分子生物学 第7章 RNA加工和核糖核蛋白

合集下载

分子生物学》第七章+RNA加工和核糖核蛋白

分子生物学》第七章+RNA加工和核糖核蛋白

第七章RNA加工和核糖核蛋白不论原核或真核生物的rRNAs都是以为复杂的初级转录本形式被合成的,然后再加工成为成熟的RNA分子。

然而绝数原核生物转录和翻译是同时进行的,随着mRNA开始的在DNA上合成,核蛋白体即附着在mRNA上并以其为模板进行蛋白质的合成,因此原核细胞的mRNA并无特殊的转录后加工过程,相反,真核生物转录和翻译在时间和空间上是分开的,刚转录出来的mRNA是分子很大的前体,即核内不均一RNA。

hnRNA分子中大约只有10%的部分转变成成熟的mRNA,其余部分将在转录后的加工过程中被降解掉。

第一节rRNA加工和核糖体在细胞核内对基因产物(mRNA前体)进行各种修饰、剪接和编辑,使编码蛋白质的外显子部分连接成为一个连续的开放读框(open reading frame,ORF)的过程称为转录后加工.一、RNA的加工类型pre-RNA经过加帽(capping)、加尾(tailing)、剪接、剪切(splicing)、修饰(methylation)、编辑(editing )成为mature RNA的过程,叫做RNA加工。

核苷酸的切除(减少部分片段)、添加核苷酸(增加部分片段)、修饰、编辑(以gRNA为模板)生物学意义;(1)interrupted gene(interrupted RNA) →move introns (stop codon) →as template(protein translation)(2)prevent pre-RNA from digested by RNase二、原核生物rRNA加工ΦProk.的mRNA半衰期只有几分钟(基因表达调控的一种手段),lacZ mRNA终止合成后9min就几乎全部消失。

mRNA很容易从5’-P被降解,但有些mRNA 5’-P 末端被修饰而得到保护,所以不易被降解,例如真核生物中的血红蛋白mRNA (hemoglobin mRNA)和蚕的蚕丝纤维蛋白mRNA(silk fibroin mRNA)。

分子生物学基础知识点

分子生物学基础知识点

分子生物学基础知识点分子生物学是研究生物体内分子结构与功能的学科,主要研究生物分子的组成、结构、功能以及其在生命过程中的调控。

下面将从DNA、RNA、蛋白质和基因调控四个方面,介绍分子生物学的基础知识点。

DNA(脱氧核糖核酸)DNA是细胞的基因遗传物质,由鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。

DNA通过碱基配对的方式,以双螺旋结构存在,形成了著名的DNA双螺旋结构。

DNA 的重要性体现在多个方面,其中包括:1. 遗传信息的传递:DNA携带了生物个体的遗传信息,通过遗传物质的传递实现了物种遗传的延续。

2. DNA复制:DNA能够通过复制过程产生与自身一模一样的新的DNA分子,确保细胞的遗传信息能够传递给下一代细胞。

3. DNA修复:细胞会受到环境因素的影响,导致DNA损伤。

细胞通过DNA修复机制,修复受损的DNA,维持DNA的完整性。

RNA(核糖核酸)RNA也是生物分子的一种,由鸟嘌呤(G)、尿嘧啶(U)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。

与DNA不同,RNA通过单链结构存在,包括了信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)等不同类型。

