脂质体在药剂学中的应用

合集下载

药剂学第十八章制剂新技术(第5节脂质体)

药剂学第十八章制剂新技术(第5节脂质体)

09.03.2019
药剂学
脂质体的结构图示
(二)脂质体的性质
1.脂质体的相变温度
当升高温度时,脂质双分子层中的疏水链会从有序 排列变为无序排列,使脂质膜的变为“液晶”态, 膜的流动性增加(膜的流动性是脂质体的一个重要 物理性质),双分子层变薄,这种发生相转变时的 温度称为相变温度(phase transition temperature)。 由于在相变温度时膜的流动性增加,被包裹在脂质 体内的药物将具有最大释放速率,因而膜的流动性 直接影响脂质体的释放及其(渗漏)稳定性。
09.03.2019 药剂学 17
(四)脂质体作为药物载体的应用
1. 作为抗肿瘤药物的载体(阿霉素) 2. 作为抗寄生虫药物载体(抗疟药) 3. 作为抗菌药物载体(两性霉素B) 4. 作为激素类药物载体(可的松长效) 5. 作为酶的载体 6. 作为解毒剂的载体 7. 作为免疫激活剂、抗肿瘤转移 8. 作为抗结核药物的载体 9. 作为基因治疗药物的载体 10.应用于遗传工程中 09.03.2019 18 药剂学
第五节 脂质体及类脂质体
09.03.2019Fra bibliotek药剂学
1
一、脂质体Liposomes) (一)概念、组成和结构
脂质体系指将药物包封于类脂质双分 子层内而形成的微型泡囊。 脂质体的组成是以磷脂为主要膜材并 加入胆固醇等附加剂。 根据脂质体结构中所包含的磷脂双层 分子的层数,单层的称为单室脂质体, 多层的称为多室脂质体。
09.03.2019 药剂学 24
类脂质体的结构示意图
09.03.2019
(其中:“”
“―” 代表非离子表面活性剂 药剂学
亲水基团;“―”疏水基团)
25
09.03.2019 药剂学 16

脂质体药品发展现状

脂质体药品发展现状

脂质体药品发展现状
近年来,脂质体药品在药物研发和临床应用领域取得了显著的发展。

脂质体是由磷脂、胆固醇和其他辅助成分组成的一种人工制备的纳米级药物递送系统。

它具有较小的颗粒大小、高药物稳定性和生物相容性等特点,因此被广泛用于改善药物的生物利用度、靶向递送和控释释放,以提高药物的治疗效果。

脂质体药物递送系统的发展主要分为以下几个方面。

首先,针对药物的生物利用度问题,脂质体可以通过包封药物分子,防止其在体内的早期代谢和降解,从而提高药物的口服生物利用度。

例如,脂质体包封的抗癌药物可以通过口服给药途径达到与静脉注射相当的治疗效果,降低了副作用和治疗费用。

其次,脂质体还可以通过改变药物的药代动力学参数,实现药物的缓释和延时作用。

脂质体内的药物可以缓慢释放,延长药物在体内的停留时间,从而减少剂量和给药次数,提高药物的疗效和依从性。

此外,脂质体还可以通过调节药物的分布和靶向递送,实现对疾病灶的精确治疗。

通过调整脂质体的表面性质和组分,可以将药物递送到特定的目标组织和细胞,减少对正常组织的不良影响。

已有的临床研究表明,利用脂质体作为载体的抗癌药物可以更好地靶向肿瘤组织,提高药物抗肿瘤活性。

值得一提的是,随着纳米技术的快速发展,一些新型的脂质体
药物递送系统也得到了广泛研究和应用。

例如,固体脂质体(SLN)和纳米脂质体(NLC)等新型载体的出现,进一步提高了药物的稳定性和负荷量。

综上所述,脂质体药物递送系统作为一种有效的药物递送策略,已在临床研究和应用中取得了重要进展。

随着对纳米技术的深入研究,我们相信脂质体药物将在未来发展中发挥更重要的作用,为药物研发和临床治疗带来新的突破。

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。

方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。

结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。

结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。

关键词:脂质体、药物递送、靶向、研究进展Research Progress of Liposomes in Pharmaceutical FieldDan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。

