分合闸,断路器灭弧机械特性

合集下载

高压断路器机械特性试验流程 [ 原创 ]

高压断路器机械特性试验流程 [ 原创 ]

高压断路器机械特性试验流程[ 原创]在电力系统应用中,高压断路器的核心功能是断开和连接负荷电路,快速、可靠的隔离故障线路,防止事故扩散,减小故障损失的主要功能和作用,高压断路器也是我们俗称的高压开关,通过电磁或弹簧机构和优良的灭弧性能能迅速与故障脱离,使得在电网中得到了广泛的应用,尤其在配网中几乎全是,那么,我们平时的工作中该如何维护高压开关呢?下面说一说高压断路器机械特性试验流程和要注意的问题,请您参考。

高压断路器机械特性试验流程(SJGK-I)(1)了解功能及测试项目机械特性是传动机构组成,包含三大部分:真空灭弧室、电磁或弹簧操动机构、支架及其他部件结构,测量精度要求高,一般推荐SJGK-I高压开关动特性测试仪进行测量,采用可编程逻辑电路与高压设备测量技术进行有机结合,高效便捷的处理时间、速度、同期、行程、超程、开距、弹跳、线圈电流、低电压等机械性能,以人机对话的操作方式,面向各种电压等级的真空开关、六氟化硫开关、少油开关、多油开关等高压开关的机械性参数的测量。

(2)接线方法机械特性测试仪的接线方法与市面任何一款同类型的产品接线方法大致雷同,这主要是基于它的测量原理。

2.1 地线与断口线先将断路器下断口并联短接接地,并确认接触完好,其次将上断开用专用连接线引入测试仪的A1A2A3端口,如果是多断口开关类型,用同样的方式引入B1B2B3即可,连接完成后,可通过高压开关动特性测试仪的面板选项查看当前端口的状态,如果显示状态如实际状态不对应时检查接线是否正确,地线是否可靠。

2.2 分合闸连接线分合闸连接线是用于触发断路器分闸、合闸时的电源(DC110V、DC220V)信号,只有设置状态为‘内触发’时,该电源才正常输出,否则,电源不输出,分合闸的连接线为单根三股红、绿、黑线,红色线为合闸信号,绿色线为分闸信号,黑色线为公共点,将其对应接入高压开关的二次所对应的端口,储能等待测量,分合闸电源线也有可能根据升级发生变化,最终以实物说明书为准。

断路器机械特性及试验

断路器机械特性及试验

断路器机械特性及试验断路器的机械特性也就是物理特性,我们所做的断路器机械特性试验包括分合闸时间、速度、行程,开距,同期,弹跳等。

我厂使用的是六氟化硫和真空断路器,本次总结拿真空断路器来说事,真空开关的机械特性对电气性能影响最大的是分闸运动特性(即分闸速度),因为断路器机械特性存在问题的话就会对电气性能造成影响及潜在的隐患。

真空断路器的结构:断路器的操动机构:合闸过程:当手按下机构外壳的合闸按钮或启动合闸线圈Y3合闸过程便开始,于是脱扣机构12释放由预先已储能的盘簧带动主轴10,凸轮11和主轴10一起转动,绝缘连杆6由移动连杆8和凸轮带动,然后在每一相真空断路器的灭弧室2内的动触头16由绝缘连杆6带动向上运动,直至触头接触好为止,同时触头压力弹簧5被压紧,以保证主触头由适当的压力,在合闸过程中分闸弹簧7也同时被压紧。

分闸过程:当手按下机构外壳的分闸按钮或启动分闸线圈Y2分闸过程便开始,于是脱扣机构12释放仍有足够储能的盘簧带动主轴10进一步转动,由凸轮11和移动连杆8去释放分闸弹簧,于是动触头16和绝缘连杆6一起以一定的速度向下运动,至分闸位置,同时触头压力弹簧5被压紧,以保证主触头由适当的压力,在合闸过程中分闸弹簧7也同时被压紧。