RNA的重要性主要在于:1. 转录:RNA通过转录过程,可以将DNA的遗传信息转录成RNA 分子,为蛋白质的合成提供模板。

2. 翻译:mRNA进入到细胞质中,参与到蛋白质的合成过程中,被tRNA识别并翻译成相应的氨基酸序列,进而组装成蛋白质。

3. 调控功能:RNA还可以通过miRNA、siRNA等形式参与到基因的调控过程中,影响蛋白质合成的速率和用途。

蛋白质蛋白质是生物体内功能最为复杂和多样的分子。

蛋白质的组成由氨基酸构成,共有20种氨基酸,通过肽键连接形成多肽链,进而折叠形成特定的三维结构。

蛋白质的重要性体现在:1. 功能和结构:蛋白质具有多样的功能和结构,是细胞的工作驱动力,包括酶、结构蛋白、抗体等。

分子生物学-07-3-生物信息的传递-3转录后加工-小RNA-RNA拼接1

分子生物学-07-3-生物信息的传递-3转录后加工-小RNA-RNA拼接1

能够识别发夹 结构的内切酶
1
RNAase P 3
2 RNA酶D
4 4
4
4
2020/10/28
多种酶的处理
2020/10/28
23
tRNA的内含子去除
2020/10/28
2020/10/28
22
rRNA的转录后处理
1、原核生物和真核生物是较为相似的,分别由多种
rRNA组成它的核糖体,包括5S rRNA 、5.8S S rRNA、 18 S rRNA、 28 S rRNA
3.6原核生物RNA转录与真核生物的比较
Eukaryotes and prokaryotes produce mRNAs somewhat differently
2020/10/28
2020/10/28
1
3.6.1 原核生物mRNA的特征
1. 多顺反子,有共同的起始子和终止信号 2. 转录和翻译的时空性 3. 5′端无帽子结构, 3′端没有或只有较短的poly(A)结构 4. 起始密码子常为AUG,有时也为GUG,甚至UUG 5. 半衰期短
14
Poly(A)尾巴的功能:
(1)尾巴可能与核-质转运有关;但是无尾巴的 mRNA,如组蛋白的mRNA同样可以通过核膜 进入细胞质
(2)尾巴的长短对mRNA的翻译也无影响,因 此其功能无定论。
(3)细胞质中mRNA 的Poly(A)尾巴与蛋白质相 结合构成mRNP(一种蛋白质分子)。其功能 不清楚。
2020/10/28
帽子结构功能:
1.能被核糖体小亚基识别,促使mRNA和 核糖体的结合;
2.m7Gppp结构能有效地封闭mRNA 5’末 端,以保护mRNA免受5’核酸外切酶的降解 ,增强mRNA的稳定。

分子生物学基本概念

分子生物学基本概念

分子生物学基本概念分子生物学是研究生物活动及其调控机制的学科,通过对生物分子进行研究,揭示生命现象的本质和规律。

本文将从DNA、RNA、蛋白质、基因表达、分子遗传学等角度,介绍分子生物学的基本概念。

一、DNA的结构和功能DNA(脱氧核糖核酸)是生物体内包含遗传信息的分子。

它由一系列称为核苷酸的单元组成,核苷酸由磷酸基团、五碳糖(脱氧核糖)和碱基组成。

DNA的结构是双螺旋结构,由两条互补的链通过碱基间的氢键相互连接而成。

DNA的功能包括存储和传递遗传信息,指导蛋白质合成。

二、RNA的种类和功能RNA(核糖核酸)是DNA的转录产物,通过转录和翻译过程参与蛋白质的合成。

根据功能和结构的不同,RNA可以分为信使RNA (mRNA)、转运RNA(tRNA)、核糖体RNA(rRNA)等多种类型。

mRNA是DNA的模板,在蛋白质合成中起到携带遗传信息的作用;tRNA具有适配功能,将氨基酸带到核糖体,在翻译过程中与mRNA配对;rRNA是核糖体的组成部分,参与蛋白质的合成。

三、蛋白质的合成和功能蛋白质是生物体内重要的功能性分子,参与包括代谢、结构、传导等多种生物过程。

蛋白质的合成包括转录和翻译两个过程。

转录是指DNA模板上的信息被转录成mRNA的过程,发生在细胞核中;翻译是指mRNA上的遗传信息被翻译成蛋白质的过程,发生在核糖体中。

蛋白质的功能由其氨基酸序列和三维结构所决定。

四、基因表达的调控基因表达是指基因信息被转录和翻译成蛋白质的过程。

基因表达的调控包括转录调控和转录后调控两个层面。

转录调控是指在转录过程中对基因的调控,包括启动子结构、转录因子结合和染色质结构等因素;转录后调控是指在转录后对mRNA和蛋白质的调控,包括剪接、RNA降解和翻译后修饰等过程。