脂质体在药物递送中的应用和发展

脂质体在药物递送中的应用和发展

脂质体在药物递送中的应用和发展随着医学科技的不断发展,药物递送系统在治疗疾病中扮演着越来越重要的角色。

脂质体作为一种广泛应用于药物递送系统的载体,其应用和发展也逐渐成为研究者关注的焦点。

一、脂质体的定义和结构特点脂质体是由磷脂双分子层所组成的微小球体,大小在20-200纳米之间。

其双分子层可以与其他成分(如胆固醇、生物碱等)形成不同的组成和结构,以适应不同的药物递送需求,这也为其应用提供了广泛的可能性。

二、脂质体在药物递送中的应用1.化学药物脂质体可以包含化学药物,经由胆囊淤积和循环系统进到肝脏,从而调节疾病的治疗达到有效的药效。

2.抗癌药作为一种相对于传统细胞毒性药物的更为温和的治疗方式,脂质体对于肿瘤的抑制作用得到了广泛研究。

例如,脂质体可以包含一些表面载体,通过不同的路径进入癌细胞,提高药效同时减少药物的不良反应。

3.抗病毒药脂质体可以用于包裹抗病毒药物,通常在研究中被证明具有很好的药物传递性。

例如,针对击败 HIV 的治疗,脂质体已经被广泛应用。

三、脂质体发展趋势尽管脂质体在药物递送中已经取得了一定的成果,但是其发展仍然需要不断探索和创新。

以下是前沿研究的趋势:1.利用脂质体进行基因治疗基因治疗是最近十年来新兴的治疗方式之一,其使用了核酸来直接干预某个异常基因或调节其表达,从而达到治疗的效果。

这种治疗方式对于无法通过化学药物递送其直接靶位的治疗具有独特的优势。

同时,脂质体带有的化学、物理等性质的可以通过修饰调控进一步创新。

2.发展新型的脂质体载体当前的脂质体治疗仍然存在着一系列问题,例如跨段传递的稳定性和对非靶标细胞的影响。

新型载体的发展有望在这些方面有所突破。

3.研究脂质体的生物学行为脂质体的递送性可能与其在生物学水平的行为和细胞互作有关。

因此,研究脂质体的生物学行为和其递送特性的关系将是未来的一个方向。

四、总结脂质体作为一种常见的药物递送系统存在着巨大的发展潜力,其在化学药物、抗癌药、抗病毒药等方面的应用为临床治疗带来了希望。

药剂学脂质体介绍ppt课件

药剂学脂质体介绍ppt课件

ABCD
制备方法
不同的制备方法可能导致脂质体具有不同的粒径、 电位和药物包封率,从而影响其稳定性。
介质性质
介质中的离子强度、pH值等因素可能影响脂质 体的稳定性。
提高稳定性策略
优化脂质组成
通过调整磷脂种类、胆固醇含量等脂质组成,提高脂质体的稳定性。
改进制备方法
采用更先进的制备方法,如高压均质、超声等,以获得更稳定的脂质体。
控制储存条件
在低温、避光、适宜pH值等条件下储存脂质体,以提高其稳定性。
添加稳定剂
向脂质体中添加适量的稳定剂,如表面活性剂、聚合物等,以提高其稳定性。
05
脂质体在药物研发中作用 与挑战
药物研发中作用
提高药物稳定性
脂质体作为药物载体,能够保护 药物免受外部环境(如pH值、温 度)的影响,从而提高药物的稳
超临界流体技术
利用超临界流体(如CO2)的高扩散性和低粘度特性,将 药物、磷脂、胆固醇等溶解于超临界流体中,然后通过减 压或升温的方式使脂质体析出。
04
脂质体稳定性评价与影响 因素
稳定性评价方法
粒径分布测定
通过动态光散射等方法测定脂质体的粒径及 其分布,以评估其稳定性。
电位测定
利用电位测定仪测定脂质体的电位,以判断 其稳定性及可能发生聚集的倾向。
制备过程演示
01
减压蒸发除去有机溶剂,得到胶态脂质体。
02
通过凝胶色谱法或超速离心法进行纯化。
3. pH梯度法
03
制备过程演示
利用药物在不同pH值下溶解度的差异, 将药物包载入脂质体内。
通常先将药物溶于酸性水溶液中,再 与碱性脂质体混合,通过pH梯度促使 药物包载。
结果观察与数据分析

