经济数学基础教案-参考模板

合集下载

经济数学基础3(本)课程教学设计方案

经济数学基础3(本)课程教学设计方案

经济数学基础3(本)课程教学设计方案一、课程说明《经济数学3》课程是广播电视大学经济、金融专业本科的一门基础选修课,它是为培养适应社会主义现代化经济发展和科学进步需要的本科管理应用型人才服务的,也是学习专业理论课程知识不可缺少的基础课程。

本课程是在学生完成经济数学、线性代数基本知识、基本理论和基本方法的学习基础上,介绍概率论和数理统计等容。

这些容的设置是为学生学习后继的专业课程和今后的实际工作提供必要的数学基础的知识和方法。

本课程36学时,2学分。

容包括随机事件与概率、随机变量的分布和数字特征、数理统计基础。

二、课程的目的与要求本课程的教学目的是使学生在经济数学、线性代数学习的基础上,进一步扩充在后续课程的学习和今后实际工作中必须具备的数学学科的基本知识、基本理论和基本方法,使学生初步掌握概率论和数理统计的基本概念和基本方法,培养学生具有一定的抽象思维和概括能力,提高学生综合运用所学知识分析和解决实际问题的能力以及自学能力,使学生具有较高的学习专业理论的素质。

因此,通过本课程的学习,要求学生:理解概率论和数理统计是研究随机现象数量规律性的科学,掌握概率论与数理统计的基本概念和基本理论,以及处理随机现象的基本思想和基本方法,具有运用概率统计方法分析和解决实际问题的一定能力。

三、教学容与教学要求第1章随机事件与概率(8 学时)(一)教学容1.随机事件随机事件的关系与运算。

2.随机事件的概率随机事件的频率、概率,古典概型及其简单计算,概率的基本性质。

3.概率的运算法则概率的加法公式,条件概率与乘法公式,事件的独立性。

完备事件组概念,全概公式。

4.贝努里概型n重贝努里试验与二项概型。

(二)教学要求1.了解随机事件、频率、概率等概念。

2.掌握随机事件的运算,了解概率的基本性质。

3.了解古典概型的条件,会求解较简单的古典概型问题。

4.熟练掌握概率的加法公式和乘法公式,掌握条件概率和全概公式。

5.理解事件独立性概念。

经济数学基础教案

经济数学基础教案

《经济数学基础》教案4(共9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--[教学目标]1.理解矩阵、可逆矩阵和矩阵秩的概念。

2.掌握矩阵的加法、数乘矩阵、矩阵乘法和转置等运算。

3.熟练掌握用初等行变换法求矩阵的秩和逆矩阵的方法。

4.知道零矩阵、单位矩阵、对角矩阵、对称矩阵、阶梯形矩阵、行简化阶梯形矩阵。

5.掌握用消元法求解线性方程组。

6.理解线性方程组有解判定定理。

了解线性方程组的特解、一般解等概念,熟练掌握求线性方程组一般解的方法,会求线性方程组的特解。

[重难点]矩阵运算,初等行变换,线性方程组解的讨论与解法。

[教学内容]矩阵一、主要内容: (一)、概念⒈矩阵定义:n m ij n m a A ⨯⨯=)( 是一张矩形阵表。

(它m 行n 列,其中ij a 中i 表示第i 行,j 表示第j 列) ①、 零矩阵:n m n m o ⨯⨯=)0( ②、负矩阵:n m ij n m a A ⨯⨯-=-)(③、行矩阵和列矩阵:),,(1n a a ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡m b b 1④、 方阵:n n ij n n a A ⨯⨯=)(⒉特殊矩阵 ①、 单位矩阵:I ②、 数量矩阵: ③、 对角矩阵:④、三角矩阵:(上三角矩阵和下三角矩阵)⑤、 对称矩阵:A A T =⒊阶梯形矩阵和简化阶梯形矩阵⒋矩阵秩的定义:对应阶梯形矩阵的非零行的行数。