五、分子遗传学的研究分子遗传学是研究基因及其在遗传过程中的作用机制的学科。

通过分子遗传学的研究,可以揭示基因与表型之间的关系,探究基因突变与遗传病的关联,并对基因工程和基因治疗等领域提供理论基础。

分子生物学知识点总结

分子生物学知识点总结

分子生物学知识点总结分子生物学是研究生物体中分子结构、功能和相互作用的学科。

它在解释细胞和生命现象的分子基础方面发挥着重要作用。

以下是分子生物学的几个核心知识点总结:DNA的结构和功能DNA是生物体中遗传信息的储存和传递的分子。

它由核苷酸组成,每个核苷酸包含一个磷酸基团、一个五碳糖(脱氧核糖)和一个氮碱基。

DNA的双螺旋结构由两股互补的链组成,通过氢键相连。

DNA的功能包括遗传信息的复制、转录和翻译,是细胞遗传信息的储存库。

RNA的结构和功能RNA也是由核苷酸组成的分子,与DNA的结构类似,但包含的糖是核糖,而不是脱氧核糖。

RNA起到多种功能,其中包括转录DNA信息、参与蛋白质合成等。

mRNA是将DNA信息转录成蛋白质合成的模板,tRNA通过与mRNA和氨基酸的配对作用,在翻译过程中帮助氨基酸正确排列。

基因表达调控基因表达调控是细胞根据内外环境调节基因转录和翻译的过程。

它包括转录因子、启动子、启动子结合因子、RNA干扰等。

转录因子结合在DNA上的启动子区域,促进或抑制转录的发生。

通过不同的基因表达调控方式,细胞可以在不同的发育和环境条件下产生不同的蛋白质。

基因突变和遗传疾病基因突变是DNA序列发生突变或改变的现象。

它可以是点突变、插入突变、缺失突变等。

基因突变可能导致蛋白质功能的改变,从而引起遗传疾病。

例如,单基因遗传病如囊性纤维化和苯丙酮尿症,以及复杂遗传病如癌症,都与基因突变有关。

PCR技术聚合酶链反应(PCR)是一种体外扩增DNA的技术,可以从微弱的DNA样本中扩增特定片段。

PCR由三步循环组成:变性、退火和延伸。

它广泛应用于分子生物学研究、基因工程和医学诊断等领域。

基因克隆和DNA测序基因克隆是将特定的DNA片段插入载体DNA(如质粒)中,形成重组DNA分子。

通过基因克隆,可以大量复制目标DNA片段。

DNA 测序是确定DNA序列的过程,它有助于揭示基因的结构和功能,促进遗传学和进化生物学的研究。

分子生物学原理rna的生物合成

分子生物学原理rna的生物合成

RNA合成后的修饰和质检
合成后的RNA分子需要经过修饰和质检过程,包括剪接、修饰核苷酸的加入、 修饰基团的修饰等,确保RNA的正常功能。
RNA的运输和分类
合成完毕的RNA分子通过核孔被运输到细胞质中,根据功能和目的不同,可 分为多种分类和载体。
分子生物学原理RNA的生 物合成
RNA(核糖核酸)是一种重要的生物分子,具有多种结构和功能特点。本节 将介绍RNA的类型、生物合成过程以及其在细胞内的功能和作用。
RNA的基本结构和功能特点
RNA是由核糖核苷酸单元组成的单链生物大分子,具有不同的结构和功能特 点。它在细胞内起着重要的信息传递和调控作用。
RNA的类型和分类
RNA可分为mRNA、tRNA和rRNA等多种类型,每种类型具有不同的功能和特 点。它们共同参与蛋白质的合成和调控。
RNA的生物合成与所需物质
RNA的生物合成需要RNA聚合酶、DNA模板、核苷酸三磷酸等物质的参与。这些物质协同作用,完成RNA的 合成过程。
RNA合成的三个阶段和机制
1
起始
RNA合成的起始阶段包括RNA聚合酶与DNA模板结合,形成合成复合物。
2
延伸
在延伸阶段,RNA聚合酶沿DNA模板链合成RNA链,一边解旋DNA双链。
3
终止
终止阶段包括RNA链的合成结束和RNA聚合酶与DNA模板的解离。
RNA转录的起始和终止信号
RNA转录起始信号由启动子序列和转录因子共同识别,终止信号

