1.6完全平方公式(2)
1.6完全平方公式第2课时-2023-2024学年七年级数学下册同步课件(北师大版)

拿出糖果招待他们.如果来1个孩子,老人就给这个孩子1块糖果;如果来2
个孩子,老人就给每个孩子2块糖果;如果来3个孩子,老人就给每个孩子3
块糖果……
假如第一天有a个孩子一起去看老人,第二天有b个孩子一起去看老
人,第三天有(a+b)个孩子一起去看老人,那么第三天老人给出去的糖果
刀沿图中折痕剪开,把它分成四块完全相同的小长方形,然后按图②那样
拼成一个大正方形,则中间空白部分的面积是( C )
A.2m
B.(m+n)2
C.(m-n)2
D.m2-n2
四、当堂练习
6.化简:(x+2)2+4(1-x)= x2+8 .
7.一个正方形的边长增加3 cm,它的面积就增加45 cm2,则这个正方形的
思考:怎样计算1022,992更简便呢?
解:(1)1022=(100+2)2
(2)1972=(200-3)2
=1002+2×100×2+22
=2002-2×200×3+32
=10000+400+4
=40000-1200+9
=10404.
=38809.
你是怎样做的?与同伴进行交流.
二、新知探究
跟踪练习
方法二:逆用平方差公式
=a2+2ab+b2-9.
(x+3)2- x2
=(x+3+x)(x+3- x)
=(2x+3)·3=6x+9.
(3)(x+5)2-(x-2)(x-3).
(3)(x+5)2-(x-2)(x-3)
完全平方公式第2课时完全平方公式的应用课件北师大版数学七年级下册

6.先化简,再求值:(a+b)(a-b)+(a+b)2-2a2,其中ab=-1.
解:(a+b)(a-b)+(a+b)2-2a2 =a2-b2+a2+2ab+b2-2a2 =2ab.当ab=-1时,原式=2×(-1)= -2.
7.如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和 两个长方形),请认真观察图形,解答下列问题:
1.6完全平方公式第2课时 完全平方公式的应用
七年级下
北师版
学习目标
1.掌握完全平方公式,会进行完全平方公式的变形计算. 2.灵活应用完全平方公式解决实际问题,培养数学感知能力.
重点 难点
新课引入
数学课上,老师让同学们计算1022的结果,小唯一下子就说出了运算结 果是10404.你知道他是怎样速算的呢?
解:第一天a个孩子,给出去的糖果a×a=a2. 第二天b个孩子,给出去的糖果b×b=b2. 第二天(a+b)个孩子,给出去的糖果(a+b)2=a2+2ab+b2. 所以第三天老人给出去的糖果比前两天给出去的糖果多.
随堂练习
1.若m+n=3,则代数式2m2+4mn+2n2-6的值为( A ) A.12 B.3 C.4 D.0
分析:将两数的和(差)的平方式展开,产生两数的平方和与这两数积 的两倍,再将条件代入求解. 解:因为a2+b2=13,ab=6,
所以(a+b)2=a2+b2+2ab=13+2×6=25; (a-b)2=a2+b2-2ab=13-2×6=1.
归纳
运用完全平方公式进行简便计算,要熟记完全平方公式的特征,将原
=(2022-2021)2=1.
4.计算: (1)(x-2)(x+2)-(x+1)(x-3);
2024北师大版数学七年级下册1.6.2《完全平方公式》教案2

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1章第6节的内容,本节课主要让学生掌握完全平方公式的概念和运用。
完全平方公式是初中数学中的一个重要概念,也是解决二次方程和二次不等式问题的关键。
通过对完全平方公式的学习,学生可以更好地理解和运用二次方程和二次不等式,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、完全平方数等知识,对于二次方程和二次不等式有一定的了解。
但学生对于完全平方公式的理解和运用还不够熟练,需要通过本节课的学习来进一步掌握。
三. 教学目标1.让学生理解完全平方公式的概念,掌握完全平方公式的运用。
2.培养学生解决二次方程和二次不等式的能力。
3.培养学生合作学习、积极思考的能力。
四. 教学重难点1.完全平方公式的概念和运用。
2.解决二次方程和二次不等式。
五. 教学方法1.采用问题驱动法,引导学生主动探究完全平方公式。
2.采用案例分析法,让学生通过具体案例理解完全平方公式的运用。
3.采用小组合作学习,培养学生合作学习的能力。
六. 教学准备1.PPT课件2.相关案例和练习题3.笔记本和文具七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的完全平方现象,如正方形的面积公式等,引导学生对完全平方公式产生兴趣,激发学生的学习热情。
2.呈现(10分钟)通过PPT课件,呈现完全平方公式的定义和公式,让学生初步了解完全平方公式的概念。
3.操练(10分钟)让学生通过PPT上的练习题,运用完全平方公式进行计算,巩固对完全平方公式的理解和运用。
4.巩固(10分钟)让学生分组讨论,总结完全平方公式的运用方法和注意事项,加深对完全平方公式的理解和运用。
5.拓展(10分钟)通过PPT上的案例分析,让学生运用完全平方公式解决实际问题,提高学生解决二次方程和二次不等式的能力。
6.小结(5分钟)让学生对自己在本节课中学到的知识进行总结,提高学生的自我学习能力。
1.6第2课时完全平方公式的运用(教案)