⒌逆矩阵定义:A A I AA A A 111, ,---==为互逆矩阵。

(二)、法则⒈矩阵的相等:同形矩阵对应位置元素相等。

⒉矩阵的加减法:n m ij ij b a B A ⨯±=±)( ⒊矩阵的数乘:n m ij ka kA ⨯=)( ⒋矩阵的乘法:AB C =矩阵乘法不满足交换律,即AB BA =一般不成立(若矩阵A , B 满足AB BA =,则称A , B 为可交换的).矩阵乘法不满足消去律,即由矩阵AC BC =及矩阵C ≠0,不能推出A B =.但当C 可逆时,AC BC =⇒A B =. 矩阵A B ≠≠00,,可能有AB =0. ⒌方阵的幂:A A A A m ⋅⋅⋅= (m 个相乘)⒍矩阵的转置:m n ij T a A ⨯=)( 称为n m ij n m a A ⨯⨯=)(的转置。

经济数学基础教案

经济数学基础教案

经济数学基础教案教学目标:1.掌握经济数学的基本概念与方法;2.了解利润、成本、需求、供给等经济概念的数学表示方法;3.能够运用经济数学的知识解决实际经济问题。

教学内容:1.经济数学的基本概念-利润、成本、需求、供给等经济概念的定义与数学表示方法;-边际利润、边际成本、边际需求、边际供给的概念与计算方法。

2.利润最大化与成本最小化问题-利润最大化与成本最小化的数学表达;-利润最大化与成本最小化的条件与方法;-通过示例演示利润最大化与成本最小化问题的求解过程。

3.需求与供给的相互关系-需求曲线与供给曲线的定义与数学表达;-市场均衡点的数学求解;-外部因素对需求与供给曲线的影响。

教学方法:1.讲授:由教师通过课堂讲解向学生介绍经济数学的基本概念、利润最大化与成本最小化问题以及需求与供给的相互关系的知识。

2.案例分析:教师提供一些实际经济问题的案例,让学生通过运用经济数学知识进行分析和解决问题。

3.练习与讨论:教师布置相关的练习题,鼓励学生利用经济数学的方法进行求解,并在课堂上进行讨论和解答疑惑。

教学过程:一、引入(10分钟)教师通过提问或举例等方式引入经济数学的重要性和应用场景。

二、讲授经济数学的基本概念(20分钟)教师以PPT为辅助,讲解利润、成本、需求、供给等经济概念的定义与数学表示方法,帮助学生理解经济数学的基本概念。

三、利润最大化与成本最小化问题(30分钟)1.利润最大化与成本最小化的数学表达。

2.利润最大化与成本最小化的条件与方法。

3.示范案例分析与讲解。

四、需求与供给的相互关系(30分钟)1.需求曲线与供给曲线的定义与数学表达。

2.市场均衡点的数学求解。

3.外部因素对需求与供给曲线的影响。

4.示例演示与练习讨论。

五、总结与反思(10分钟)教师对本节课的内容进行总结,并引导学生回想、分析所学知识在实际经济中的应用。

教具准备:1.PPT课件;2.案例分析材料;3.练习题及答案。

教学评估:1.课堂练习:布置相关的练习题,学生利用经济数学的方法进行求解。

经济数学教案设计(基础课版)

经济数学教案设计(基础课版)

教案(2013/2014学年第 1 学期)系部:基础公共课程部教研室:数学教研组教师姓名:课程名称:经济数学课程类型:公共基础课学分: 2专业班级:普专商务13-1、普专会计13-7 计划课时: 28学习课题经济中常用的函数包含章节第一章第一节授课地点普通教室教学方法讲授法课时 2学习目标1.理解函数的概念;2.掌握函数的五种基本性质;3.理解反函数,基本初等函数,复合函数,初等函数的概念。