分子生物学名词解释

分子生物学名词解释

分子生物学名词解释分子生物学是一门研究生物分子结构、功能和相互作用的学科。

在这个领域中涉及的名词众多,下面将对其中几个重要的名词进行解释。

1. DNA(脱氧核糖核酸):DNA是所有生物体细胞中存在的分子,它存储并传递遗传信息。

DNA分子由两条互补的链组成,这些链由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)构成。

DNA通过形成特定的序列来编码特定的遗传信息。

2. RNA(核糖核酸):RNA是DNA的一种衍生物,它在细胞中起着多种功能。

有三种主要类型的RNA:信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)。

mRNA将DNA上的遗传信息转录成RNA,并通过核糖体翻译成蛋白质。

tRNA在转录过程中将氨基酸带到核糖体,以组装蛋白质。

rRNA则是核糖体的主要组成部分。

3. 基因:基因是DNA分子中的一个特定序列,它编码了生物体的特定遗传信息。

基因通过编码蛋白质的过程来表达其遗传信息,并决定了生物体的特征和功能。

4. 蛋白质:蛋白质是生物体中起关键作用的分子,它们负责几乎所有的生物化学反应。

蛋白质由氨基酸组成,存在于细胞的不同位置和组织中,并承担着诸如结构支持、运输分子、催化反应等多种生物学功能。

5. 基因表达:基因表达是指基因转录成RNA,并最终翻译成蛋白质的过程。

这个过程涉及到多个调控机制,包括转录因子的结合、RNA剪接、翻译起始和终止等。

6. PCR(聚合酶链反应):PCR是一种体外扩增DNA的方法,它能够在短时间内制备大量特定段的DNA。

PCR是通过循环反应中的DNA变性、引物结合和DNA合成步骤来实现的。

这种技术在基因组学研究、犯罪侦查、疾病诊断等领域得到广泛应用。

7. 克隆:克隆是指通过复制或重复制造相同的DNA或细胞。

分子生物学中的克隆是指在体外制备DNA的多个相同拷贝,这样可以大规模生产重要的蛋白质或研究DNA序列等。

8. 基因编辑:基因编辑是指通过人为方法直接修改生物体的DNA序列,进而改变其遗传信息。

分子生物学名词解释

分子生物学名词解释

分子生物学名词解释分子生物学是生物学的一个重要分支领域,研究的是生物体内发生的分子水平的生物现象。

在分子生物学的研究过程中,涉及到了大量的专业术语和名词。

下面将对一些常见的分子生物学名词进行解释,以帮助读者更好地理解这一领域的知识。

1. DNA(脱氧核糖核酸)DNA是分子生物学中最为重要的分子之一,在细胞内起着储存遗传信息的作用。

DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳗胺嘧啶)以碱基互补配对的方式构成双螺旋结构,其中腺嘌呤和鸟嘌呤之间以三个氢键连接,胸腺嘧啶和鳗胺嘧啶之间以两个氢键连接。