脂质体技术在中药给药系统中的应用进展

脂质体技术在中药给药系统中的应用进展

脂质体技术在中药给药系统中的应用进展目的综述脂质体技术在中药给药系统应用的进展情况。

方法查阅近几年有关脂质体在中药给药系统中应用的国内外文献,并对其进行综合分析和总结。

结果脂质体技术可以在抗肿瘤、提高免疫力、保护肝损伤、降血糖、保护心脑血管以及抗菌消炎等治疗领域得到广泛研究。

结论脂质体作为中药载体,不仅可以提高中药的疗效,而且还可以减少给药剂量以及降低药物毒副作用,表明脂质体技术在中药给药系统具有广阔的应用前景。

标签:脂质体技术;中药给药系统;应用脂质体(Liposome)是磷脂分散在水中形成的一个类球状的、包封一部分水相的封闭囊泡。

作为一种新型的给药系统,其特点为:脂质体的双分子层结构类似细胞膜,具有良好的生物相容性;药物包裹在脂质体内部,提高了药物稳定性,延缓药物在体内降解;减少用量,增加疗效等。

在20世纪80年代脂质体技术就已经应用到中国传统中医药领域[1],中药脂质体技术近年来得到国内外广大研究学者的重视,成为中药制剂新型给药系统的研究热点。

因此,本文就脂质体作为中药给药新技术的研究进展作一简要综述。

1中药脂质体在抗肿瘤方面的应用从天然甘草中提取的有效活性成分异甘草素,具有抑制乳腺癌、胃癌、前列腺癌、肺癌等多种肿瘤细胞的增殖作用。

张晶等[2]采用薄膜分散法制备了异甘草素脂质体,并研究了脂质体对Hela(人宫颈腺上皮癌细胞系)和Siha(人宫颈鳞状上皮癌细胞系)宫颈癌细胞生长和增殖的影响。

实验结果表明:异甘草素脂质体对宫颈癌细胞的增殖抑制作用成浓度依赖性和时间依赖性,于第3 d达到最大抑制率,其抑制率最高分别为83.44%和96.14%,与对照组(异甘草素)相比较,抑制效果明显强于对照组。

2中药脂质体在免疫学方面的应用香菇多糖是从香菇中提取的有效活性成分,具有提高免疫功能和刺激干扰素形成等广泛的药理作用。

蔡云等[3]比较香菇多糖脂质体与注射剂对正常小鼠免疫功能影响,实验结果表明:香菇多糖脂质体可以增强巨嗜细胞吞噬能力,促进外周血和脾脏T淋巴细胞增殖,提高动物体液免疫功能,其效应与剂量相关,与注射剂相比其效应有所提高。