学习重点及难点重点:函数的概念,会求函数的定义域。

难点:函数的概念,定义域的求法。

学生学习基础高中起点,有较好的基础,和自主学习的能力。

教学资源教材参考资料知识点:第一节:函数与初等函数一、函数与反函数:1函数的定义2函数的两个要素3函数的记号4函数的表示法二、函数的几种特性:1有界性2单调性3奇偶性4周期性三、反函数四,复合函数五.初等函数,几种基本的初等函数教学设计、组织实施、时间安排:首先介绍什么是高等数学? 5分钟如何学习高等数学?1. 认识高等数学的重要性, 培养浓厚的学习兴趣.初等数学---研究对象为常量,以静止观点研究问题.高等数学---研究对象为变量,运动和辩证法进入了数学.数学中的转折点是笛卡儿的变数.有了变数 , 运动进入了数学,有了变数,辩证法进入了数学 ,有了变数 , 微分和积分也就立刻成为必要的了,而它们也就立刻产生.笛卡儿 (1596~1650)法国哲学家, 数学家, 物理学家,他是解析几何奠基人之一 .1637年他发表的《几何学》论文分析了几何学与代数学的优缺点,进而提出了“另外一种包含这两门科学的优点而避免其缺点的方法”, 把几何问题化成代数问题 ,给出了几何问题的统一作图法,从而提出了解析几何学的主要思想和方法, 恩格斯把它称为数学中的转折点.2. 学数学最好的方式是做数学.第一节:函数的概念一、回忆复习有关对应的知识,(师生共同完成) 20分钟1.介绍函数的概念;2、函数的两个要素(1)对应规律(2)定义域,讲解例题P23、函数的记号4、函数的表示法讲解例题P3二、函数的几种特性 40分钟讲解例题P4三、反函数概念的讲解 10分钟四、作业评讲与布置 5分钟教学反思学习课题 初等函数 包含章节 第一章,第一节 授课地点普通教室教学方法讲授法课时2学习目标1、理解分段函数,基本初等函数的概念;2、掌握复合函数的概念;3、掌握初等函数的概念,能分析复合函数的复合结构。

《经济数学基础》网上教学整体设计方案

《经济数学基础》网上教学整体设计方案

《经济数学基础》网上教学整体设计方案一、课程性质和容特点《经济数学基础》是广播电视大学高等教育经济管理学科各专业的必修基础课,是教育部指定的经济管理学科核心课程之一,是经济中应用的数学,是经济学与数学相互交叉的一个新的学科。

经济工作中的计划、预测、优化、评估、组织、控制、决策等问题,都需要数学及其分支学科进行分析研究、计算求解。

利用计算机技术,数学能成功地解决各类静态的和动态的、线性的和非线性的经济问题。

《经济数学基础》是一门比较抽象、理论性较强、容涵盖面较广的基础课程,主要包括微积分、概率论、矩阵代数等容。

通过本课程的学习,使学生获得微积分、概率论、矩阵代数的基本知识,培养学生的基本运算能力,提高学生抽象思维能力,增强学生运用定性与定量相结合的方法处理经济问题的初步能力,培养和提高学生的逻辑思维能力,空间想象能力及综合运用所学知识分析和解决实际问题的能力。

二、课程已建教学媒体的情况本课程在1998年即投入使用了多种媒体一体化教材。

这套教材在众多著名数学和经济学专家以及远程教育设计专家的直接参与下,按照学生业余自主学习的需要,设计编制了以下媒体:主要媒体文字主教材——经济数学基础强化媒体录像教材——经济数学基础36讲导学VCD――经济数学基础学习指南其它媒体CAI课件——跟我学经济数学速查卡——经济数学基础速查卡这些媒体的选择与设计,都是按照它们各自的教学功能,根据“经济数学基础”课程的特点精心安排、一体化设计的,力求做到“有机、有效;合理、合一”,即主要媒体与强化媒体有机配合,其它媒体有效补充,版式设计与编制工艺合理,学习方法指导与教学容辅导合一,充分发挥各教学媒体的作用。

这套教材使用至今已经第四年了,收到了比较好的教学效果。

但是,随着网络技术的发展,学生获取知识的渠道也扩展到网上,以上相对静态的实物媒体教材已不能完全适应远程开放学习者在职业余、自学为主特征的学习需要,他们急需网上多媒体、可交互、动态的教学资源。

《经济数学基础》教案4

《经济数学基础》教案4

《经济数学基础》教案4-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN[教学目标]1.理解矩阵、可逆矩阵和矩阵秩的概念。