1.三相不同期:指开关三相分(合)闸时间的最大及最小值的差值。

2.弹跳时间:指开关的动静触头在合闸过程中发生的所有接触,分离(即弹跳)的累计时间值(即第一次接触到完全接触的时间)。

3.分闸时间:处于合闸位置的断路器,从分闸脱扣带电时刻到所有各极触头分离时刻的时间间隔。

4.合闸时间:处于分闸位置的断路器,从合闸回路带电时刻到所有极的触头都接触时刻的时间间隔。

5.开距:指开关从分状态开始到动触头与静触头刚接触的这一段距离。

真空断路器的主要作用:是控制和保护作用,根据系统运行的需要将部分或全部的的电气设备或线路投入或退出;当电力系统某一部分发生故障时,它和保护装置(综保)相配合,将该故障部分从系统中迅速切除,减少停电范围,防止事故扩大,保护系统中各类电气设备不受损坏,保证系统无故障部分安全运行。

断路器机械特性试验分析

断路器机械特性试验分析

断路器机械特性试验分析摘要:输电线路发生故障或者需要检修时,通常会进行断路器分合闸操作,在操作的瞬间,线路中通常产生过电压和高频涌流。

目前,常用断路器上并联合闸电阻以及在输电线路上设置避雷器等来抑制产生的过电压和高频涌流,就传统成熟的技术而言,断路器上并联合闸电阻在过程输电工程上得到了广泛应用,但由于加设合闸电阻装置后,超特高压断路器由三联箱传动变成了五连箱结构,传动结构复杂,机械可靠性降低,且此种结构布局容易造成“头重脚轻”的现象,抗震性能较差。

而加设避雷器及电抗器,极大增加了工程建设成本及占地面积,增加了电器设备的故障发生率,且降低了电网的运行可靠性。

基于以上各类因素,研究不改变断路器结构布局的情况下,增加智能控制装置,使断路器在电压零点合闸,减小过电压及高频涌流对断路器本身及电网系统的冲击,成为超高压断路器研究的热点问题。

基于此,本篇文章对断路器机械特性试验进行研究,以供参考。

关键词:断路器;机械特性;试验分析引言随着现代电子与计算机技术的发展,以及电网智能化发展的要求,近年来智能断路器在低压供配电系统中的应用越来越广泛。

火电厂的低压厂用电系统一般设计成动力中心(powercenter,PC)和电动机控制中心(motorcontrolcenter,MCC)的供电模式,电源进线、馈线、负荷等均大量采用断路器,其保护特性对于保障配用电网络安全具有重要作用。

然而,断路器的维护工作普遍存在重视程度不足、维护不到位的问题,因此,本文探究断路器的机械特征试验分析。

1断路器机械特性试验介绍断路器机械特性试验主要包括两部分,分别为机械特性试验和低电压特性试验。

机械特性试验主要检测断路器的合闸时间、合闸同期、分闸时间、分闸同期以及金短时间等。

断路器动作过慢,加大灭弧时间,烧坏触头,造成越级跳闸。

低电压特性试验的作用是检测断路器分合闸线圈的可靠性,主要检测断路器合闸线圈在85%给定电压下可靠合闸,分闸线圈在65%电压下可以可靠分闸,分合闸线圈在30%给定电压下保证不动作2断路器机械特性试验常见故障及分析2.1接地对机械特性试验的影响测量通道的接线通常将一端接在断路器的上端口,断路器下端口通过短接线将三相短接直接接地。

GIS 断路器分合闸机械特性异常原因分析

GIS 断路器分合闸机械特性异常原因分析

GIS 断路器分合闸机械特性异常原因分析断路器是电力系统中的关键设备之一,其作用是在系统中断开或连接电路。

在工作过程中,断路器的机械特性异常可能会导致系统故障,因此需要及时分析其异常原因,并采取相应措施。

一、机械特性异常表现断路器的机械特性异常表现为分合闸操作过程中出现以下情况:1. 动作不灵敏:当操作杆移动一定距离后,断路器的触头没有动作,或者动作极为缓慢,不能及时切断电路。

