,b ,a α平面∥则b 与α的位置关系是 .答案:b a ∥,或b 与a 相交.13. 如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行. ②CN 与BE 是异面直线. ③CN 与BM 成60˚角.④DM 与BN 垂直.以上四个命题中,正确命题的序号是( ) A.①,②,③B.②,④EC.③,④ D.②,③,④ 答案:C.14. 下列命题中,正确的个数为( )①两条直线和第三条直线成等角,则这两条直线平行;②平行移动两条异面直线中的任何一条,它们所成的角不变;③过空间四边形ABCD 的顶点A 引CD 的平行线段AE ,则BAE ∠是异面直线AB 与CD所成的角;④四边相等,且四个角也相等的四边形是正方形 A.0 B.1 C.2 D.3 答案:B. 15. 在空间四边形ABCD 中,N ,M 分别是BC ,AD 的中点,则2MN 与AB CD +的大小关系是 . 答案:2MNAB CD <+.16. 已知a b ,是一对异面直线,且a b ,成70角,P 为空间一定点,则在过P 点的直线中与a b ,所成的角都为70的直线有条. 答案:417. 已知平面αβ//,P 是平面αβ,外的一点,过点P 的直线m 与平面αβ,分别交于A C ,两点,过点P 的直线n 与平面αβ,分别交于B D ,两点,若698PA AC PD ===,,,则BD 的长为 .答案:24245或. 18. 空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若AC BD a ==,且AC 与BD 所成的角为90,则四边形E F G H 的面积是 . 答案:214a .。

专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

专题八  立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

专题八 立体几何第二十三讲 空间中点、直线、平面之间的位置关系一、选择题1.(2018全国卷Ⅱ)在正方体1111-ABCD ABC D 中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A B C D 2.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2017新课标Ⅰ)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是4.(2017新课标Ⅲ)在正方体1111ABCD A BC D -中,E 为棱CD 的中点,则 A .11A E DC ⊥ B .1A E BD ⊥ C .11A E BC ⊥ D .1A E AC ⊥ 5.(2016年全国I 卷)平面α过正方体ABCDA 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α平面ABCD =m ,α平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为A B C D .136.(2016年浙江)已知互相垂直的平面αβ, 交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n7.(2015新课标1)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛8.(2015新课标2)已知A 、B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为 A .π36 B .π64 C .π144 D .π2569.(2015广东)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 与1l ,2l 都不相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 至少与1l ,2l 中的一条相交10.(2015浙江)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CD B '--的平面角为α,则11.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 12.(2014浙江)设,m n 是两条不同的直线,,αβ是两个不同的平面A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥则m α⊥C .若,,m n n ββα⊥⊥⊥则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 13.(2014辽宁)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥14.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角)。

高中数学高考第3节 空间点、直线、平面之间的位置关系 课件

高中数学高考第3节 空间点、直线、平面之间的位置关系 课件


回 顾
c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.
课 后
对于②,a与b可能异面垂直,故②错误.
限 时

课 堂
对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正


点 确.


返 首 页
41



主 回
(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M 课

∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),

究 _有__且__只__有__一__条___过该点的公共直线.
返 首 页
5

前 自
(4)公理2的三个推论

回 顾
推论1:经过一条直线和这条直线外的一点,有且只有一个平 课 后
面.
限 时

课 堂
推论2:经过两条相交直线,有且只有一个平面.



推论3:经过两条平行直线,有且只有一个平面.


返 首 页
后 限
些点都是这两个平面的公共点,再根据基本公理3证明这些点都在
时 集


堂 考
交线上;②同一法:选择其中两点确定一条直线,然后证明其余点

探 也在该直线上.

返 首 页
25
课 前
(2)证明线共点问题:先证两条直线交于一点,再证明第三条直

主 线经过该点.



(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,


返 首 页
43
1.下列结论中正确的是 ( )

立体几何3空间点、直线和平面之间的位置关系.

立体几何3空间点、直线和平面之间的位置关系.