2.掌握矩阵的加法、数乘矩阵、矩阵乘法和转置等运算。

3.熟练掌握用初等行变换法求矩阵的秩和逆矩阵的方法。

4.知道零矩阵、单位矩阵、对角矩阵、对称矩阵、阶梯形矩阵、行简化阶梯形矩阵。

5.掌握用消元法求解线性方程组。

6.理解线性方程组有解判定定理。

了解线性方程组的特解、一般解等概念,熟练掌握求线性方程组一般解的方法,会求线性方程组的特解。

[重难点]矩阵运算,初等行变换,线性方程组解的讨论与解法。

[教学内容]矩阵一、主要内容: (一)、概念⒈矩阵定义:n m ij n m a A ⨯⨯=)( 是一张矩形阵表。

(它m 行n 列,其中ij a 中i 表示第i 行,j 表示第j 列) ①、 零矩阵:n m n m o ⨯⨯=)0( ②、负矩阵:n m ij n m a A ⨯⨯-=-)(③、行矩阵和列矩阵:),,(1n a a ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡m b b 1 ④、方阵:n n ij n n a A ⨯⨯=)(⒉特殊矩阵①、 单位矩阵:I ②、 数量矩阵: ③、 对角矩阵:④、 三角矩阵:(上三角矩阵和下三角矩阵) ⑤、对称矩阵:A A T =⒊阶梯形矩阵和简化阶梯形矩阵⒋矩阵秩的定义:对应阶梯形矩阵的非零行的行数。

⒌逆矩阵定义:A A I AA A A 111, ,---==为互逆矩阵。

(二)、法则⒈矩阵的相等:同形矩阵对应位置元素相等。

⒉矩阵的加减法:n m ij ij b a B A ⨯±=±)( ⒊矩阵的数乘:n m ij ka kA ⨯=)(⒋矩阵的乘法:AB C =矩阵乘法不满足交换律,即AB BA =一般不成立(若矩阵A , B 满足AB BA =,则称A , B 为可交换的).矩阵乘法不满足消去律,即由矩阵AC BC =及矩阵C ≠0,不能推出A B =.但当C 可逆时,AC BC =⇒A B =. 矩阵A B ≠≠00,,可能有AB =0. ⒌方阵的幂:A A A A m ⋅⋅⋅= (m 个相乘)⒍矩阵的转置:m n ij T a A ⨯=)( 称为n m ij n m a A ⨯⨯=)(的转置。

经济数学基础下教案

经济数学基础下教案

经济数学基础下教案教案标题:经济数学基础下教案教学目标:1. 理解经济学中的数学概念和方法,为学生在经济领域的学习和研究奠定基础。

2. 培养学生解决经济问题的数学思维和分析能力。

3. 培养学生运用数学工具解决经济实际问题的能力。

教学内容:1. 经济学中的数学概念和方法介绍:a. 数学模型在经济学中的应用b. 利润、成本、收入等经济指标的数学表达c. 经济曲线的数学表达和分析d. 经济方程的建立和求解e. 经济学中的最优化问题及其数学求解方法2. 数学工具在经济学中的应用:a. 微积分在经济学中的应用b. 线性代数在经济学中的应用c. 概率论与统计学在经济学中的应用教学步骤:第一课:经济学中的数学概念和方法介绍1. 引入经济学中的数学概念和方法的重要性和应用价值。

2. 介绍数学模型在经济学中的应用,并举例说明。

3. 解释利润、成本、收入等经济指标的数学表达,并进行实际案例分析。

4. 分析经济曲线的数学表达和分析方法,并进行实例演练。

5. 讲解经济方程的建立和求解方法,并进行实例讲解。

第二课:数学工具在经济学中的应用1. 介绍微积分在经济学中的应用,并讲解相关概念和方法。

2. 讲解线性代数在经济学中的应用,并进行实例演练。

3. 介绍概率论与统计学在经济学中的应用,并进行实际案例分析。

第三课:经济学中的最优化问题及其数学求解方法1. 引入经济学中的最优化问题的概念和意义。

2. 讲解最优化问题的数学建模方法,并进行实例分析。

3. 介绍最优化问题的数学求解方法,如微积分中的极值求解方法等。

教学评估:1. 课堂小测,检验学生对经济数学基础概念的理解。

2. 经济案例分析作业,要求学生运用所学数学工具解决实际经济问题。

3. 期末考试,综合考察学生对经济数学基础知识和应用能力的掌握情况。

教学资源:1. 经济学教材和参考书籍2. 数学教材和参考书籍3. 经济案例和实例分析材料4. 多媒体教学工具教学反思:根据学生的实际情况和学习进度,适当调整教学内容和教学方法,确保学生能够理解和掌握经济数学基础知识,并能够运用数学工具解决实际经济问题。