2. 操作杆卡住:操作杆在移动过程中受到阻力,无法完成分合闸操作。

3. 操作杆抖动:操作杆在移动过程中出现不正常的抖动,导致触头跳动,影响断路器的稳定性。

1. 机械零部件损坏:断路器内部存在大量机械零部件,如联动机构、升降杆、弹簧等,这些部件在长期工作过程中容易磨损或者损坏,导致机械特性异常。

2. 润滑不良:断路器工作时需要进行一定的润滑,否则机械零部件之间的摩擦会增加,从而引起机械特性异常。

3. 清洁不彻底:在分合闸过程中,有可能会产生一些灰尘或者杂物,如果清洁不彻底,这些杂物会附着在机械零部件上,导致机械特性异常。

4. 过载或短路:当断路器在过载或短路状态下工作时,其机械特性异常的可能性会大大增加,这是因为过载或短路会产生电弧,并且加速机械零部件的磨损。

5. 设计不合理:一些断路器的机械设计可能存在缺陷,如联动机构设计不当、升降杆过短等,这些问题会导致机械特性异常。

1. 更换损坏的机械零部件,确保所有机械零部件的工作状态正常。

3. 定期对断路器进行清洁,清除灰尘和杂物,使机械零部件始终保持清洁。

4. 在选用断路器时,应该确保其机械设计合理,符合使用要求。

5. 当断路器出现过载或短路时,应该及时进行检查和维护,避免机械特性异常发生。

总之,断路器在电力系统中扮演着重要的角色,其机械特性异常会对系统产生不利影响。

因此,我们应该认真分析机械特性异常的原因,并采取相应措施保障系统的正常运行。

断路器耐压试验及机械特性试验

断路器耐压试验及机械特性试验

断路器耐压试验及机械特性试验一、断路器设备相关基础知识1、定义能够关合、承载和开断正常回路条件下的电流,并能关合、在规定时间内承载和开断异常回路条件(包括短路条件)下的电流的机械开关装置。

2、分类按照灭弧介质分:空气(IO、油(Y)、SF6气体(L).真空(Z)0按照结构分类:金属外壳式(如罐式)、绝缘外壳式(如瓷柱式)。

3、断路器组成元件断路器本体(按灭弧原理分类)1、压气式(按动、静触头开距变化分类)2、自能式操动机构(储能单元、分合闸控制及保护单元、机械传动及机械联锁等)1、弹簧机构2、液压机构3、气动机构4、液压碟簧机构加装并联电容器和合闸电阻作用:前者:1)均匀断口间电压分布;2)改善开断性能。

在开断近区故障时,电容可以降低断口高频恢复电压上升限度,有利于改善开断性能。

后者:是断路器合闸时对电路的振荡起阻尼作用,使振荡过程变为非周期振荡,从而抑制了线路的合闸过电压O定开距与变开距区别?定开距(断口电场均匀、灭弧开距小、电弧能量较小、开断电流大)。

变开距(开距大,气吹时间较充裕,便于提高灭弧的工作电压、断口电压高)。

高压断路器技术发展表现为:自能灭弧原理出现、断口数减少及弹簧操动机构开发。

自能式原理:利用电弧自己的能量,在灭弧室内建立局部高压力形成气吹,熄灭电弧。

二、断路器耐压试验1、断路器耐压试验目的鉴定设备绝缘强度最有效和最直接的试验项目,主要为了检查断路器的安装质量,考核断路器的绝缘强度。

2、试验仪器选择常规工频试验变:现场试验条件限制,一般较少使用;串联谐振试验装置:利用额定电压较低的试验变压器可以得到较高的输出电压,用小容量的试验变可以对大容量的试品进行交流耐压试验。

试验过程安全可靠。

变频式,试验频率范围10—300HZ之间。

3、试验方案交接验收试验执行标准:国标50150DL/T596《电力设备预防性试验规程》DL/T405《进口252(245)~550交流高压断路器和隔离开关技术规范》DL474.4《现场绝缘试验实施导则交流耐压试验》针对罐式断路器而言,试验条件:断路器内所有设备安装结束,SF6气体充气至额定压力,且密封性试验和气体湿度测试合格;常规电气试验己经完成且符合要求;所有CT二次侧均短路接地,断路器外部出线套管引线解除,试验现场符合安全要求。

高压断路器的检测内容

高压断路器的检测内容

高压断路器的检测内容
高压断路器的检测内容主要包括以下几个方面:
1. 机械特性检测:检测断路器在动作过程中的速度、力量等机械特性,如分闸起始瞬间速度(刚分速度)、合闸起始瞬间速度(刚合速度)、最大分闸速度、最大合闸速度等。