脂质体与介孔材料在药物传递中的应用

脂质体与介孔材料在药物传递中的应用

脂质体与介孔材料在药物传递中的应用药物传递技术一直是生物医学领域的研究热点。

脂质体和介孔材料是两种常见的药物传递系统,在医药研究中发挥着重要的作用。

接下来,我们将探讨脂质体和介孔材料在药物传递中的应用。

一、脂质体在药物传递中的应用脂质体是一种由磷脂和胆固醇等成分组成的小鼠球体,直径约为50-100 nm。

由于它的物理性质与细胞膜相似,因此被广泛应用于药物传递技术中。

脂质体具有以下优势:1. 高度容纳药物的能力脂质体可以容纳多种药物或基因。

药物被包装在脂质体内时,可以防止药物在体内过快分解和吸收。

这种药物分解和吸收的延缓,可以提高药物的生物利用度和治疗效果。

另外,脂质体可以将水溶性药物包装在其内部,提高药物的稳定性。

2. 药物靶向性较高脂质体可以通过改变其大小、表面电荷、脂质组成等方式,增强其对特定靶标的亲和力。

这种特定的亲和力可以使脂质体更为精准地将药物送达到治疗区域,减少对健康细胞的伤害。

3. 安全性较高脂质体可以在体内迅速代谢,降低对人体的毒副作用。

这种快速的代谢也意味着,脂质体可以持续输送药物,从而提高治疗效果。

二、介孔材料在药物传递中的应用介孔材料是一种小孔的多孔性材料,具有高度的可控性和精确的孔径大小。

由于其表面积大、孔径可调、分子筛效应和反应表面较好等优势,介孔材料已经成为药物传递技术中的研究热点。

1. 改进药物溶解度药物利用介孔材料被包覆同时有机修饰的功能,可以大大提高药物的溶解度和相对药物分子的溶出量。

2. 提高药物的生物利用度介孔材料与药物的连结提高了药物在体内的稳定性和生物可用性,从而提高药物的生物利用度。

3. 增加药物的定向输送效果利用介孔材料的孔径和可调制的内容进行药物的包含和定向汇聚,提高药物的靶向性和定向输送效果。

三、脂质体与介孔材料在药物传递中的联合应用脂质体和介孔材料的结合可以形成“双峰”或“多峰”结构。

这种结构的药物可以同时在构成的两个峰中输送,从而形成二进制或多进制输送系统。

药剂学课件-脂质体

药剂学课件-脂质体
对今后药物研究的影响
脂质体的发展将推动药物研究的进步,改善药物的治疗效果。
今后研究的动力
未来的研究将聚焦于提高脂质体的稳定性、探索新的应用领域以及改进制备方法。
脂质体的应用
药物递送
脂质体可用于传递药物给特定 组织或器官,提高药物的生物 利用度和治疗效果。
护肤品
脂质体在护肤品中能为皮肤提 供保湿、滋养和抗氧化的效果, 改善肌肤质量。
营养保健品
脂质体可以包封营养成分,提 高其稳定性和吸收性,用于制 备营养保健品。
脂质体的优点与局限性
1 优点
良好的生物相容性、可控释放性、药物稳定性增强、生物利用度提高。
药剂学课件-脂质体
脂质体是一种重要的药物递送系统,具有许多优点和广泛的应用。本课件将 介绍脂质体的概念、制备方法、表征手段、应用领域以及未来发展趋势。
脂质体的概念
定义
脂质体是由单层或多层脂质构成的微小球体结构,能够包封和释放药物。
特点
脂质体具有良好的生物相容性、可控释放性,且能增强药物的稳定性和生物利用度。
利用超声波的作用力,将脂质和药物分 散在水中,形成脂质体。
脂质质体的形态、大小和 形状。
稳定性表征
通过稳定性试验,如离心沉积试验、尘埃压力 试验等,评估脂质体的稳定性。
粒径分布
通过动态光散射仪等仪器测量脂质体的粒径分 布,以评估其分散性。
药物包封效率
通过分析方法测定药物在脂质体中的包封效率, 评估脂质体的药物载量。
分类