经济数学基础第五版电子教案

经济数学基础第五版电子教案

经济数学基础第五版电子教案一、教材简介《经济数学基础第五版》是经济学类专业本科教材,主要介绍经济学中与数学有关的基本理论和方法。

本教材的目标是帮助学生掌握经济学中必要的数学知识和技巧,为他们后续学习经济学其他课程以及进行经济研究打下坚实的数学基础。

二、教学目标•了解经济学中的数学概念和方法;•掌握常见的经济数学模型,并能灵活运用;•培养学生的分析和解决实际经济问题的能力;•为学生提供继续深入学习经济学的基础。

三、课程内容第一章:简介1.经济学与数学的关系2.数学在经济学中的应用方向3.经济数学模型的概念与分类第二章:微分学基础1.函数与图像2.极限与连续3.微分与导数4.高阶导数与凹凸性5.最值与导数应用第三章:积分学基础1.不定积分与定积分2.反常积分3.积分的应用和计算4.微分方程简介第四章:线性代数与矩阵运算1.向量与矩阵2.线性方程组的解法3.线性方程组的应用第五章:微分方程1.微分方程基本概念2.一阶微分方程的求解方法3.高阶微分方程的求解方法第六章:优化理论1.函数的极值与最值2.线性规划问题3.非线性规划问题第七章:概率与统计基础1.概率与条件概率2.随机变量与概率分布3.统计量与抽样分布4.参数估计与假设检验5.相关与回归分析四、课程设计与实施本课程采用课堂授课与实践相结合的教学模式。

每章课程安排2-3个课时的理论授课时间,以便学生对数学概念和理论有更深入的理解。

在理论授课之后,安排相应的实践课时,让学生通过实际操作和解决实际问题的方式巩固所学的数学知识和技巧。

教学过程将注重以下几个方面: 1. 引导学生将数学知识与实际经济问题相结合,培养他们的分析和解决问题的能力; 2. 利用案例和实例,让学生了解经济学中各种数学模型的应用场景,提高他们的应用能力; 3. 注重学生的互动参与,鼓励学生在课堂上提问和讨论,促进思维的碰撞和交流; 4. 定期组织小测验和作业,检验学生的学习情况,并及时对学生进行反馈和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课教案
备课教案
备课教案
备课教案
备课教案
备课教案
举例说明:x →1时,函数无限接近于多少? 观察:当:x →1时,f(x)=x+1,无限接近2
当:x →1时,g(x)=1
1
2--x x ,无限接近2
f(x)在x=1有定义,g(x)在x=1处无定义
定义 1 如果当x → x 0时,函数)(x f 无限趋近于一个确定的常数A , 则称A 为函数
)(x f 当 x → x 0时的极限,记作0
lim x x →f(x)=A 或 A x f →)((当 x →x 0时).此时也称
)(lim 0
x f x x →存在。

如果当x → x 0时, 函数)(x f 不趋近于任何一个确定的常数,则称)(lim 0
x f x x →不存在。

如 : 2)1(lim 1=+→x x ,又如1lim →x 1
1
2--x x = 2
注意 : f(x)=1
1
2--x x 在
处无定义, 但当
时,函数f(x)=1
1
2--x x 无限趋近于一
个确定的常数2,所以1lim →x 1
1
2--x x =2。

结论:函数)(x f 当 x → x 0时的极限是否存在,与)(x f 在点0x 处是否有定义无关.
如上举例f(x)=1
1
2--x x 在
处无定义, 但 1lim →x 1
1
2--x x = 2.
定义2 右极限 当x →x 0+
,有A x f x x =+→)(lim 0
定义3 左极限 当x →x 0-
,有A x f x x =-→)(lim 0
函数的左极限和右极限统称为函数的单侧极限。