这些值应与制造厂的规定值进行比较,以判断断路器动作速度的符合程度。

2. 电气特性检测:检测断路器的电气特性,如分合闸线圈电流、电压、功率等。

这些参数可以反映断路器在操作过程中的电气性能。

3. 操动机构振动信号检测:通过对操动机构振动信号的分析,判断断路器在操作过程中是否存在异常,如磨损、松动等。

4. 故障诊断:通过对断路器的状态监测和数据分析,诊断断路器是否存在故障,如绝缘损坏、接触不良等。

5. 灭弧性能检测:检测断路器在分合闸过程中的灭弧性能,确保断路器能够在故障情况下有效切断电路。

6. 辅助设备检测:检测断路器的辅助设备,如控制柜、保护装置、
测量仪表等,确保它们正常运行。

7. 环境检测:检测断路器所处环境的温度、湿度、气压等参数,以确保其在适宜的环境下工作。

8. 安全性检测:检查断路器的安全防护措施是否到位,如接地、防误操作等。

总之,高压断路器的检测内容涵盖机械、电气、振动、故障诊断等多个方面,以确保其在运行过程中的安全可靠。

断路器机械特性测试细则

断路器机械特性测试细则

断路器机械特性测试细则目录前言 ..................................................................................................................................... 错误!未定义书签。

1 测试条件 (1)1.1环境要求 (1)1.2待试设备要求 (1)1.3人员要求 (1)1.4安全要求 (1)1.5测试电压要求 (2)1.6测试仪器要求 (2)2 测试准备 (2)3 测试方法 (3)3.1一般规定 (3)3.2测试接线 (3)3.3测试步骤 (4)3.4注意事项 (4)3.5测试验收 (4)4 测试数据分析和处理 (4)5 测试原始数据和报告 (5)5.1原始数据 (5)5.2测试报告 (5)附录 A (规范性附录)机械特性测试报告 (6)附录 B (资料性附录)部分型号断路器参考速度定义 (9)断路器机械特性测试细则1 测试条件1.1 环境要求除非另有规定,测试均在以下大气条件下进行,且测试期间,大气环境条件应相对稳定,测试环境应满足以下要求:a)环境温度不宜低于5℃;b)环境相对湿度不大于80%;c)现场区域满足测试安全距离要求。

1.2 待试设备要求a)待试断路器处于停电检修状态,断路器的控制电源已完全断开;b)断路器无各种其他作业;c)机械特性测试一般应在额定操作电压及额定操作液(气)压力下进行。

1.3 人员要求测试人员需具备如下基本知识与能力:a)了解断路器的基本结构、性能、特点;b)熟悉变电站电气主接线及系统运行方式;c)熟悉各类测试设备、仪器、仪表的原理、结构、用途及使用方法,并能排除一般故障;d)能正确完成测试及现场各种测试项目的接线、操作及测量;e)熟悉各种影响测试结论的因素及消除方法;f)经过上岗培训并考试合格。

1.4 安全要求a)应严格执行国家电网公司《电力安全工作规程(变电部分)》的相关要求;b)测试工作不得少于2人。

高压断路器机械特性试验 (2)刘海林

高压断路器机械特性试验 (2)刘海林

高压开关机械特性具体实验步骤:
实验仪器的公共端与地线分别和高压开关的电源侧与负荷 侧连接
高压开关机械特性具体实验步骤:
高压开关机械特性具体实验步骤:
2.打开仪器后,选择电压调整设置动作电压为 DC 220V
高压开关机械特性具体实验步骤:
在高压开关弹簧手动储能完毕后,在测试栏目内选择低压合闸, 并选择起始电压为85V,设置电压增加幅度为5V每次,直至找到可以 使开关合闸的电压值。
≤2ms ≤2ms ≤2ms
断路器铭牌上的合闸时间,一般是指合闸指令开始,到最后一相的主 灭弧室触头刚接触为止的一段时间。而分闸时间指从分闸命令发出到 最后一相触头分开为止的时间。由于三相分合闸瞬间有时间差,所以 还有一个重要的指标,就是开关的同期性。
高压开关机械特性实验内容及标准:
分合闸不同期,将使系统在短时间内处于非全相运行,其影响是: 1 中性点电压位移,产生零序电流,必须加大零序保护的整定值,降 低了保护的灵敏度;2 引起过电压,尤其在先合一相情况比先合两相 严重。对双侧电源供电的变压器,会严重威胁中性点不接地系统的分 极绝缘变压器中性点绝缘,可能引起中性点避雷器爆炸;3 非同期加 大重合闸时间。对系统稳定不利;4 断路器合闸于三相短路时,如果 两相先合,则使未合闸相的电压升高,增大了预穿长度,加重了对合 闸功的要求,同时对灭弧室机械强度也提出更高要求
高压开关控制回路保护接线图:
谢谢观赏
谢谢观赏
高压开关机械特性具体实验步骤:
高压开关机械特性具体实验步骤:
低压合闸完毕后进行低压分闸试验,设置起始电压为160V。
高压开关机械特性具体实验步骤:
高压开关机械特性具体实验步骤:
随后进行三相分合闸时间及同期实验,在高压开关弹簧手动储能 完毕后,在测试栏目内选择合闸测试,仪器会给合适的电压使高压开 关合闸,并测得三相合闸时间及相间同期时间最大值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1高压电路中电弧的特性及形成过程随着我国经济发展和电力工业需求的增长,对高压开关性能要求也越来越高,它能否正常工作直接关系电力系统的安全与稳定。