在教学过程中,教师应针对教学难点和重点进行有针对性的讲解和训练,帮助学生理解核心知识,突破难点,确保学生对完全平方公式的理解和运用达到熟练程度。
四、教学流程
(一)导入新课(用时5分钟)
1.6第2课时完全平方公式的运用(教案)
一、教学内容
本节课为《数学八年级上册》1.6节的第2课时,主题为“完全平方公式的运用”。教学内容主要包括以下三个方面:
1.掌握完全平方公式的结构及特征,即(a±b)²=a²±2ab+b²。
2.学会运用完全平方公式进行因式分解,解决实际问题。
3.能够运用完全平方公式简化计算,提高解题效率。
此外,小组讨论环节中,学生们表现得积极主动,提出了很多有创意的想法。但在分享成果时,部分学生表达不够清晰,这可能是由于他们对完全平方公式的掌握还不够熟练。因此,在接下来的教学中,我要加强对学生表达能力的培养,让他们能够更好地展示自己的思考过程。
在讲授过程中,我也注意到要适时调整教学节奏,让学生有足够的时间消化吸收知识点。特别是在讲解难点时,要通过举例、对比等多种方式,帮助学生理解。同时,要关注每个学生的学习情况,对于掌握程度较差的学生,要给予个别辅导,确保他们能够跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的结构及其在因式分解中的应用。对于难点部分,如符号的判断和公式的灵活运用,我会通过具体例题和练习来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题,如计算特定图形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过折叠纸张或模型来演示完全平方公式的几何意义。
1.6_完全平方公式 (1)(2)

a,b怎样确定?
2 102
2 =(100+2)
2 2 =100 +2×100×2+2
=10000+400+4
=10404
2 197
2 =(200-3) 2 2 =200 -2×200×3+3
=40000-1200+9
=38809
随堂练习
1.利用整式乘法公式计算:
(1) (2)
2 96 2 203
例3计算:(2)(x+5)2–(x-2)(x-3)
解:
2 (2)(x+5) -(x-2)(x-3)
=(x2+10x+25)-(x2-5x+6) = x2+10x+25-x2+5x-6
=15x+19
温馨提示:1.注意运算的顺序。 2.(x−2)(x−3)展开后的结果要注意添括 号。
例3 计算:(3)(a+b+3)(a+b-3)
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
归纳
(a±b)2=a2±2ab+b2
完全平方公式的结构特征:
公式的左边是两数的和(或差)的平方, 右边是这两个数的平方和加上(减去)这两个数 的积的2倍。
记忆口诀:
首平方,尾平方,2倍乘积在中央。 注意:公式中的字母 a,b 可以是单项式,多项式
; .
学一学
例3 计算:(1)
2 (x+3)
-
2 x
你能用几种方法进行计算?试一试。 解:方法一: 完全平方公式合并 同类项
2 2 (x+3) -x
2 2 =x +6x+9-x
七年级数学 第一章 整式的乘除 1.6 完全平方公式(第2课时)

成一个边长为(a+b)的正方形,图中空白
部分(bù fen)的面积为S1,阴影部分的面积为S2.若S1=2S2,则
a,b满足
世纪金榜导学号( ) D
第二十七页,共三十九页。
A.2a=5b B.2a=3b C.a=3b D.a=2b
第二十八页,共三十九页。
★4.(2019·上海浦东新区期中(qī zhōnɡ))计算:(x+y)2-(x-y)2= ____4_x_y__.
第二十三页,共三十九页。
2.一个三项式的平方,通过添括号把其中两项看成一个整体 (zhěngtǐ),可利用完全平方公式.
第二十四页,共三十九页。
【题组训练】
1.(2019·洛阳期末)计算(jìsuàn):a2-(b-1)2结果正确的是
( )C
A.a2-b2-2b+1
B.a2-b2-2b-1
C.a2-b2+2b-1
(1)10.22.
(2)1 9992+2 0012.
第八页,共三十九页。
【自主(zìzhǔ)解答】(1)原式=(10+0.2)2
=102+2×10×0.2+0.22
=100+4+0.04=104.04.
第九页,共三十九页。
(2)1 9992+2 0012
=(2 000-1)2+(2 000+1)2 =2 0002-2×2 000+1+2 0002+2×2 000+1 =2×2 0002+2
=8 000 002.
第十页,共三十九页。
【学霸提醒(tíxǐng)】
利用完全平方公式计算较大数的平方的三步法
1.6完全平方公式(2)