根据组成和结构的不同,脂质体可以分为多种类型,如固体脂质体、透明脂质体等。
脂质体的制备
1
热法制备
通过高温熔融和冷却结晶的方法制备脂
溶剂挥发法制备
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(1)Lipo-E:细胞生长肽 作用机理:修复、生长、快速渗透
能够促进细胞再生、修复受损、萎缩细胞,促进其脂肪细胞生成和长,提高肌肤的抵御机能。 超细小的活性分子,能够迅速渗透皮下组织,增加巨噬细胞吞噬作用及生长、修复的效应。
(2)KGF-2角质细胞生长因子 具有调节、修复、再生帮助愈合伤口及加强表皮细胞的代谢和更新,避免色素沉积。 促进组织细胞再生,增强细胞代谢活力,对换肤、纹眉、漂唇及烧伤、烫伤、疤痕 修复凹洞补平等,都具有显著疗效。 (3)EGF(表皮细胞生长因子): 是一种多功能细胞生长因子,也是多种细胞致裂源,促进多种细胞的合成代谢, 快速修复皮肤的损伤(如纹眉、换肤等),促进血管内皮细胞和平滑肌细胞生长, 增强微细血管韧度,可以使皮肤红润、健康,提高皮肤的抵御能力。 (4)BFGF(碱性成纤维细胞生长因子): 细胞生长因子是一种多种细胞生理功能以及代谢活动发挥生物调节的生物活性因子, 可促进表皮细胞、神经细胞、血管和器官组织的上皮细胞生长,具有修复受损皮肤, 促进微循环、改善肤色、防止皱纹产生、淡化色素沉着。
脂质体药物特点及其机制
药物组பைடு நூலகம்分布可控性
在制备过程中,可通过改变表面的性质。如 粒大小、表面电荷等,提高脂质体药物对靶 区的选择性和定向性,控制药物 的组织分布, 从而降低毒性,减少副作用。
与细胞的亲和性
由于其特殊的类细胞膜结构,脂质 体细胞有较大的亲和力,且能增加 药物对细胞的通透性,从而提高了 药物在患病部位的浓度和作用,起 到增强疗效的作用。
薄膜分散法:
该法是实验室常用方法,可做成各种单室或多室脂质体。缺点是对操作过程要求缜密,工作时间要达 20小时以上。 超声波分散法: 在薄膜法的基础上用超声波照射。该法可使工作时间缩短一些,但超声波可使脂质分解,使药物受到破坏或失活。 表面活性剂处理法: 该法可以制成粒度较小的脂质体,但增加了除去表面活性剂的透析、超声离心或胶体过滤步骤,而且有许多药物不宜 使用表面活性剂。 注入法: 过程中使用了乙醚或乙醇、二乙醚。该法步骤简单,但包封率低,粒径大。除去溶媒时需要高温,会使大分子物质变 性和热酸性物质灭活。 反相蒸发法: 该法生成的脂质体粒度均一,包封率高,但是稳定性差,对过程控制要求较严。 冷冻干躁法: 该法对热不稳定药物尤为适宜,但需经过几次冻融过程,且包封率不高。 PH及醋酸梯度法: 该法包封率很高,但步骤多,条件复杂,不适合工业化生产。
现 经 实 广 中 泛 脂 应 质 用 体 于 是 化 否 妆 已 品
? 否
脂质体应用中存在的问题
脂质体作为药物载体的应用虽然具备了许多优点和特点, 但就目前来看,也还存在一定的局限性; 首先表现在其制备技术给工业化生产带来了一定难度; 此外对于某些水溶性药物包封率较低,药物易从脂质体中 渗漏; 稳定性差亦是脂质体商品化过程急需解决的问题。
脂质体不仅可静脉给药,也可用作 肌肉、皮下、粘膜、皮肤给药,还 可以将脂质体做成涂膜剂、膏剂、 口服液等,因此药物改为脂质体剂 型后可开发出更为广泛的给药途径。
药物组织分布可控性
在制备过程中,可通过改变表面的 性质如粒径大小、表面电荷等,提 高脂质体药物对靶区的选择性和定 向性,控制药物的组织分布,从而降
缓释性