断路器起着控制和保护电力系统的双重作用,能在有载、无载及各种短路工况下完成规定的合分或操作循环任务,特别是在高压强电流的条件下开断电路并不是件容易的事,开断过程产生的电弧不熄灭,电路就不能被开断。

由于电力系统发生故障时,产生的电流比正常负载电流要大得多,这时开断电路的断路器在触头分离后,触点之间将会出现电弧,电弧的存在对高压电路来说是一个不可忽视的安全隐患,因此高压电路上明确规定,只有电弧熄灭,电路的断开任务才算完成,而断开的时间很短,因此要求很高。

电弧快速熄灭能及时根除安全隐患,为将财产损失减到最小赢得时间。

断路器的开断要快速、可靠、稳定。

在运行中,开断能力是标志性能的基本指标。

所谓开断能力,就是指断路器在切断电流时熄灭电弧,顺利地切、分电流的任务的能力。

在电力系统中,开断能力的参数通常是以额定短路开断电流为标志的,符号为Ib,单位kA。

电弧是一种能量集中、温度高、亮度大的气体放电现象,是一种电离的气体,质量极轻,发出耀眼的光芒,在外力作用下迅速移动、卷缩和伸长。

在操作电力开关分断电路的过程中,当开关的触头即将分离时,由于触头的接触面突然减小,使得触头接触处的电阻猛增,同时电路上被消耗的电能将产生上千度的高温,使触头产生热电子发射,这与人们在电子管中观察到的热电子发射情况类似,只不过这时触头表面的温度比电子管内灯丝的温度要高得多,发射的热电子强度也大得多。

同时在开关触头分离的瞬间,电路加在触头上的电压将在触头间极小的间隙内形成很强的电场,它将在高温作用下触头发射的热电子迅速加速,这些高速运动的热电子碰撞其周围的气体分子而产生自由电子和正离子,被电离出来的自由电子在高温和强电场的作用下继续加速,又碰撞其附近的其它气体分子,如此继续,形成连锁反应,使开关触头间的气体在极短的时间发生雪崩似的电离,接通电路,发出耀眼的亮光,这就是人们看到的电弧。

电弧产生以后,触头间隙周围的温度随之升高到4 000℃以上,大量的金属蒸气和气体原子在高温下继续电离为自由电子和正离子,以维持电弧的稳定和电路的导通。

电子学理论认为[6~8],在电弧的形成过程中,高温和电场不仅使气体分子、原子和炽热的金属蒸气发生电离,同时还使已电离的自由电子和正离子重新复合成中性原子、分子。

电弧形成过程示意图见图1。

电弧形成机制包括两种[6 ~10 ],场致电子发射和热电子发射。

场致电子发射机理:当材料表面外加很强的电场时,势垒的高度显著降低,同时势垒的宽度变窄,这时电子不需要额外获得能量就会由于隧道效应而有一定穿越势垒的几率,产生场致电子发射。

有文献表明[8~10], Fowler和Nordheim于1928年计算了这种场致发射的电流密度与外加电场的关系得出在0 K时发射的电流密度为:式中,E为电场强度;Φ为材料的逸出功,v(y)和t(y)可通过查表得到。