1.6完全平方公式(2)主编:审核:班级:姓名:学习目标:1、能熟练掌握完全平方公式及其相关计算。
2、会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.(一)预习准备1.写出完全平方公式:2.去括号:(1))55(-=8-4(6-+=(2))8(3))b(ca--=a-+=(4))(cb(二)学习探究认真阅读利用完全平方公式计算:(1) 1022 ; (2) 1972(1)把 1022改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1022 =(100+2)2=1002+2×100×2+22=1000+400+4=10404(2)把 1972改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1972 =(200-3)2=2002-2×200×3+32=4000-1200+9=38809练一练:将P26中的例3的解题过程抄在学案中例3 计算:(1) (x+3)2 - x2 (2))3aba;(3)(x+5)2–(x-2)(x-3).)(+b+(-3+解:(三)练习展示1.利用完全平方公式计算(1)298 (2)2203 (3)2102 (4)21972.计算:(1)22(3)x x +- (2)22(1)(1)ab ab +--(四)达标测评(课后作业)一、基础练习1、选择:代数式2xy-x 2-y 2=( )A 、(x-y )2B 、(-x-y )2C 、(y-x )2D 、-(x-y )22、利用完全平方公式计算。
(1)962 (2)9982 (3)1012+9923、计算:(1)(x+5)2–(x-2)(x-3) (2)(x-2)(x+2)-(x+1)(x-3) (3)(2x-y )2-4(x-y )(x+2y )二、提高练习1、已知a+b=7,ab=12,求a 2+ab+b 2的值是多少?a 2+3ab+b 2的值是多少?2、计算:1022×982(五)回顾小结(谈谈你这节课的收获和疑惑)。
完全平方公式(第二课时)课件 2022-2023学年北师大版数学七年级下册

A.2 cm2 B.2a cm2C.4a cm2 D.(a2﹣1) cm2
2.若(x+m)2=x2﹣6x+n,则m、n的值分别为( C )
A.3,9 B.3,﹣9 C.﹣3,9 D.﹣3,﹣9
ZYT
课堂检测
基础巩固题
3.利用完全平方公式计算:
(1) 0.982
(2) 10012
解:(1) 原式 = ( 1 − 0.02)2
的值.
解:因为a+b=7, 所以(a+b)2=49. 所以a2+b2=(a+b)2-2ab=49-2×10=29.
(a-b)2=a2+b2-2ab=29-2×10=9.
解题时常用结论: a2+b2=(a+b)2-2ab=(a-b)2+2ab; 4ab=(a+b)2-(a-b)2.
ZYT
典例精析
请你用所学的公式解释自己关于老人给糖果问题的结论. 第一天a个孩子,给出去的糖果a×a=a2. 第二天b个孩子,给出去的糖果b×b=b2. 第二天(a+b)个孩子,给出去的糖果 (a+b)2=a2+2ab+b2.
方法总结:要把其中两项看 成一个整体,再按照完全平 方公式进行计算.
ZYT
典例精析
例4 化简:(x-2y)(x2-4y2)(x+2y). 解:原式=(x-2y)(x+2y)(x2-4y2)
=(x2-4y2)2 =x4-8x2y2+16y4.
方法总结:先运用平方差公式,再运用完全平方公式.
典例精析 例4 已知a+b=7,ab=10,求a2+b2,(a-b)2
ZYT
课堂检测
能力提升题
3.若a﹣b=1,则代数式a2﹣b2﹣2b的值为1 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6完全平方公式(2)
学习目标:1.进一步巩固完全平方公式,体会符号运算对解决问题的作用;
2.会综合运用平方差和完全平方公式进行整式的简便运算。
学习重点:完全平方公式的熟练运用。
学习难点:对公式(a+b )2=a 2+2ab+b 2的理解 一、预读 1.计算
①(a+b )2=________________ ②(a-b )2=________________ ③(-a-b )2=________________ ④(-a+b )2=_________________
2.由以上你能得出:
完全平方公式右边2ab 的符号取决于左边二项式中两项的符号,若两项同号,则2ab 的符号为________________,若这两项异号,则2ab 的符号为_______________号。
3.练一练
利用完全平方公式计算: (1)1012
(2)(ab+1)2-(ab-1)2
二、思悟:
1.一个较大数的平方,在计算时,可把它写成________________的平方,再运用完全平方公式去计算,如:1992=_________________
2.完全平方公式的运用,你要注意什么?
___________________________________________________________________ 3.请利用完全平方公式计算(y x 2
1
31 )2=_________________ 三、探究: 1.计算
①9972
②1032
③(a+3)2-a 2
学法与教法
④(m+5)2-(m+3)(m-3)
⑤(x+y+3)(x+y-3)
2.如果x 2+kx+81是一个完全平方公式,求出k 值。
四、检测: 1.计算:
(1)(2m+n+1)(2m+n-1)
(2)(xy+2)2-(xy-2)2
(3)(a-2)(a+2)-(a+3)(a-3)
2.利用完全平方公式计算 9992
(30
3
1)2
3.一个底面是正方形的长方体,高为6厘米,底面正方形边长为5厘米,如果它的高不变,底面正方形边长增加了m 厘米,那么它的体积增加了多少?
学法与教法。