定理1 [极限存在的充分必要条件]
函数 )(x f 当0x x →时的极限存在的充分必要条件是,)(x f 当0x x →时的左右极限都存在并且相等.即 ⇔=→A x f x x )(lim 0
=-→)(lim 0
x f x x A x f x x =+→)(lim 0
注:求分段函数的极限的方法就是计算它在指定点的左极限和右极限是否存在并且是否相等。

例如:判断下列函数在指定点的是否存在极限
,逆命题也成立。

为无穷小量其中。

则若0)(lim :)()()(,)(lim 0
=+==→→x x x A x f A x f x x x x ααα
无穷小量的性质
定理5 有限个无穷小量的代数和是无穷小量。

例如,当x →0时,x+sinx 也是无穷小量
定理6 无穷小量与有界量之积是无穷小量。

例如,当x →0时,xsinx 也是无穷小量。

推论1:任一常数与无穷小量之积是无穷小量。

例如,当x →0时,3sinx 也是无穷小量。

推论2:有限个无穷小量之积是无穷小量。

(注:两个无穷小之商未必是无穷小)
2、无穷大量
当x →0x (或±∞)时,如果函数f(x)的绝对值无限增大,则称当x →0x (或±∞)时,f(x)是无穷大量。

记作0
lim x x → f(x)=∞,或f(x)→∞。

定义6 若∞=→)(lim 0
x f x x (或∞=∞
→)(lim x f x ),则称)(x f 为当0x x →(或
)时
的无穷大量,简称无穷大。

如o
x →lim
x
1
=∞,表示当 时,
x
1
为无穷大.
关于无穷大量几点说明:
1.无穷大量不是一个很大的数,它是极限的概念;
2.无穷大量的实质是极限不存在,为了表示记作

.
3.若数列{n x }当n →+∞时,它项的绝对值无限增大,则{n x }是无穷大量。

4.如果当x →0x (或±∞)时,函数f(x)是无穷大量,那么
)
(1
x f 就是当x →0x (或±∞)时的无穷小量,反过来,如果当x →0x (或±∞)时,函数f(x)是非零无穷小量,那么
)
(1x f 就是当x →0x (或±∞)时的无穷大量。

即⑴无穷大量的倒数是无穷小量。

⑵无穷小量(非零)的倒数是无穷大量。

(3)无穷大必无界,但反之不真。

因此,证明一个变量是无穷小量的方法就是证明它的极限为0, 证明一个变量是无穷大量的方法就是证明它倒数是无穷小量。

备课教案
备课教案
备课教案
备课教案
第六周星期三
2. 切线问题
切线的一般定义:设有曲线C :)(x f y =及C 上的一点M (图3-1),在点
M 外另取C 上一点N ,作割线MN ,当点N 沿曲线C 逐渐趋于点M 时,割线MN 绕
点M 旋转,而逐渐趋于极限位置MT ,直线MT 就称为曲线C 在点M 处的切线.这 里极限位置的含义:只要弦长
MN
趋于零,NMT ∠也趋于零.
设),(00y x M 是曲线C 上的一点(图3-2),则)(00x f y =.在点M 外另取C 上 一点),(y x N ,割线MN 的斜率为: 0
000)
()(tan x x x f x f x x y y --=--=
ϕ 其中ϕ为割线MN 的倾
角,当点N 沿曲线C 趋于点M 时,0x x →,如果0lim x x →0
0)()(x x x f x f --存在,则此极限就是切线
MT 的斜率αtan =k
,其中α是切线MT 的倾角.
上面两个实际问题,虽然其实际意义不同,但解决问题的方法相同.都归结为求函数增量
与自变量增量之比的极限:
0)
()(lim
x x x f x f x x --→
或 x x f x x f x ∆-∆+→∆)
()(lim
000,
其中
0x x x -=∆,称为自变量增量,
)()()()(000x f x x f x f x f y -∆+=-=∆,称为相应于自变量增量x ∆的函数增量.
在物理学、化学、生物学、经济学等科学领域中,还有许多实际问题,如线密度、 电流、反应速度等,都可归结为函数对于自变量的变化率即函数的导数.
三、讲授新课
1、导数的概念
(1)函数()x f y = 在点0x 处的导数
图3-1
图3-2
备课教案
第六周星期五。

相关文档
最新文档