热电子发射需将阴极加热到约2 500 K以上,这时便在热作用下发射电子。

电子经施加在两极间的电场加速,向阳极运动。

由于热电子发射需要的温度高,故只有少数几种难熔金属(如W、Zr、Hf等)才可能产生热电子发射。

热电子发射符合Richardson_Dushman 方程:式中,js为电流密度;A为常数;K为Boltzmann常数;T为电极温度;Φ是逸出功。

式(2)表明热电子发射与发射体温度、电子逸出功有密切关系。

比较式(1)、(2)可知,对弧触头,无论是场致电子发射还是热电子发射,其发射电流都直接依赖于触头材料的逸出功。

提高材料的逸出功可显著降低动静弧触头间的电子发射能力。

同时,在热电子发射工作状态下,提高逸出功可使电极在较高的温度下达到所需要的电流,能有效改善弧触头材料的抗烧蚀能力。

2熄灭电弧的方法电弧的产生直接影响着电力系统的安全运行,快速、可靠、稳定地熄灭电弧对高压电路起着举足轻重的作用。

必须要指出的是,很多场合熄灭电弧,工作人员错误的单纯采用体积大的断路器或闸刀,人为拉长电弧的长度和电弧存在的时间,这对于熄灭小电弧是可行的。

但电弧是一种自持放电现象,采用体积大的断路器或闸刀控制,拉长电弧,仅仅是熄灭这类电弧的充分条件。

众所周知,我们所讨论的电弧现象大多是基于交流电流的情况。

随着正弦交流电流的周期性变化,交流电弧也将随之每半周要过零一次。

电弧能否熄灭,决定于电弧电流过零时,弧隙的介质强度恢复速度和系统恢复电压上升速度的竞争。

加强弧隙的去游离或减小弧隙电压的恢复速度,都可以促进电弧熄灭。

前已指出,交流电弧的熄灭条件是在零休期间不发生热击穿,同时在此之后弧隙介质恢复过程总是胜过电压恢复过程,也即不发生击穿。

但从灭弧效果来看,零休期间是最好的灭弧时机:一则这时弧隙的输入功率近乎等于零,只要采取适当措施加速电弧能量的散发以抑制热电离,即可防止因热击穿引起电弧重燃;二则这时线路所储能量很小,需借电弧散发的能量不大,不易因出现较高的过电压而引起电击穿。

反之,若灭弧非常强烈,在电流自然过零前就“截流”,强迫电弧熄灭,则将产生很高的过电压,即使不致影响灭弧,对线路及其中的设备也很不利。

因此,除非有特殊要求,交流开关电器多采用灭弧强度不过强的灭弧装置,使电弧是在零休期间,而且是在电流首次自然过零时熄灭实际上交流电弧未必均能于电流首次自然过零时熄,有时需经2~3个半周才熄灭。

如图2所示,触头刚分(t=t0)时,弧隙甚小,uh也不大。

故电流在首次过零t=t1)前,其波形基本上仍属正弦波,且在电流过零处电源电压滞后约为δ≈90°。

这时,介质强度ujf不大,恢复电压uhf于不久后上升到大于燃弧电压ub1时,弧隙击穿,电弧重燃。

图2在第二个半周,弧隙增大,弧隙增大了,uh和ujf均增大,电流再过零(t =t2)时的滞后角δ2<δ1。

由于ujf仍不够大,在uhf>ujf2时,弧隙再次被击穿,电弧仍重燃。

此后,因弧隙更大,当t=t3、即电流第三次过零时,δ3<δ2,且ujf始终大于uhf,电弧不再重燃,电弧终被熄灭,交流电路也完全切断了。

在现代高压开关电器中,以下几种方法是被广泛采用的。

2.1采用不同的灭弧介质熄灭电弧实验得知,电弧的去游离强度,在很大程度上取决于电弧周围介质的传热能力、介电强度、热游离温度和热容量,它们的数值越大,则去游离作用越强,电弧就越容易熄灭。

一类是利用减少碰撞游离的可能性来灭弧,如经常采用的真空灭弧法;另类是增强介质的灭弧能力来灭弧,如利用灭弧能力约为空气的100倍的SF6,采用可产生灭弧能力是空气7.5倍的H2的灭弧介质,如变压器油或断路器油。

2.2采用特殊的金属材料制作灭弧触头触头材料在很大程度上决定着电弧中的去游离强度。

从前文可知金属蒸气热游离可以维持电弧燃烧,因此采用熔点高、导热系数大、热容量大、抗电弧能力较强的耐高温金属作为触头的材料,可以减少热电子发射和电弧中的金属蒸气,能更好地抑制游离作用。