2. RNA(核糖核酸)RNA是一类以核糖为主要组成成分的核酸分子。

它在细胞内有多种功能,如参与基因的转录和翻译过程,以及在表达调控、蛋白质合成等方面发挥重要作用。

RNA与DNA之间的区别在于,RNA中的胸腺嘧啶被尿嘧啶(Uracil)所取代。

3. 基因基因是生物体内染色体上一段能够编码产生特定功能RNA或蛋白质的DNA序列。

基因是遗传信息的基本单位,不同基因之间的组合和调控决定了生物体的形态和功能。

基因通过转录过程生成RNA,再通过翻译过程合成蛋白质。

4. 转录(Transcription)转录是指DNA序列被RNA聚合酶酶解读取并合成RNA的过程。

在转录过程中,DNA的一个片段作为模板被复制成RNA分子。

这个RNA分子可以是mRNA(信使RNA)、rRNA(核糖体RNA)或tRNA(转运RNA),它们在细胞内的不同位置具有不同的功能。

5. 翻译(Translation)翻译是指mRNA上的编码信息被核糖体转化为具有特定氨基酸序列的多肽链的过程。

翻译是蛋白质合成的过程,其中tRNA以抗密码子配对的方式将相应的氨基酸输送到核糖体上,核糖体则将氨基酸按照mRNA上的密码子序列进行配对串联,形成多肽链。

6. 基因突变基因突变是指DNA序列发生了变化,导致细胞内基因的遗传信息发生了改变。

突变可以使得基因产生新的功能,也可以导致基因功能丧失或者改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RNA加工的类型
RNA加工的类型 ➢内切核酸酶和外切核酸酶切除核苷酸 ➢在初始转录物或剪切产物的5’端或3’端加上 核苷酸 ➢对某些核苷酸的碱基或糖苷进行修饰 ➢RNA编辑
第1节 rRNA加工与核糖体
一、原核生物rRNA 加工 二、真核生物 rRNA 加工
一、原核生物rRNA 加工
1. rRNA 基因的结构 ➢ E.coli 有7种不同的rRNA操纵子分散在整个基因组 中 ➢ 每个操纵子包含一个拷贝的5s rRNA、16s rRNA、 23s rRNA序列。 ➢ 有一到4个编码tRNA的序列。
(4) 最后修正:通过外切酶等将20S中和已退火的32S 中残余的ITS切除掉。
47S前 rRNA经历了一系列剪切,先切去外部转录间隔区,再切去内部 转录间隔区,释放32S和20S两个前RNA,最后释放18S、5.8S、28S rRNA。
47S pre-rRNA
ETS:external transcribed spacers ITS:internal transcribed spacers
每个转录单位转录 成单个的RNA前体 分子,经剪切后变 成为成熟的RNA的 分子。
rRNA前体的加工 是由RNase Ⅲ负责 的。
2. 大肠杆菌rRNA转录后加工
➢ 6500nt初始转录物折叠形成一 些茎环结构
➢ 初始转录物与蛋白质结合形成 核糖核蛋白复合体
➢ 进行甲基化修饰 S-adenosylmethionine (SAM, S-腺苷甲硫氨酸)
20S pre-rRNA
பைடு நூலகம்
45S pre-rRNA 41S pre-rRNA
32S pre-rRNA
Methylation takes place at over 100 sites to give 2´-O-methylribose
and this is now known to be carried out by a subset of small nuclear RNP particles which are abundant in the nucleolus. 细胞中的一种叫核 仁小核糖核蛋白颗粒(small nucleolar RNA, snoRNA)的短RNA分子指 导着rRNA分子特定位点的修饰作用。
第2节 tRNA加工,RNA酶P和核酶
一、原核生物 tRNA 加工 二、真核生物 tRNA 加工 三、 RNA酶P 四、 Ribozymes 核酶
tRNA
70-80 nucleotides
•Bacteria has 30-40 tRNA for 61 codon and 20 amino acids •Some tRNA for the same amino acid recognizes more than one codon •More than one tRNA for one amino acid •Animals and plants have 50-100 tRNA •Codon and tRNA usage may differ under different differential stages in the same organism
RNA加工的类型
基本概念:细胞内由RNA聚合酶合成的原初转录 物一般都需要经过一系列的变化,包括链的裂解、 5’端与3’端的切除、特殊结构的形成、核苷的修 饰、糖苷键的改变等过程,才能转变为成熟的 RNA分子,这些过程称为RNA的成熟,或RNA的 转录后加工(posttranscriptional modification) 。
•Molecular Biology Course
第七章 RNA PROCESSING AND RNPs
RNA加工和核糖核蛋白
教学要求
了解RNA加工类型 理解并掌握真核生物mRNA加工的机制 掌握原核生物rRNA和 tRNA的加工
主要内容
第1节 rRNA加工与核糖体 第2节 tRNA加工,RNA酶P和核酶 第3节 mRNA加工,hnRNPs 和snRNPs 第4节 可变 mRNA加工
一、原核生物 tRNA 加工
1. tRNA基因 • 原核的tRNA初始转录本多为多顺反子(polycistron),
也就是几个tRNA分子串连在一起。 • 这有三种不同的情况:
① 串 联 的 tRNA 分 子 都 是 相 同 的 , 如 在 27’ 的 tRNATyrtRNATyr;
②串联的tRNA分子是不同的,如71’的tRNAIle-tRNAAlatRNAThr;
(2) 从41S的中间产物中先切下18S的片段。Hela (人 类)细胞的切点在18S和5.8S之间的内部转录间隔序 列(ITS ),产物分别为20S(含18S rRNA片段) 和32S。
(3) 部分退火,32S中间产物(含5.8S和28S rRNA) 中的5.8S和28S之间进行退火,形成发夹结构;
➢ 特异核酸酶剪切(RNase III, M5,M16 and M23),释放出成 熟的rRNA
由RNA酶III的剪切释放出5s, 16s和23s的前体分子。
随后RNA酶M5,M16和M23分别在这些前体的5´端和3´端进一步 剪切,最后释放出成熟的rRNA。
二、真核生物 rRNA 加工
1. rRNA 基因结构 ➢ 在基因组内成簇排列,成串重复数百次集中在核仁内 ➢ 可转录间隔区与非转录间隔区交替排列 ➢ 真核生物的18S、5.8S和28S rRNA基因是串联在一起形成 一个转录本,初始转录本为45S前体 ➢ 5S rRNA 是由RNA聚合酶III转录不相联的基因产生的, 而且几乎不需要加工。
二、真核生物 rRNA 加工
2. 哺乳动物前体rRNA的转录后加工事件 ➢一系列特异的剪切:发生在转录间隔序列的外 部和内部 ➢进行许多由小核糖核蛋白复合物控制的特异核 糖甲基化。 ➢成熟的rRNA分子折叠并与核糖体蛋白形成复合 物。
真核细胞中rRNA的加工途径:
(1) 切 除 5′ 端 的 前 导 序 列 , 即 外 部 转 录 间 隔 序 列 (ETS);
相关文档
最新文档