空间点、直线、平面之间的位置关系考纲要求1理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.知巩梳理"T"平面的基本性质名称内容图形衣示谄R表不作用公理1如果一条自线上的两点Ae/.be住一个/ILAG G,平而内•册么/〉《?■—/ B e U =>这条n纟戈在lUa此¥面内①判定直线住rifti A ;②判足点在平血内过不在—勒工线I-的三点・右-R只有一个平曲•B•C若A、”、「-:点不同住一条立线L.则A、”、「三点的定一个 fifiJa① a >iz平而;②ill:明点、线共而如果则个不重合的平向冇一个公典点•那么它们冇M貝仃一条过该点的公共宜线P W a • li "j =>a 「14 Z. H.He/①判定两亍半向是杏相交;©ill-明点在(!£线I .;③UF明三点、兵线* ①旺明三线共点S⑤iBlj两个相交平而的交线(3) 等角定理:空间中如果两个角的两边分别对应平 行,则这两个角相等或者互补.(4) 两异面直线所成的角:两条异面直线a, b,经过空 间任一点0作直线a' 〃d,方'lib 、把o' , H 所成的锐角 (或直角)叫异面直线a, 〃所成的角(或夹角).心,Z 所成 的角的大小与点O 的选择无关,为了简便,点O 通常取在异 两直裁的一条上;异,如果两条异面直线所成异面直线垂直,记作心 • 2 •空间直线(1)空间两直线的位置关系;相交直线:有且只有一个公共点; 平行直线:没有公共点:. .. (2)公理4: 空间中的直线4, b, C,如果4〃力,b//c.则0〃0问誠思考►问题1平面的基本性质(1)若点A在直线/上,直线/在平面G内,则点A在平面伉内;()(2)—条直线与一个点确定一个平面;()(3)三点确定一个平面;()(4)两个相交平面只有有限个公共点.()[答案]⑴对(2)错⑶错(4)错►问题2设平面仅与4UG直线比卩,则点M—定不在直线/上.()[答案]错[解析1因为《rU=M, uUa, bup,所以』1/在《内,M在〃内.又因为平面a与平面/栩交于人所以M在/上.►问题4 若O4〃0iAi,0B〃0右且Z4O〃=60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八 立体几何第二十三讲 空间中点、直线、平面之间的位置关系2019年1.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线2.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面3.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .4.(2019北京理12)已知l ,m 是平面a 外的两条不同直线.给出下列三个论断:①l m ⊥; ②m a P ; ③l a ⊥以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: ______.2010-2018年一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D2.(2018全国卷Ⅱ)在长方体1111-ABCD A B C D 中,1==AB BC ,1=AA 线1AD 与1DB 所成角的余弦值为A .15B .6C .5D .23.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤5.(2017新课标Ⅱ)已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A B C D 6.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CR QC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则RQ P AB C DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α 7.(2016年全国I )平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI 平面ABCD =m ,αI 平面11ABB A =n ,则m ,n 所成角的正弦值为A.2 B.2 C.3 D .138.(2015福建)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“l ∥α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2015浙江)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CD B '--的平面角为α,则10.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定11.(2014浙江)设,m n 是两条不同的直线,,αβ是两个不同的平面A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥则m α⊥C .若,,m n n ββα⊥⊥⊥则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥12.(2014辽宁)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥13.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15AB m =,25AC m =,30BCM ∠=︒则tan θ的最大值ABCD 14.(2014四川)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A1A. B.C .D . 15.(2013新课标Ⅱ)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足,l m l n ⊥⊥,,l l αβ⊄⊄,则A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l16.(2013广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥17.(2012浙江)设l 是直线,,αβ是两个不同的平面A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, l ∥α,则l ⊥β18.(2012浙江)已知矩形ABCD ,1AB =,BC =将ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直19.(2011浙江)下列命题中错误..的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β20.(2010山东)在空间,下列命题正确的是A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行二、填空题21.(2018全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为_____.22.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥.②如果m α⊥,n α∥,那么m n ⊥.③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 .(填写所有正确命题的编号)23.(2015浙江)如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .24.(2015四川)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,,E F 分别为,AB BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为_________.25.(2017新课标Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最小值为60°;其中正确的是________.(填写所有正确结论的编号)三、解答题26.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.D 11B 1A 1DC B A求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .27.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.C 1B 1A 1C BA(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.28.(2017浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC AD ∥,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.ED C B AP29.(2017江苏)如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .F AB C DE30.(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小;(Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.31.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.32.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E BC A --的余弦值.33.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '=(I )证明:D H '⊥平面ABCD ;(II )求二面角B D A C '--的正弦值.34.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(Ⅰ)证明MN 平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.BD35.(2014山东)如图,四棱锥P ABCD -中,AP PCD ⊥平面,AD BC ∥,1,,2AB BC AD EF ==分别为线段,AD PC 的中点.(Ⅰ)求证:AP BEF ∥平面; (Ⅱ)求证:BE PAC ⊥平面.36.(2014江苏)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证:(Ⅰ)直线PA ∥平面DEF ;(Ⅱ)平面BDE ⊥平面ABC .37.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD求三棱锥E ACD -的体积.38.(2014天津)如图四棱锥P ABCD -的底面ABCD是平行四边形,BA BD ==,2AD =,PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值.39.(2013浙江)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==,PA =120ABC ∠=,G 为线段PC 上的点.PDB(Ⅰ)证明:BD ⊥面APC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC ⊥面BGD ,求PGGC的值. 40.(2013辽宁)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(Ⅰ)求证:BC PAC ⊥平面;(Ⅱ)设Q 为PA 的中点,G 为AOC ∆的重心,求证:QG ∥平面PBC .41.(2012江苏)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.1求证:(Ⅰ)平面ADE ⊥平面11BCC B ;(Ⅱ)直线1//A F 平面ADE .42.(2012广东)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高.(Ⅰ)证明:PH ⊥平面ABCD ; (Ⅱ)若1,1PH AD FC ===,求三棱锥E BCF -的体积;(Ⅲ)证明:EF ⊥平面PAB .43.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点.C求证:(Ⅰ)直线EF ∥平面PCD ; (Ⅱ)平面BEF ⊥平面PAD .44.(2011广东)如图在椎体P ABCD -中,ABCD是边长为1的棱形,且DAB ∠=60︒,PA PD ==2PB =,E ,F 分别是BC ,PC 的中点.(Ⅰ)证明:AD ⊥平面DEF ;(Ⅱ)求二面角P AD B --的余弦值.45.(2010天津)如图,在五面体ABCDEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC∥AD ,CD =1,AD =,∠BAD =∠CDA =45°.(Ⅰ)求异面直线CE 与AF 所成角的余弦值; (Ⅱ)证明CD ⊥平面ABF ; (Ⅲ)求二面角B EF A --的正切值.46.(2010浙江)如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°.E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C '的中点.(Ⅰ)求证:BF ∥平面A DE ';(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.。

相关文档
最新文档