铜、钨合金等都是常用的触头材料。

2.3利用气体或油的吹动灭弧让电弧柱拉长变细,可以使得电弧在气流或油流中迅速地冷却,再加上吹弧,将更快地促使电弧变细和带电离子的扩散。

灭弧过程中,气体或油的流速越大,其冷却作用越强。

在高压断路器中利用各种结构形式的灭弧室,使气体产生巨大的压力并有力地吹向弧隙,使电弧熄灭。

如空气断路器利用充入压力约2.3MPa(20atm)的干燥压缩空气作为吹动电弧的灭弧介质。

2.4采用多断口灭弧在高压断路器中,经常是一相采用两个以上的断口串联,在灭弧时,串联的多个断口把电弧分割成多段小电弧,相当于多断口拉长了等行程的单断口的电弧,既增大了弧隙电阻(相当于弧隙电阻值增大加速),又加快了电弧被拉长的速度(相当于触头分离的速度增加),这样,也增大了介质强度的恢复速度,使得断路器更可靠、快速的灭弧。

况且,加在每个断口的电压降低,使弧隙恢复电压降低,也有利于灭弧。

在低压开关电器中,广泛采用灭弧栅装置,也就是应用把长弧变成短弧的多断口灭弧装置。

2.5拉长电弧并增大断路器触头的分离速度迅速拉长电弧,可使弧隙的电场强度骤降,同时,使电弧的表面突然增大,有利于电弧的冷却和带电质点向周围介质中扩散,使热游离作用削弱,加强离子的复合速度,加速电弧的熄灭。

为此,经常在高压断路器中装设强有力的断路弹簧,以加快触头的分离速度。

我们经常将这种方法与其它灭弧方法结合使用。

2.6截流灭弧包含电弧在内的电路,在一定条件下是动态不稳定系统,在外界的干扰下,电弧燃烧不稳定,出现自激的高频振荡,最后使得电弧电流降到零导致灭弧。

通常,电弧中振荡的频率很高,可达几百千赫兹,在频率响应较差的示波器显示的示波图(如图3)中我们可发现,电流会出现突然被截断的现象,使电弧因不稳定而熄灭。

图32.7强迫灭弧使电源电压不能维持很高的电弧电压,电弧电流很快减小到零而熄灭,所以这种方法又被称为过零灭弧。

它通常要求使用特殊材料制成的高压断路器,如在开断交流短路电流时会出现强迫灭弧现象的石英砂熔断器。

这种熔断器熔丝很长,熔丝周围填充石英砂,利用石英砂很强的散热能力和熔丝很细的特点,当电弧电压超过电源电压,电弧电流不能维持而急剧减小导致灭弧。

3 断路器的分类按照不同的标准,高压断路器有不同的分类方法,这里只按照断路器灭弧介质进行分类。

(1)油断路器:触头在变压器油(断路器油)中开断,利用变压器油(断路器油)作为灭弧介质的断路器。

(2)压缩空气断路器:以压缩空气作为灭弧介质和绝缘介质的断路器,吹弧所用的空气压力一般在1013~4052kPa (10~40atm )的范围内。

(3)6SF 断路器:以6SF 气体作为灭弧介质或兼作绝缘介质的断路器。

(4)真空断路器:触头在真空中开断,利用真空作为绝缘介质和灭弧介质的断路器,真空断路器需求的真空度在410 Pa 以上。

还有磁吹断路器,固体产气断路器等类型。

4 高压断路器的灭弧特性4.1六氟化硫断路器SF6断路器是以SF6气体作为电器绝缘和灭弧介质的电气设备,它具有油断路器,压缩空气断路器不可比拟的灭弧能力。

由于SF6断路器具有优异的灭弧能力,使其燃弧时间很短,电流开断能力大,触头的烧损腐蚀轻微,触头能在比较高的温度下运行而不劣化。

此外,SF6气体优越的绝缘特性,使电气绝缘距离可以大幅度下降,结构更为紧凑,节省空间,而且操作功率小,噪音小。

SF6高压断路器以良好的绝缘性能及优越的灭弧介质而被广泛的应用于电力系统的各类电压等级的开断设备中。

正是因为SF6断路器具有以上优点,所以其发展速度非常之快,已成为目前最有发展前途的电力控制设备。

4.1 SF6断路器的结构及其发展由于SF6气体具有优异的灭弧和绝缘性能,从二十世纪60年代起,SF6成功地用作高压开关及其设备的绝缘和灭弧介质。

相关文档
最新文档