药物被包在脂质体内,在组织中的 扩散速度降低,在血液中释放减慢, 从而延长药物发挥作用的时间。
靶向性
通过改变脂质体的给药方式、给药部位 和粒径来调整其靶向,或者在脂质体上 连接某种识别分子,通过其与靶细胞的 特异性结合来实现专一靶向性。抵达靶 部位后脂质体 释放药物,提高了药物在 靶部位的治疗浓度,因而俗称“药物导 弹”。
低了毒性,减少了副作用。
脂质体与普通基质的对比
脂质体作为化妆品的添加剂的好处
● 脂质体的磷脂类分子可以增加细胞膜的流动性,促进表皮细胞生长,修复和增强细 胞代谢,脂质体的磷脂轻度键合到角质层的角蛋白上,使皮肤柔软、润滑,有一种舒 畅的自然感。 ● 脂质体涂在皮肤上形成一个具有透气但减少水分蒸发的半透膜,故又有很好的保湿 作用(透气)。脂质体能使角质层水合力增加40%使皮肤长时间保持充足水分,这与 一般不透气的保湿剂不同。 ● 脂质体的成份(如神经鞘磷脂)很容易穿透皮肤角质层,使活性物质进入表皮和真 皮,发挥生物效应。据法国欧莱娅(L’oreal)公司监察证实,被脂质体包裹的内含物 进入角质层比游离在皮肤外的增加14~29倍 ● 有些活性成份如:生长因子、Vc等物质很不稳定,易受到氧化、紫外线破坏和酶的 分解。经脂质体包覆后,隔离了破坏因素,提高了活性和稳定性,而且脂质体还具有 缓释性效应,延长了有效成份的作用时间。 ● 脂质体作用于皮肤,具有很高的安全性,因为是脂类物质,不具有免疫原性,不会 引起过敏和其他有害作用。
脂质体药物特点及其机制
长效性
在脂质体双分子层的保护下, 药物可以避免氧化、降解或被 人体内的酸或酶破坏,从而可 以保证或延长药物的稳定性。
低毒性
脂质体药物的膜材与哺乳动物细胞相似, 由磷脂等组成,对机体不是异物,不会 引起局部组织损伤,不诱发超敏反应 , 而能多次长期使用,对人体无毒害。
给药途径多样性
脂质体在药剂学中的应用
-------广州普婷生物科技有限公司推出的化妆品
脂质体洁面啫喱
脂质体真皮活肤祛皱面膜
适合油性皮肤,彻底清洁污垢及化妆品残留物。 重组胶原纤维、弹力纤维和网状纤维,活肤除皱。
脂质体阳光隔离素
防尘防紫外线,透气防水,抵御自由基。
脂质体bFGF再生霜
激发细胞再生活性,修复受损细胞,预防肌肤过敏
脂质体在药剂学中的应用
81050420
王景
脂质体?
脂质体(Liposomes)是由类 脂(卵磷脂、磷脂酰胆碱、神 经鞘磷脂等)双层分子组成的 空心球 直径范围一般为25nm~5μm, 肉眼看不见的小球状物。磷脂 是双极性的,一头亲水,一头 亲脂,亲水极朝外头,亲脂极 朝内尾,2个磷脂分子“尾” 部相对构成了一个双层分子结 构。
现实中脂质体是否已 经广泛应用于化妆品
实现脂质体制备的工业化的技术要点
包封率 80%以上,达到国家药典的规定; 提高贮存的稳定性; 提高向网状内皮系统以外组织的到达性; 提高脂质体粒度的均一性; 大幅度降低生产成本。
到目前为止,国内有沈阳、南京、上海、大连、四川等众多研究机构和制药企业都在进行脂质体药物的研究开发。关 于脂质体的制备方法已有 20余种,但都属于实验室方法,现将主要几种的优缺点简要介绍如下:
脂质体药物作用机理
脂质体药物作用机理
脂质体对细胞的作用机 理由于脂质体与细胞膜 (生物膜)结构相似, 脂质体的主要成份磷脂 等类脂物也是细胞膜的 主要成份,所以脂质体 与细胞膜之间有很强的 亲合力。 脂质体的膜与生物膜熔 合,脂质体所包含的活 性成份(例如EGF , BFGF, SOD, Vc等等) 被释放而进入细胞内, 或者整个脂质体被细胞 吞噬,活性成份在细胞 内被吸收
相关文档
最新文档